首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
BackgroundLong noncoding RNAs (lncRNAs) are emerging as significant regulators of cancer development. The purposes of study were to analyze the expression levels of long noncoding RNA THAP9-AS1 (THAP9-AS1) in hepatocellular carcinoma (HCC) tissue samples and cell lines, evaluate the clinical significance of THAP9-AS1 in predicting the survival prognosis of HCC patients, and explore the biological function of THAP9-AS1 in regulating tumor progression of HCC.MethodsThe expression of THAP9-AS1 was determined by quantitative real-time PCR. The determination of HCC cell proliferation was performed using cell counting kit-8 assay. Chi-square test was used to reveal the relationship between THAP9-AS1 and clinicopathological data of HCC patients. Kaplan-Meier method, log-rank test were used to perform analyze the relationship between THAP9-AS1 and prognostic survival in HCC patients. Cox regression was used to evaluate the abilities of THAP9-AS1 to predict survival outcomes in HCC patients.ResultsThe expression of THAP9-AS1 were markedly upregulated in HCC tissue and cells. THAP9-AS1 expression was correlated with tumor size, tumor node metastasis (TNM) stage. High THAP9-AS1 expression was associated with poor prognostic survival in HCC patients. THAP9-AS1 was an independent prognostic factor for HCC patients. Overexpression of THAP9-AS1 promoted HCC cell proliferation, silencing THAP9-AS1 inhibited HCC cell proliferation.ConclusionAberrantly highly expressed THAP9-AS1 in HCC tissues and cells was associated with tumor size, TNM stage and poor survival prognosis, and promoted HCC cell proliferation. THAP9-AS1 had the potential to serve as independent prognostic biomarker for HCC patients and provide a novel target for HCC patients’ prognostic treatment.  相似文献   

2.
BackgroundHepatocellular carcinoma (HCC) is one of the most prevalent human cancers with high mortality. Long non-coding RNA heart and neural crest derivatives expressed 2 anti-sense 1 (HAND2-AS1) is down-regulated in several cancers including HCC, yet the precise mechanisms how HAND2-AS1 regulates cell survival in HCC remains poorly understood.MethodsThe expression levels of HAND2-AS1 and miR-300 were measured using quantitative real-time PCR. The protein levels of suppressor of cytokine signaling 5 (SOCS5), Bcl-2, Bax and cleaved caspase-3 were determined by Western blot. Cell viability and cell proliferation were assessed using cell counting kit-8 and clone formation assay, respectively. Cell apoptosis was detected using flow cytometry. The interactions between HAND2-AS1 and miR-300, miR-300 and SOCS5 were validated using luciferase reporter assay.ResultsHAND2-AS1 was down-regulated in HCC tissues and cell lines, and the expression level of HAND2-AS1 was positively correlated to patient survival. HAND2-AS1 over-expression reduced viability and proliferation in HCC cells. Elevated HAND2-AS1 level induced apoptosis in HCC cells, accompanied with increased Bax and cleaved caspase-3 levels and decreased Bcl-2 level. We also validated that HAND2-AS1 acted as a sponge of miR-300, and there was a negative correlation between expression levels of HAND2-AS1 and miR-300 in HCC tissues. Furthermore, we found that SOCS5 was a downstream target of miR-300. In addition, miR-300 mimics abolished HAND2-AS1-mediated inhibition of cell viability and proliferation. miR-300 mimics also reversed the HAND2-AS1-induced apoptosis in HCC cells.ConclusionlncRNA HAND2-AS1 inhibits proliferation in HCC through regulating miR-300/SOCS5 axis.  相似文献   

3.
《Digestive and liver disease》2021,53(9):1192-1200
BackgroundIncreasing studies have shown a vital fact that long non-coding RNAs (lncRNAs) play a considerable regulatory role in hepatocellular carcinoma (HCC) progression. However, whether ST8 alpha-N-acetyl-neuraminide alpha-2, 8-sialyltransferase 6 antisense RNA 1 (ST8SIA6-AS1) affects the development of HCC is unclear.MethodsThe target genes in HCC cell lines were quantified via utilzing quantitative real-time polymerase chain reaction (RT-qPCR) analysis and western blot. Effects of ST8SIA6-AS1 on proliferative, apoptosis and migratory ability of HCC cells were proved by a series of function experiments. The cellular distribution of ST8SIA6-AS1 was examined through fluorescent in situ hybridization (FISH) assay and subcellular fractionation experiments. RNA pulldown assay was implemented to explore the target of ST8SIA6-AS1. RNA Binding Protein Immunoprecipitation (RIP) and luciferase reporter assays were performed to identify the specific relationships between miR-338-3p and ST8SIA6-AS1/ non-POU domain containing octamer binding (NONO).ResultsThe expression of ST8SIA6-AS1 was apparently elevated in HCC cell. Silenced ST8SIA6-AS1 reduced proliferative, migratory and invasive ability of HCC cells. Moreover, ST8SIA6-AS1 targeted miR-338-3p to modulate the expression of NONO in HCC cells.ConclusionsST8SIA6-AS1 enhances the progression of HCC via miR-338-3p/NONO axis in vitro.  相似文献   

4.
BackgroundIntrahepatic cholangiocarcinoma (ICC) is a latent and malignant tumor with a dismal prognosis. This study was to evaluate the clinical relevance and therapeutic potential of SOX9-AS1 expression in ICC.MethodsThe cancerous tissues and adjacent normal tissues were collected from ICC patients. Blood samples from ICC, hepatocellular carcinoma (HCC) group, the extrahepatic cholangiocarcinoma (ECC) group and the healthy controls were collected. SOX9-AS1 levels were evaluated in tissues (versus normal tissues) and plasma samples (versus plasma from HCC and ECC by quantitative real-time RT-PCR. The diagnostic value of SOX9-AS1 for ICC was estimated using receiver operating characteristic (ROC) curves. The relevancy between SOX9-AS1 expression and overall survival or recurrence-free survival was assessed by Kaplan-Meier curves multivariate analyses. The overexpression and knockdown of SOX9-AS1 on cell behavior were assessed by CCK-8 and transwell assay.ResultsSOX9-AS1 levels were increased in ICC, both in the tissues and the cell lines. The upregulation of SOX9-AS1 showed a highly discriminative profile, distinguishing ICC patients from healthy subjects or HCC or ECC patients. Upregulation of SOX9-AS1 was related to shorter overall survival and recurrence-free survival. Muli-variate analysis revealed that SOX9-AS1 expression was an independent prognostic purpose factor of worst overall survival and recurrence-free survival.ConclusionsSOX9-AS1 drives tumor growth and metastasis in ICC. SOX9-AS1 may be applied as a new diagnostic and prognostic purposed marker, in addition to a promising therapeutic target in ICC.  相似文献   

5.
BACKGROUNDAccumulating evidence has revealed that several long non-coding ribonucleic acids (lncRNAs) are crucial in the progress of hepatocellular carcinoma (HCC).AIMTo classify a long non-coding RNA, i.e., lncRNA W5, and to determine the clinical significance and potential roles of lncRNA W5 in HCC.METHODSThe results showed that lncRNA W5 expression was significantly downregulated in HCC cell lines and tissues. Analysis of the association between lncRNA W5 expression levels and clinicopathological features suggested that low lncRNA W5 expression was related to large tumor size (P < 0.01), poor histological grade (P < 0.05) and serious portal vein tumor thrombosis (P < 0.05). Furthermore, Kaplan-Meier survival analysis showed that low expression of lncRNA W5 predicts poor overall survival (P = 0.016).RESULTSGain-of-loss function experiments, including cell counting kit8 assays, colony formation assays, and transwell assays, were performed in vitro to investigate the biological roles of lncRNA W5. In vitro experiments showed that ectopic overexpression of lncRNA W5 suppressed HCC cell proliferation, migration and invasion; conversely, silencing of lncRNA W5 promoted cell proliferation, migration and invasion. In addition, acting as a tumor suppressor gene in HCC, lncRNA W5 inhibited the growth of HCC xenograft tumors in vivo.CONCLUSIONThese results showed that lncRNA W5 is down-regulated in HCC, and it may suppress HCC progression and predict poor clinical outcomes in patients with HCC. LncRNA W5 may serve as a potential HCC prognostic biomarker in addition to a therapeutic target.  相似文献   

6.
7.
BackgroundCholangiocarcinoma (CCA) is of great malignancy and high mortality. Identification of effective biomarkers could improve the monitoring of CCA development and attenuate patients’ outcomes.ObjectiveThe potential of lncRNA TM4SF1-AS1 (TM4SF1-AS1) serving biomarker of CCA was estimated and the underlying mechanism was also investigated.MethodsA total of 107 pairs of tumor and paracancer tissues were collected from CCA patients. The expression levels of TM4SF1-AS1 and miR-744-3p were analyzed in CCA by PCR, and their clinical significance was estimated by a series of statistical analyses. CCK8 and Transwell assays were used to assess the development-related cellular processes of CCA. The interaction between TM4SF1-AS1 and miR-774-3p was evaluated by cell transfection and dual-luciferase reporter assay.ResultsThe elevated expression of TM4SF1-AS1 and the declined expression of miR-744-3p were observed in CCA. Both TM4SF1-AS1 and miR-744-3p were found to possess a close association with the malignant progression and poor prognosis of CCA patients. TM4SF1-AS1 was suggested to act as a tumor promoter of CCA, where miR-744-3p was found to mediate the function of TM4SF1-AS1.ConclusionBoth TM4SF1-AS1 and miR-744-3p were identified as prognostic biomarkers of CCA. TM4SF1-AS1 served as tumor promoter of CCA via modulating miR-744-3p.  相似文献   

8.
BackgroundThis paper examines the expression, function, and molecular mechanism of long non-coding ribonucleic acid (lncRNA) ARAP1 antisense RNA 1 (ARAP1-AS1) in lung cancer. Specifically, it aims to clarify the molecular mechanism of lncRNA ARAP1-AS1 that affects the occurrence and development of lung cancer, and provide a theoretical basis and molecular targets for targeted therapy or early diagnosis of lung cancer.MethodsFluorescence quantitative detection of lncRNA ARAP1-AS1 expression in lung cancer tissues and cell lines, and methylthiazolyldiphenyl-tetrazolium (MTT), plate cloning experiment, and flow cytometry were used to detect the effect of knockdown of lncRNA ARAP1-AS1 on cell proliferation, clone formation, and the cell cycle, respectively. Western blotting was used to detect the expression of cell cycle-related proteins as well as the effect of knockdown of lncRNA ARAP1-AS1 on lung cancer. Cell proliferation was assessed by a nude mouse subcutaneous tumor formation experiment.ResultsLncRNA ARAP1-AS1 is highly expressed in lung cancer tissues and cells. Knockdown of LncRNA ARAP1-AS1 can significantly inhibit the proliferation and clonal formation of lung cancer cells and induce G0/G1 cell cycle arrest. Knockdown of ARAP1-AS1 can markedly inhibit the expression of cell cycle-related protein cyclin D1, but has no significant effect on the expression of cyclin-dependent kinase (CDK)4 and CDK6. Furthermore, knockdown of ARAP1-AS1 can also notably inhibit the growth of lung cancer cells and substantially reduce the expression of Ki-67 in tumor-bearing tissues in nude mice.ConclusionsLncRNA ARAP1-AS1 is highly expressed in lung cancer. Knocking down of this gene can significantly inhibit cell proliferation in vitro and in vivo, and can also cause G0/G1 cell cycle arrest by inhibiting the expression of cyclin D1.  相似文献   

9.
《Annals of hepatology》2020,19(5):535-540
Introduction and objectivesHepatocellular carcinoma (HCC) is the second most lethal cancer around the world, with poor survival rate and high metastasis rate in patients. Long noncoding RNAs (lncRNAs) have been reported to modulate the initiation and development of liver cancer. We aimed to investigate the role of lncRNA MAGI2-AS3 in HCC and underlying mechanisms.Materials and methodsThe expression levels of MAGI2-AS3 in plasma of HCC patients and the control participants were measured by qPCR. Hep3B and MHCC97-H cells were transfected with MAGI2-AS3 and ROCK2 expression vectors. Cell migration and invasion of HCC cells transfected with the vectors were investigated by transwell assay. In addition, flow cytometry and western blot were performed for apoptosis detection.ResultsWe found that MAGI2-AS3 was downregulated in plasma of early stage HCC patients compared to healthy controls. After surgical resection, the expression levels of MAGI2-AS3 were increased compared to pretreatment levels on the day of discharge. During the follow-up, MAGI2-AS3 was downregulated in patients developed distant recurrence, but not in other patients compared to the levels measured on the day of discharge. In HCC cells, overexpression of MAGI2-AS3 mediated the downregulation of ROCK2. Cell invasion and migration assay showed that overexpression of MAGI2-AS3 mediated the decreased cell invasion and migration rate, while ROCK2 played an opposite role and attenuated the effects of overexpression of MAGI2-AS3.ConclusionOur study indicated that MAGI2-AS3 was downregulated in the distant recurrence of HCC after surgical resection and affected the invasion and migration of HCC cells via ROCK2.  相似文献   

10.
BACKGROUNDPrevious studies have suggested that long non-coding RNAs (lncRNA) TP73-AS1 is significantly upregulated in several cancers. However, the biological role and clinical significance of TP73-AS1 in pancreatic cancer (PC) remain unclear. AIMTo investigate the role of TP73-AS1 in the growth and metastasis of PC.METHODSThe expression of lncRNA TP73-AS1, miR-128-3p, and GOLM1 in PC tissues and cells was detected by quantitative real-time polymerase chain reaction. The bioinformatics prediction software ENCORI was used to predict the putative binding sites of miR-128-3p. The regulatory roles of TP73-AS1 and miR-128-3p in cell proliferation, migration, and invasion abilities were verified by Cell Counting Kit-8, wound-healing, and transwell assays, as well as flow cytometry and Western blot analysis. The interactions among TP73-AS1, miR-128-3p, and GOLM1 were explored by bioinformatics prediction, luciferase assay, and Western blot. RESULTSThe expression of TP73-AS1 and miRNA-128-3p was dysregulated in PC tissues and cells. High TP73-AS1 expression was correlated with a poor prognosis. TP73-AS1 silencing inhibited PC cell proliferation, migration, and invasion in vitro as well as suppressed tumor growth in vivo. Mechanistically, TP73-AS1 was validated to promote PC progression through GOLM1 upregulation by competitively binding to miR-128-3p. CONCLUSIONOur results demonstrated that TP73-AS1 promotes PC progression by regulating the miR-128-3p/GOLM1 axis, which might provide a potential treatment strategy for patients with PC.  相似文献   

11.
12.
Introduction and objectivesLong non-coding RNAs (lncRNAs) have garnered interest because of their roles in cancer progression. We aimed to explore the role of the lncRNA embigin pseudogene 1 (EMBP1)-miR-9-5p axis in renal cell carcinoma (RCC).Materials and methodsExpression profiling of miR-9-5p and EMBP1 were performed in RCC cell lines and tumor samples. To evaluate miR-9-5p and EMBP1's role in proliferation, invasion, migration, and colony formation, we performed in vitro assays along with studies in a xenograft tumor model. In silico binding site analysis using the RNA22 algorithm, RNA-immunoprecipitation (RIP), and luciferase reporter assays were used to validate a direct interaction between EMBP1 and miR-9-5p. Changes in key proteins were also analyzed.ResultsmiR-9-5p was significantly down-regulated, and EMBP1 was significantly up-regulated, in RCC cell lines and tumor tissue. The clinicopathological characteristics of RCC patients significantly correlated with their expression. Overexpression of miR-9-5p or EMBP1 suppression in RCC cell lines significantly retarded their proliferative, migratory, and invasive behavior, in addition to promoting apoptosis and cell-cycle arrest. EMBP1 directly binds to and negatively regulates miR-9-5p. The EMBP1-miR-9-5p axis dysregulated the expression of the epithelial-to-mesenchymal transition (EMT) markers E-cadherin, claudin, and vimentin, the stemness markers KLF4 and Nanog, and the cell cycle checkpoint gene cyclin E2 (CCNE2) and its downstream mediator E2F1. miR-9-5p overexpression or EMBP1 suppression inhibited xenograft tumor growth in vivo, effects that were abrogated by CCNE2 overexpression.ConclusionsOur findings suggest an important role of the EMBP1/miR-9-5p axis dysregulation in RCC tumor progression.  相似文献   

13.
14.
BackgroundIncreasing evidence indicates that aberrant micro (mi)RNA-448 expression plays a critical role in the progression of several human cancers. However, the function of miRNA-448 in hepatocellular carcinoma (HCC) has not been fully investigated.MethodsmiRNA-448 expression levels in HCC tissues, adjacent non-cancerous tissues (ANTs), and HCC cell lines were examined by quantitative real-time polymerase chain reaction (qRT-PCR). HCC cells were treated with a miRNA-448 mimic or inhibitor, followed by cell viability measurements with the CCK-8 assay. Venn diagram analysis predicted, and dual luciferase reporter assays verified, the target gene of miRNA-448. Expression of the target gene was detected by qRT-PCR and immunohistochemistry. Growth of miRNA-448- or target gene-expressing HCC xenograft tumors in nude mice was measured.ResultsmiRNA-448 was expressed at a lower level in HCC tissues than ANTs, and correlated with a larger tumor size, incomplete tumor encapsulation, and advanced Barcelona Clinic Liver Cancer stage. miRNA-448 inhibited HCC cell growth. The downstream target of miRNA-448 was BCL-2, which was highly expressed in HCC tissues and its mRNA level was negatively correlated with miRNA-448 expression. In vivo, BCL-2 attenuated the tumor inhibiting effect of miRNA-448.ConclusionmiRNA-448 functions as a tumor suppressor by targeting BCL-2 in HCC.  相似文献   

15.
BackgroundHepatocellular carcinoma (HCC) is usually diagnosed at late stages, making it the second cause of malignancy-related death across the world. Long noncoding RNAs (lncRNAs) are of significance to tumorigenesis, highly suggestive of their functional roles as novel biomarkers for cancer therapy. The current study investigated the specific role of lncRNA TPTE pseudogene 1 (TPTEP1) in HCC.MethodsExpression of lncRNA TPTEP1, microRNA-454-3p (miR-454-3p) and discs large homolog 5 (DLG5) was determined in tissues samples from the recruited patients with HCC. Cell proliferation, migration and invasion assays were performed to determine effects of lncRNA TPTEP1, miR-454-3p and DLG5 on the malignant phenotype of tumor cells. Finally, the mouse HCC model was also established to disclose the tumor suppressor effects of lncRNA TPTEP1 in vivo.ResultsLncRNA TPTEP1 was downregulated both in HCC cells and tissues, and played a negative regulatory role in HCC cell proliferation, migration and invasion. Mechanistically, lncRNA TPTEP1 competitively bound to miR-454-3p, thereby upregulating its endogenous target DLG5. Moreover, lncRNA TPTEP1 hindered activation of the protein kinase B signaling pathway, causing inhibited malignant phenotypes of HCC cells. Also, lncRNA TPTEP1 suppressed tumor growth and extrahepatic metastasis (lung) via miR-454-3p/DLG5 axis.ConclusionTaken together, this research revealed a concrete mechanism of lncRNA TPTEP1 in HCC.  相似文献   

16.
17.
18.
19.
《Digestive and liver disease》2022,54(12):1706-1715
Background and aimNucleoporin NUP153 (NUP153) is involved in the regulation of nuclear transportation, mitosis, and tumor progression in various cancer cells. we aimed to investigate the roles of NUP153 in hepatocellular carcinoma (HCC).MethodsNUP153 expression level and its relationship with clinical prognosis were analyzed based on The Cancer Genome Atlas (TCGA). Quantitative real-time PCR (qRT-PCR), Western Blot (WB), and Immunohistochemistry (IHC) were used to assess NUP153 expression in tissues and cell lines. Loss-of-function experiments were implemented for exploring the roles of NUP153 in HCC cells. Ultimately, how NUP153 exerted biological functions was plumbed by performing rescue assays in HCC.ResultsNUP153 expressed highly in HCC tissues and cell lines. Silencing NUP153 inhibited cellular multiplication, G1/S transition, migration, and triggered cytoskeletal rearrangement of Huh7 and HepG2 cells. Knockdown NUP153 caused up-regulation of mRNA and protein levels of P15, and siRNA deprivation of P15 partially reversed the function of low-level NUP153 in HCC. Meanwhile, silencing NUP153 caused down-regulation of mRNA and protein levels of c-Myc. Furthermore, the up-regulation of P15 and cell G1/S phase arrest induced by silencing NUP153 were partially reversed by overexpression of c-Myc.ConclusionsNUP153 increases the proliferation ability of cells via the c-Myc/P15 axis in HCC.  相似文献   

20.
BACKGROUNDHepatocellular carcinoma (HCC) exhibits high invasiveness and mortality rates, and the molecular mechanisms of HCC have gained increasing research interest. The abnormal DNA damage response has long been recognized as one of the important factors for tumor occurrence and development. Recent studies have shown the potential of the protein RING finger and WD repeat domain 3 (RFWD3) that positively regulates p53 stability in response to DNA damage as a therapeutic target in cancers. AIMTo investigate the relationship between HCC and RFWD3 in vitro and in vivo and explored the underlying molecular signalling transduction pathways. METHODS RFWD3 gene expression was analyzed in HCC tissues and adjacent normal tissues. Lentivirus was used to stably knockdown RFWD3 expression in HCC cell lines. After verifying the silencing efficiency, Celigo/cell cycle/apoptosis and MTT assays were used to evaluate cell proliferation and apoptosis. Subsequently, cell migration and invasion were assessed by wound healing and transwell assays. In addition, transduced cells were implanted subcutaneously and injected into the tail vein of nude mice to observe tumor growth and metastasis. Next, we used lentiviral-mediated rescue of RFWD3 shRNA to verify the phenotype. Finally, the microarray, ingenuity pathway analysis, and western blot analysis were used to analyze the regulatory network underlying HCC. RESULTSCompared with adjacent tissues, RFWD3 expression levels were significantly higher in clinical HCC tissues and correlated with tumor size and TNM stage (P < 0.05), which indicated a poor prognosis state. RFWD3 silencing in BEL-7404 and HCC-LM3 cells increased apoptosis, decreased growth, and inhibited the migration in shRNAi cells compared with those in shCtrl cells (P < 0.05). Furthermore, the in vitro results were supported by the findings of the in vivo experiments with the reduction of tumor cell invasion and migration. Moreover, the rescue of RFWD3 shRNAi resulted in the resumption of invasion and metastasis in HCC cell lines. Finally, gene expression profiling and subsequent experimental verification revealed that RFWD3 might influence the proliferation and metastasis of HCC via the Wnt/β-catenin signalling pathway.CONCLUSIONWe provide evidence for the expression and function of RFWD3 in HCC. RFWD3 affects the prognosis, proliferation, invasion, and metastasis of HCC by regulating the Wnt/β-catenin signalling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号