首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M2型丙酮酸激酶(PKM2)是糖酵解途径的一个关键限速酶,在多种恶性肿瘤细胞中高表达.在肿瘤糖代谢通路中,PKM2可以通过在高活性的四聚体和低活性的二聚体之间相互转化,促进肿瘤的糖酵解和细胞增殖.肿瘤细胞通过多种方式调节PKM2的表达和酶活性如转录调节、变构调节和翻译后修饰调节.PKM2在肿瘤发生和肿瘤代谢中的重要作用使它有望成为肿瘤治疗的新靶点.  相似文献   

2.
Tumor aerobic glycolysis, or the Warburg effect, plays important roles in tumor survival, growth, and metastasis. Pyruvate kinase isoenzyme M2 (PKM2) is a key enzyme that regulates aerobic glycolysis in tumor cells. Recent research has shown that PKM2 can be used as a tumor marker for diagnosis and, in particular, as a potential target for cancer therapy. We investigated the effects of combining shRNA targeting PKM2 and docetaxel on human A549 lung carcinoma cells both in vivo and in vitro. We observed that the shRNA can significantly downregulate the expression level of PKM2. The decrease of PKM2 resulted in a decrease in ATP synthesis, which caused intracellular accumulation of docetaxel. Furthermore, the combination of pshRNA‐pkm2 and docetaxel inhibited tumor growth and promoted more cancer cell apoptosis both in vivo and in vitro. Our findings suggest that targeting tumor glycolysis can increase the efficacy of chemotherapy. In particular, the targeting of PKM2 could, to some extent, be a new way of reversing chemotherapy resistance to cancer therapy. (Cancer Sci 2010)  相似文献   

3.
We have previously demonstrated that enhanced aerobic glycolysis and/or autophagy in the tumor stroma supports epithelial cancer cell growth and aggressive behavior, via the secretion of high-energy metabolites. These nutrients include lactate and ketones, as well as chemical building blocks, such as amino acids (glutamine) and nucleotides. Lactate and ketones serve as fuel for cancer cell oxidative metabolism, and building blocks sustain the anabolic needs of rapidly proliferating cancer cells. We have termed these novel concepts the “Reverse Warburg Effect,” and the “Autophagic Tumor Stroma Model of Cancer Metabolism.” We have also identified a loss of stromal caveolin-1 (Cav-1) as a marker of stromal glycolysis and autophagy. The aim of the current study was to provide genetic evidence that enhanced glycolysis in stromal cells favors tumorigenesis. To this end, normal human fibroblasts were genetically-engineered to express the two isoforms of pyruvate kinase M (PKM1 and PKM2), a key enzyme in the glycolytic pathway. In a xenograft model, fibroblasts expressing PKM1 or PKM2 greatly promoted the growth of co-injected MDA-MB-231 breast cancer cells, without an increase in tumor angiogenesis. Interestingly, PKM1 and PKM2 promoted tumorigenesis by different mechanism(s). Expression of PKM1 enhanced the glycolytic power of stromal cells, with increased output of lactate. Analysis of tumor xenografts demonstrated that PKM1 fibroblasts greatly induced tumor inflammation, as judged by CD45 staining. In contrast, PKM2 did not lead to lactate accumulation, but triggered a “pseudo-starvation” response in stromal cells, with induction of an NFκB-dependent autophagic program, and increased output of the ketone body 3- hydroxy-buryrate. Strikingly, in situ evaluation of Complex IV activity in the tumor xenografts demonstrated that stromal PKM2 expression drives mitochondrial respiration specifically in tumor cells. Finally, immuno-histochemistry analysis of human breast cancer samples lacking stromal Cav-1 revealed PKM1 and PKM2 expression in the tumor stroma. Thus, our data indicate that a subset of human breast cancer patients with a loss of stromal Cav-1 show profound metabolic changes in the tumor microenvironment. As such, this subgroup of patients may benefit therapeutically from potent inhibitors targeting glycolysis, autophagy and/or mitochondrial activity (such as metformin).  相似文献   

4.
The M2 splice isoform of pyruvate kinase (PKM2) is a key enzyme for generating pyruvate and ATP in the glycolytic pathway, whereas the role of PKM2 in tumorigenesis remains a subject of debate. In our study, we found PKM2 is highly expressed in melanoma patients and the malignance is positively correlated with high PKM2 activity and glycolytic capability in melanoma cells. Suppression of PKM2 expression by knocking down markedly attenuated malignant phenotype both in vitro and in vivo, and restoration of PKM2 expression in PKM2 depleted cells could rescue melanoma cells proliferation, invasion and metastasis. With the data indicating PKM2 as a potential therapeutic target, we performed screening for PKM2 inhibitors and identified benserazide (Ben), a drug currently in clinical use. We demonstrated that Ben directly binds to and blocks PKM2 enzyme activity, leading to inhibition of aerobic glycolysis concurrent up-regulation of OXPHOS. Of note, despite PKM2 is very similar to PKM1, Ben does not affect PKM1 enzyme activity. We showed that Ben significantly inhibits cell proliferation, colony formation, invasion and migration in vitro and in vivo. The specificity of Ben was demonstrated by the findings that, suppression of PKM2 expression diminishes the efficacy of Ben in inhibition of melanoma cell growth; ectopic PKM2 expression in normal cells sensitizes cells to Ben treatment. Interestingly, PKM2 activity and aerobic glycolysis are upregulated in BRAFi-resistant melanoma cells. As a result, BRAFi-resistant cells exhibit heightened sensitivity to suppression of PKM2 expression or treatment with Ben both in vitro and in vivo.  相似文献   

5.
Chen M  Zhang J  Manley JL 《Cancer research》2010,70(22):8977-8980
Unlike normal cells, which metabolize glucose by oxidative phosphorylation for efficient energy production, tumor cells preferentially metabolize glucose by aerobic glycolysis, which produces less energy but facilitates the incorporation of more glycolytic metabolites into the biomass needed for rapid proliferation. The metabolic shift from oxidative phosphorylation to aerobic glycolysis is partly achieved by a switch in the splice isoforms of the glycolytic enzyme pyruvate kinase. Although normal cells express the pyruvate kinase M1 isoform (PKM1), tumor cells predominantly express the M2 isoform (PKM2). Switching from PKM1 to PKM2 promotes aerobic glycolysis and provides a selective advantage for tumor formation. The PKM1/M2 isoforms are generated through alternative splicing of two mutually exclusive exons. A recent study shows that the alternative splicing event is controlled by heterogeneous nuclear ribonucleoprotein (hnRNP) family members hnRNPA1, hnRNPA2, and polypyrimidine tract binding protein (PTB; also known as hnRNPI). These findings not only provide additional evidence that alternative splicing plays an important role in tumorigenesis, but also shed light on the molecular mechanism by which hnRNP proteins regulate cell proliferation in cancer.  相似文献   

6.
Tumor cells metabolize more glucose to lactate in aerobic or hypoxic conditions than non-tumor cells. Pyruvate kinase isoenzyme type M2 (PKM2) is crucial for tumor cell aerobic glycolysis. We established a role for let-7a/c-Myc/hnRNPA1/PKM2 signaling in glioma cell glucose metabolism. PKM2 depletion via siRNA inhibits cell proliferation and aerobic glycolysis in glioma cells. C-Myc promotes up-regulation of hnRNPA1 expression, hnRNPA1 binding to PKM pre-mRNA, and the subsequent formation of PKM2. This pathway is downregulated by the microRNA let-7a, which functionally targets c-Myc, whereas hnRNPA1 blocks the biogenesis of let-7a to counteract its ability to downregulate the c-Myc/hnRNPA1/PKM2 signaling pathway. The down-regulation of c-Myc/hnRNPA1/PKM2 by let-7a is verified using a glioma xenograft model. These results suggest that let-7a, c-Myc and hnRNPA1 from a feedback loop, thereby regulating PKM2 expression to modulate glucose metabolism of glioma cells. These findings elucidate a new pathway mediating aerobic glycolysis in gliomas and provide an attractive potential target for therapeutic intervention.  相似文献   

7.
Cancer cells often fail to respond to stimuli that normally activate their intrinsic apoptotic machinery. Moreover, they are able to adapt to hypoxia by changing their glycolytic rate. Pyruvate kinase (PK) is a rate-limiting enzyme in glycolysis that is converted to a less active dimer form of PKM2 isoenzyme during oncogenesis. Here, we show that both somatostatin and the structural analogue TT-232 interact with the PKM subtype. We further show that the PKM2 is translocated to the nucleus in response to TT-232 and different apoptotic agents. Nuclear translocation of PKM2 is sufficient to induce cell death that is caspase independent, isoform specific, and independent of its enzymatic activity. These results show that the tumor marker PKM2 plays a general role in caspase-independent cell death of tumor cells and thereby defines this glycolytic enzyme as a novel target for cancer therapy development.  相似文献   

8.
The metabolism in tumor cells shifts from oxidative phosphorylation to glycolysis even in an aerobic environment. This phenomenon is known as the Warburg effect. This effect is regulated mainly by polypyrimidine tract‐binding protein 1 (PTBP1), which is a splicer of the mRNA for the rate‐limiting enzymes of glycolysis, pyruvate kinase muscle 1 and 2 (PKM1 and PKM2). In the present study, we demonstrated that miR‐133b reduced PTBP1 expression at translational level and that the expression levels of miR‐133b were significantly downregulated in gastric cancer clinical samples and human cell lines, whereas the protein expression level of PTBP1 was upregulated in 80% of the 20 clinical samples of gastric cancer examined. Ectopic expression of miR‐133b and knockdown of PTBP1 in gastric cancer cells inhibited cell proliferation through the induction of autophagy by the switching of PKM isoform expression from PKM2‐dominant to PKM1‐dominant. The growth inhibition was partially canceled by an autophagy inhibitor 3‐MA or a reactive oxygen species scavenger N‐acetylcysteine. These findings indicated that miR‐133b acted as a tumor‐suppressor through negative regulation of the Warburg effect in gastric cancer cells.  相似文献   

9.
Altered metabolism is fundamental to the growth and survival of cancer cells. Pyruvate kinase M2 (PKM2), a key enzyme in cancer metabolism, has been demonstrated to play a central role not only in metabolic reprogramming but also in direct regulation of gene expression and subsequent cell cycle progression. This review outlines the current understanding of PKM2 protein kinase activity and regulatory mechanisms underlying PKM2 expression, enzymatic activity, and nuclear localization, thus highlighting PKM2 as a potential therapeutic target.  相似文献   

10.
Chen J  Jiang Z  Wang B  Wang Y  Hu X 《Cancer letters》2012,316(2):204-210
Pyruvate kinase M2 (PKM2) is a rate-limiting enzyme of aerobic glycolysis in cancer cells and plays important roles in cancer metabolism and growth. Here we show that vitamin K3 and K5 (VK3 and VK5) are relatively specific PKM2 inhibitors. VK3 and VK5 showed a significantly stronger potency to inhibit PKM2 than to inhibit PKM1 and PKL, 2 other isoforms of PK dominantly expressed in most adult tissues and liver. This study combined with previous reports supports that VK3 and VK5 have potential as adjuvant for cancer chemotherapy.  相似文献   

11.
丙酮酸激酶(pyruvate kinase,PK),作为糖酵解的关键酶之一,可以编码四个不同亚型的基因,其中M2型丙酮酸激酶(PKM2)主要表达在正常人类胚胎发育中,和组织修复、再生密切相关,随着研究的深入,PKM2在肿瘤组织中的作用受到越来越多的关注。PKM2除了代谢作用外,还可以通过PKM2抑制剂和激活剂变构调节四聚体和二聚体,二聚体状态的PKM2可以调节细胞核中的基因表达及细胞增殖。本文综述了PKM2表达调控,重点介绍了PKM2非代谢功能及在抗肿瘤治疗中的临床应用。  相似文献   

12.
13.
目的 研究沉默丙酮酸激酶M2型(PKM2)对人肺腺癌细胞系(A549细胞)的放射敏感性及移植瘤的放射协同作用,并探索相关机制。方法 将PKM2基因干扰质粒pshRNA-PKM2稳定转染至A549细胞,同时设立空载质粒转染组和未转染组。采用蛋白印迹法检测A549细胞pshRNA-PKM2的沉默效率及微管相关蛋白1轻链3(LC3)表达水平,克隆形成实验、移植瘤生长延迟法检测沉默PKM2后对A549细胞、移植瘤放射增敏效应,透射电镜观察A549细胞及移植瘤自噬形成,免疫组化法检测移植瘤中PKM2的表达水平。行Student′s t检验组间差异,裸鼠体重及移植瘤体积采用连续变量的方差分析。结果 成功获得转染pshRNA-PKM2的A549稳定细胞株。pshRNA-PKM2组可显著下调细胞和移植瘤PKM2的蛋白表达水平(P=0.001、0.000),对A549细胞的SER为1.47,移植瘤的SER为2.00。干扰PKM2可增加放射所诱导的自噬形成并增加LC3-Ⅱ/Ⅰ的比值(P=0.0001)。结论 沉默PKM2调节自噬可能提高A549细胞及移植瘤的放射敏感性,其有望成为NSCLC有效放射增敏靶点,但有待进一步研究确认。  相似文献   

14.
Dysregulation of deubiquitination has been reported to contribute to carcinogenesis. However, the function and mechanism of deubiquitinating enzyme 26S proteasome non‐ATPase regulatory subunit 14 (PSMD14) in the progression of ovarian cancer (OV), the deadliest gynecological cancer, still remains to be characterized. The present study demonstrated that PSMD14 was overexpressed in OV tissues and its higher levels correlated with a higher International Federation of Gynecology and Obstetrics (FIGO) stage in OV patients. A high level of PSMD14 expression was related to poor survival in OV patients. Knockdown and overexpression experiments elucidated that PSMD14 stimulated OV cell proliferation, invasion, and migration in vitro. Repression of PSMD14 suppressed OV tumor growth in vivo. PSMD14 inhibitor O‐phenanthroline (OPA) effectively attenuated malignant behaviors of OV cells in vitro and OV tumor growth in vivo. Mechanistically, we uncovered that PSMD14 was involved in post‐translational regulation of pyruvate kinase M2 isoform (PKM2). PSMD14 decreased K63‐linked ubiquitination on PKM2, downregulated the ratio of PKM2 tetramers to dimers and monomers, and subsequently diminished pyruvate kinase activity and induced nuclear translocation of PKM2, contributing to aerobic glycolysis in OV cells. Collectively, our findings highlight the potential roles of PSMD14 as a biomarker and therapeutic candidate for OV.  相似文献   

15.
The M2 isoform of pyruvate kinase (PK) is upregulated in most cancers including glioblastoma. Although PKM2 has been reported to use dual kinase activities to regulate cell growth, it also interacts with phosphotyrosine (pY)‐containing peptides independently of its kinase activity. The potential for PKM2 to use the binding of pY‐containing proteins to control tumor growth has not been fully examined. We here describe a novel mechanism by which PKM2 interacts in the nucleus with the RNA binding protein HuR to regulate HuR sub‐cellular localization, p27 levels, cell cycle progression and glioma cell growth. Suppression of PKM2 in U87, T98G and LN319 glioma cells resulted in increased p27 levels, defects in entry into mitosis, increased centrosome number, and decreased cell growth. These effects could be reversed by shRNA targeting p27. The increased levels of p27 in PKM2 knock‐down cells were caused by a loss of the nuclear interaction between PKM2 and HuR, and a subsequent cytoplasmic re‐distribution of HuR, which in turn led to increased cap‐independent p27 mRNA translation. Consistent with these results, the alterations in p27 mRNA translation, cell cycle progression and cell growth caused by PKM2 suppression could be reversed in vitro and in vivo by suppression of HuR or p27 levels, or by introduction of forms of PKM2 that could bind pY, regardless of their kinase activity. These results define a novel mechanism by which PKM2 regulates glioma cell growth, and also define a novel set of potential therapeutic targets along the PKM2–HuR–p27 pathway.  相似文献   

16.
Wu H  Yang JM  Jin S  Zhang H  Hait WN 《Cancer research》2006,66(6):3015-3023
Elongation factor-2 kinase (eEF-2 kinase), also known as Ca(2+)/calmodulin-dependent kinase III, regulates protein synthesis by controlling the rate of peptide chain elongation. The activity of eEF-2 kinase is increased in glioblastoma and other malignancies, yet its role in neoplasia is uncertain. Recent evidence suggests that autophagy plays an important role in oncogenesis and that this can be regulated by mammalian target of rapamycin (mTOR). Because eEF-2 kinase lies downstream of mTOR, we studied the role of eEF-2 kinase in autophagy using human glioblastoma cell lines. Knockdown of eEF-2 kinase by RNA interference inhibited autophagy in glioblastoma cell lines, as measured by light chain 3 (LC3)-II formation, acidic vesicular organelle staining, and electron microscopy. In contrast, overexpression of eEF-2 kinase increased autophagy. Furthermore, inhibition of autophagy markedly decreased the viability of glioblastoma cells grown under conditions of nutrient depletion. Nutrient deprivation increased eEF-2 kinase activity and decreased the activity of S6 kinase, suggesting an involvement of mTOR pathway in the eEF-2 kinase regulation of autophagy. These results suggest that eEF-2 kinase plays a regulatory role in the autophagic process in tumor cells; and eEF-2 kinase is a downstream member of the mTOR signaling; eEF-2 kinase may promote cancer cell survival under conditions of nutrient deprivation through regulating autophagy. Therefore, eEF-2 kinase may be a part of a survival mechanism in glioblastoma and targeting this kinase may represent a novel approach to cancer treatment.  相似文献   

17.
18.
Recent studies have indicated that increased expression of the M2 isoform of pyruvate kinase (PKM2) is involved in glycolysis and tumor development. However, little is known about the role of PKM2 in gastric cancer (GC). Therefore, we examined the expression and function of PKM2 in human GC. We evaluated PKM1 and PKM2 expression by quantitative RT‐PCR in gastric tissues from 10 patients who underwent gastric endoscopic submucosal dissection, 80 patients who underwent gastrectomy, and seven healthy volunteers, and analyzed the correlation with clinicopathological variables. To assess the function of PKM2, we generated PKM2‐knockdown GC cells, and investigated the phenotypic changes. Furthermore, we examined the induction of PKM2 expression by cytotoxin‐associated gene A (CagA), a pathogenic factor of Helicobacter pylori, using CagA‐inducible GC cells. We found that PKM2 was predominantly expressed not only in GC lesions but also in the normal gastric regions of GC patients and in the gastric mucosa of healthy volunteers. The PKM2 expression was significantly higher in carcinoma compared to non‐cancerous tissue and was associated with venous invasion. Knockdown of PKM2 in GC cells caused significant decreases in cellular proliferation, migration, anchorage‐independent growth, and sphere formation in vitro, and in tumor growth and liver metastasis in vivo. The serine concentration‐dependent cell proliferation was also inhibited by PKM2 silencing. Furthermore, we found that PKM2 expression was upregulated by CagA by way of the Erk pathway. These results suggested that enhanced PKM2 expression plays a pivotal role in the carcinogenesis and development of GC in part by regulating cancer‐specific metabolism.  相似文献   

19.
Autophagy is a cellular process to degrade long-lived or malfunctioning proteins and obsolete or damaged organelles. It maintains cellular homeostasis and helps cells survive stressful conditions. Tumor suppressors mostly positively regulate autophagy, whereas oncogene products usually inhibit autophagy. Alterations in key autophagy genes have also been shown to affect cancer development. However, the role of autophagy in cancer depends on the status of the cells and can either suppress or promote tumor growth. In the present review, we report on the current state of knowledge about the reciprocal regulation of autophagy and the potential role of autophagy played in cancer development and therapy.  相似文献   

20.
Emerging studies have identified microRNAs (miRNAs) as possible therapeutic tools for the treatment of glioma, the most aggressive brain tumor. Their important targets in this tumor are not well understood. We recently found that the Notch pathway is a target of miRNA-326. Ectopic expression of miRNA-326 in glioma and glioma stem cells induced their apoptosis and reduced their metabolic activity. Computational target gene prediction revealed pyruvate kinase type M2 (PKM2) as another target of miRNA-326. PKM2 has recently been shown to play a key role in cancer cell metabolism. To investigate whether it might be a functionally important target of miR-326, we used RNA interference to knockdown PKM2 expression in glioma cells. Transfection of the established glioma and glioma stem cells with PKM2 siRNA reduced their growth, cellular invasion, metabolic activity, ATP and glutathione levels, and activated AMP-activated protein kinase. The cytotoxic effects exhibited by PKM2 knockdown in glioma and glioma stem cells were not observed in transformed human astrocytes. Western blot analysis of human glioblastoma specimens showed high levels of PKM2 protein, but none was observed in normal brain samples. Strikingly, cells with high levels of PKM2 expressed lower levels of miR-326, suggestive of endogenous regulation of PKM2 by miR-326. Our data suggest PKM2 inhibition as a therapy for glioblastoma, with the potential for minimal toxicity to the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号