首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caspase-3 activation and apoptosis are associated with various neurodegenerative disorders. Calcium activation is an important factor in promoting apoptosis. We, therefore, assessed the role of intracellular calcium in ethanol-induced activation of caspase-3 in H4 human neuroglioma cells and the protective effect of the NMDA receptor antagonist, memantine, on ethanol-induced apoptosis in H4 cells. H4 cells were treated with 100 mM EtOH (in culture medium) for 2 days. For interaction studies, cells were treated with memantine (4 μM), EDTA (1 mM), or BAPTA-AM (10 μM) before treatment with EtOH. Knockdown of the gene encoding the NR1 subunit of the NMDA receptor was performed using RNAi. Apoptosis was detected by Annexin V-FITC/PI staining and flow cytometry. Cell viability was detected using an MTS cell proliferation kit. Fluorescence dual wavelength spectrophotometry was used to determine the intracellular calcium concentration. The levels of NR1, caspase-3, IP3R1, and SERCA1 proteins were detected by western blotting. NR1, IP3R1, and SERCA1 mRNA levels were detected by qPCR. We observed increased expression of NR1, IP3R1, SERCA1, and increased intracellular levels of calcium ions in H4 cells exposed to ethanol. In addition, the calcium chelators, EDTA and BAPTA, and RNAi disruption of the NMDA receptor reduced ethanol-induced caspase-3 activation in H4 cells. Memantine treatment reduced the ethanol-induced increase of intracellular calcium, caspase-3 activation, apoptosis, and the ethanol-induced decrease in cell viability. Our results indicate that ethanol-induced caspase-3 activation and apoptosis are likely to be dependent on cytosolic calcium levels and that they can be reduced by memantine treatment.  相似文献   

2.
The present study examined the roles of NR2A and NR2B subunit-containing NMDA receptors in the mediation of the sedative/hypnotic effects of ethanol in mice. The ability of the competitive NMDA antagonist, CGP-37849 (0, 1, or 3 mg/kg), and the NR2B-selective antagonist, Ro 25-6981 (0, 3, or 10 mg/kg), to alter (3 g/kg) ethanol-induced sleep time was measured in C57BL/6J mice and NR2A knockout (KO) mice. The results show that pretreatment with either antagonist significantly potentiated the sedative/hypnotic effects of ethanol in C57BL/6J mice. These effects were not significantly altered in NR2A KO mice. Basal sleep time responses to ethanol were also normal in NR2A KO mice. These findings confirm a major role for NMDA receptors in the acute intoxicating actions of ethanol and provide tentative support for a prepotent role of the NR2B subunit in these effects.  相似文献   

3.
The subunit composition of N-methyl-D-aspartate (NMDA) receptors affects their function under normal and pathological conditions. Functional NMDA receptors are expressed in lower motor neurons, but their subunit composition has not been defined. Here, we employed electrophysiology, quantitative PCR, and immunohistochemistry to investigate the subunit composition of NMDA receptors in postnatal motor neurons of the Wistar rat facial nucleus (FN). Whole-cell patch clamp recordings of acutely dissociated motor neurons from postnatal days 3 and 4 (P3-P4) showed that ifenprodil, a specific antagonist of the NMDA receptor 2B (NR2B) subunit, inhibited 91.62%+/-2.02% of NMDA-induced current, whereas NVP-AAM007, a specific antagonist of the NMDA receptor 2A (NR2A) subunit, inhibited much less of the current (16.69%+/-3.28%). Starting from P5, the inhibitory effects of ifenprodil and NVP-AAM007 gradually decreased and increased, respectively, such that the effect of NVP-AAM007 exceeded that of ifenprodil by P10. At P14, most of the NMDA-induced current was inhibited by NVP-AAM007 (84.59%+/-3.35%). Consistent with this, NR2B mRNA and protein were expressed highly at P3 and then gradually decreased by more than 75% by P14 in FN motor neurons, while NR1 was expressed stably over the same ages. However, NR2A mRNA and protein showed relatively constant levels between P3-P10 and decreased to 45% and 75% of the P3 level, respectively, by P14. Thus, analysis of functional NMDA receptors is critical to revealing subunit switching, which may be an important step in postnatal development of FN motor neurons.  相似文献   

4.
5.
6.
Hardy PA  Chen W  Wilce PA 《Brain research》1999,819(1-2):33-39
Chronic ethanol exposure and subsequent withdrawal are known to change NMDA receptor activity. This study examined the effects of chronic ethanol administration and withdrawal on the expression of several NMDA receptor subunit and splice variant mRNAs in the rat cerebral cortex. Ethanol dependence was induced by ethanol vapour exposure. To delineate between seizure-induced changes in expression during withdrawal and those due to withdrawal per se, another group of naive rats was treated with pentylenetetrazol (PTZ) injection (30 mg/kg, i.p.). RNA samples from the cortices of chronically treated and withdrawing animals were compared to those from pair-fed controls. Changes in NMDA receptor mRNA expression were determined using ribonuclease protection assays targetting the NR2A, -2B, -2C and NR1-pan subunits as well as the three alternatively spliced NR1 inserts (NR1-pan describes all the known NR1 splice variants generated from the 5' insert and the two 3' inserts). The ratio of NR1 mRNA incorporating the 5' insert vs. that lacking it was decreased during ethanol exposure and up to 48 h after withdrawal. NR2B mRNA expression was elevated during exposure, but returned to control levels 18 h after withdrawal. Levels of NR2A, NR2C, NR1-pan and both 3' NR1 insert mRNAs from the ethanol-treated groups did not alter compared with the pair-fed control group. No changes in the level of any NMDA receptor subunit mRNA was detected in the PTZ-treated animals. These data support the hypothesis that changes in NMDA receptor subunit composition may underlie a neuronal adaptation to the chronic ethanol-inhibition and may therefore be important in the precipitation of withdrawal hyperactivity.  相似文献   

7.
Potentiation of NMDA receptor function by the serine protease thrombin.   总被引:39,自引:0,他引:39  
Although serine proteases and their receptors are best known for their role in blood coagulation and fibrinolysis, the CNS expresses many components of an extracellular protease signaling system including the protease-activated receptor-1 (PAR1), for which thrombin is the most effective activator. In this report we show that activation of PAR1 potentiates hippocampal NMDA receptor responses in CA1 pyramidal cells by 2.07 +/- 0.27-fold (mean +/- SEM). Potentiation of neuronal NMDA receptor responses by thrombin can be blocked by thrombin and a protein kinase inhibitor, and the effects of thrombin can be mimicked by a peptide agonist (SFLLRN) that activates PAR1. Potentiation of the NMDA receptor by thrombin in hippocampal neurons is significantly attenuated in mice lacking PAR1. Although high concentrations of thrombin can directly cleave both native and recombinant NR1 subunits, the thrombin-induced potentiation we observe is independent of NMDA receptor cleavage. Activation of recombinant PAR1 also potentiates recombinant NR1/NR2A (1.7 +/- 0.06-fold) and NR1/NR2B (1.41 +/- 0.11-fold) receptor function but not NR1/NR2C or NR1/NR2D receptor responses. PAR1-mediated potentiation of recombinant NR1/NR2A receptors occurred after activation with as little as 300 pm thrombin. These data raise the intriguing possibility that potentiation of neuronal NMDA receptor function after entry of thrombin or other serine proteases into brain parenchyma during intracerebral hemorrhage or extravasation of plasma proteins during blood-brain barrier breakdown may exacerbate glutamate-mediated cell death and possibly participate in post-traumatic seizure. Furthermore, the ability of neuronal protease signaling to control NMDA receptor function may also have roles in normal brain development.  相似文献   

8.
In contrast to the acute toxic effect of NMDA on mature cerebellar granule cells, chronic treatment with NMDA (140 μM from 1 to 9 days in vitro ) did not compromise cell survival. Such treatment markedly suppressed NMDA receptor activity: at 8 days in vitro NMDA-induced 45Ca2+ influx was reduced by -60% and acute exposure to NMDA (highest concentration tested, 1 mM) at 9 days in vitro did not cause detectable toxicity. The reduction in NMDA receptor activity was accompanied by a significant decrease (±80% at 9 days in vitro ) in the level of the NR1 and the NR2A NMDA receptor subunit protein, detected using the selective photoaffinity ligand [125I]CGP55802A. It seems, therefore, that the agonist-induced decrease in NMDA receptor activity is due to receptor down-regulation. In contrast to the marked influence of chronic NMDA exposure on the cellular content of the NMDA receptor subunit proteins, mRNA levels of the different subunits (NR1, NR2A, NR2B and NR2C) were not significantly affected. It seems, therefore, that agonist-induced down-regulation of the NMDA receptor involves critically mRNA translation and/or post-translational regulation.  相似文献   

9.
Nelson TE  Ur CL  Gruol DL 《Brain research》2005,1048(1-2):69-79
In previous studies, we found that chronic intermittent ethanol (CIE) treatment-a model of ethanol consumption in which animals are exposed to and withdrawn from intoxicating levels of ethanol on a daily basis-produces neuroadaptive changes in hippocampal area CA1 excitatory synaptic transmission and plasticity. Synaptic responses mediated by N-methyl-D-aspartate (NMDA) receptors are known to be sensitive to ethanol and could play an important role in the neuroadaptive changes induced by CIE treatment. To address this issue, we compared electrophysiological recordings of pharmacologically isolated NMDA-receptor-mediated field excitatory postsynaptic potentials (fEPSPs) in the CA1 region of hippocampal slices prepared from control rats and rats exposed to 2 weeks of CIE treatment administered by vapor inhalation. We found that fEPSPs induced by NMDA receptor activation were unaltered in slices prepared shortly after cessation of CIE treatment (i.e., < or = 1 day of withdrawal from CIE). However, following 7 days of withdrawal from CIE treatment, NMDA-receptor-mediated fEPSPs were augmented relative to age-matched controls. Western blot analysis of NMDA receptor subunit expression showed that, at 7 days of withdrawal, the level of protein for NR2A and NR2B subunits was elevated in the CA1 region of hippocampal slices from CIE-treated animals compared with slices from age-matched controls. These results are consistent with an involvement of NMDA-receptor-mediated synaptic responses in the neuroadaptive effects of CIE on hippocampal physiology and suggest that such changes may contribute to ethanol-induced changes in processes dependent on NMDA-receptor-mediated synaptic responses such as learning and memory, neural development, hyperexcitability and seizures, and neurotoxicity.  相似文献   

10.
Trigeminal motoneurons (Mo5), mesencephalic trigeminal neurons (Me5), and supratrigeminal (Su5) and intertrigeminal (15) neurons are important constituents of the neural circuitry responsible for jaw movements observed during ingestive behaviors. In addition, in adult animals, N-methyl-D-aspartate (NMDA) receptors are a critical component of the brainstem circuitry responsible for reflex- and centrally activated jaw movements. However, little is known about the expression of this receptor in circuitry used to produce neonatal jaw movements. Receptor immunohistochemistry was used to describe changes in the expression of NMDA NR1 and NR2A/B receptor subunits in Mo5, Me5, Su5, and I5 neurons during postnatal development. Rats at postnatal days (P) 1, 3, 8, 15-16, 21-24, and 28-35 were used. An affinity-purified polyclonal antibody against the NR1 subunit and an affinity-purified polyclonal antibody that recognizes both NR2A and 2B subunits were used to depict the expression of these subunits. In Mo5, immunoreactivity was noted for both antibodies throughout the time frame sampled. NR1 expression in Me5 neurons emerged at P1. NR2A/B expression emerged at P3 in caudal and middle regions of Me5 and at P8 for rostral regions of the nucleus. NR1 immunoreactivity was present at P1 for neurons in I5 and at P3 for neurons in the Su5 region. NR2A/B subunit expression in Su5 and 15 neurons emerged at P8. These results provide evidence for NMDA receptor subunits in neonatal trigeminal neurons used in oral-motor circuitry and suggest a role for the NMDA receptor in synaptogenesis associated with these neurons during postnatal development.  相似文献   

11.
Recent neuroimaging and postmortem studies have demonstrated abnormalities in glutamatergic transmission in major depression. Glutamate NMDA (N-methyl-d-aspartate) receptors are one of the major mediators of excitatory neurotransmission in the central nervous system. At synaptic sites, NMDA receptors are linked with postsynaptic density protein-95 (PSD-95) that plays a key role in mediating trafficking, clustering, and downstream signaling events, following receptor activation. In this study, we examined the expression of NMDA receptor subunits NR1, NR2A, and NR2B as well as PSD-95 in the anterior prefrontal cortex (PFC) using Western blot method. Cortical samples were obtained from age, gender and postmortem interval matched depressed and psychiatrically healthy controls. The results revealed that there was a reduced expression of the NMDA receptor subunits NR2A (-54%) and NR2B (-48%), and PSD-95 protein level (-40%) in the PFC of depressed subjects relative to controls, with no change in the NR1 subunit. The alterations in NMDA receptor subunits, especially the NR2A and NR2B, as well as PSD-95 suggest an abnormality in the NMDA receptor signaling in the PFC in major depression. Our findings in conjunction with recent clinical, cellular, and neuroimaging studies further implicate the involvement of glutamate neurotransmission in the pathophysiology of depression. This study provides additional evidence that NMDA receptor complex is a target for discovery of novel antidepressants.  相似文献   

12.
Ionotropic N-methyl-D-aspartate (NMDA) receptor agonists, L-aspartic acid (L-Asp) and NMDA, have been shown to inhibit histamine-stimulated acid secretion, but their effect on gastric mucosal blood flow (GMBF) is largely unknown. The aim of this study was to investigate whether L-Asp and NMDA inhibit histamine-stimulated GMBF and to examine the expression patterns of NMDA receptor subunits NR1, NR2A, and NR2B in rat stomach. Laser Doppler flowmetry was used to measure gastric blood flow in anesthetized rats. The GMBF was assessed during an intravenous infusion of histamine in the presence of tripelennamine. The effects of L-Asp and NMDA on histamine-induced gastric blood flow were examined. In addition, the distribution patterns of NR1-, NR2A-, and NR2B-contaning NMDA receptors in rat stomach were determined immunohistochemically by using specific antibodies against NR1, NR2A, and NR2B. Histamine-induced enhancement of GMBF depended on acid secretion and the activation of H(2)-receptors. Neither L-Asp nor NMDA had an effect on the spontaneous GMBF. However, L-Asp and NMDA reduced the histamine-induced increase in GMBF. DL-2-amino-5-phosphonopentanoic acid (AP-5), an NMDA receptor antagonist; and prazosin, an alpha(1)-receptor antagonist; but not propanolol, a beta(2)-receptor antagonist; or yohimbine, a alpha(2)-receptor antagonist; reversed the inhibitory effect of L-Asp and NMDA on the histamine-induced increase in GMBF. Therefore, L-Asp and NMDA inhibit histamine-induced GMBF via a mechanism involving the activation of NMDA receptors and alpha(1)- adrenoceptors. The fact that NMDA receptor subunits NR1, NR2A, and NR2B were found to be localized in the rat stomach as visualized immunohistochemically with specific antibodies against NR1, NR2A, and NR2B is consistent with this hypothesis.  相似文献   

13.
Electrophysiological recordings have shown NMDA receptors to be heterogenous structures capable of responding to selected antagonists and agonists in multiple ways. This diversity in functional response has led investigators to conclude that these channels are comprised of unique combinations of receptor subunits which determine a cell's functional NMDA-signature [H. Meguro, H. Mori, K. Araki, E. Kushiya, T. Kutsuwada, M. Yamazaki, T. Kumanishi, M. Arakawa, K. Sakimura, M. Mishina, Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs, Nature (London) 357 (1992) 70-74; T. Ishii, K. Moriyoshi, H. Sugihara, K. Sakurada, H. Kadotani, M. Yokoi, C. Akazawa, R. Shigemoto, N. Mizuno, S. Nakanishi, Molecular characterization of the family of the N-methyl-d-aspartate receptor subunits, J. Biol. Chem. 268 (1993) 2836-2843; K.A. Wafford, C.J. Bain, B. Le Bourdelles, P.J. Whiting, J.A. Kemp, Preferential co-assembly of recombinant NMDA receptors composed of three different subunits, NeuroReport 4 (1993) 1347-1349; T. Priestley, P. Laughton, J. Myers, B. Le Bourdelles, J. Kerby, P.J. Whiting, Pharmacological properties of recombinant human N-methyl-d-aspartate receptors comprising NR1a/NR2A and NR1a/NR2B subunit assemblies expressed in permanently transfected mouse fiberblast cells, Mol. Pharmacol. 48 (1995) 841-848; P.H. Seeburg, N. Burnashev, G. Kohr, T. Kuner, R. Sprengel, H. Monyer, The NMDA receptor channel: molecular design of a coincidence detector, Recent Prog. Horm. Res. 50 (1995) 19-34; A.L. Buller, D.T. Monagahan, Pharmacological heterogeneity of NMDA receptors: characterization of NR1a/NR2D heteromers expressed in Xenopus oocytes, Eur. J. Pharmacol. 320 (1997) 87-94]. In situ hybridization and immunocytochemical studies have shown that there is a spatio-temporal level of expression throughout the brain for each of the receptor subunits with some regions showing a strong preference for a particular subunit. Although these studies collectively show that there are regional differences with respect to NMDA receptor subunit expression in the brain, it has not been determined at what level(s) these genes are expressed or whether each region displays a unique NMDA-subunit signature. The present study was undertaken to examine the level of gene expression for the NR1, NR2A, NR2B, NR2C, NR2D and NR3A receptor subunits in isolated regions of rat brain using the nuclease protection assay. Results show that each of the brain regions examined expresses all six NMDA receptor subunits. The level of message expression for NR1 greatly exceeded that of the other subunits combined, with values ranging from 67-88% of the total subunit gene expression. The relative proportions of the other subunits (NR2A-D and NR3A) varied widely, suggesting that NMDA receptor composition is unique to each region of the brain.  相似文献   

14.
Changes in NMDA receptor function following early postnatal exposure to ethanol may be related to the expression of NMDA receptor subunits. Following early postnatal exposure to ethanol, the expression of NMDA receptor subunits was examined. In cortex from ethanol-exposed rat pups at postnatal day 21, NR2A was significantly increased. There was no change in NR2B, thus suggesting that ethanol exposure during the third-trimester equivalent produces distinct effects on the NMDA receptor.  相似文献   

15.
Excitatory synapses on dopaminergic neurons of the ventral tegmental area (VTA) represent an important role in psychostimulant-induced rewarding effect. This study investigated the regulation of ryanodine receptor (RyR) and N-methyl-D-aspartate (NMDA) receptor expression in mice under intermittent methamphetamine (METH) treatment using a place preference procedure. RyR-1 and -2 significantly increased in the VTA of mice with METH-induced place preference, whereas RyR-3 showed no changes. In addition, the levels of NR1, NR2A, and NR2B subunits were increased in the VTA. The METH-induced place preference was inhibited by intracerebroventricular pretreatment with MK-801, a noncompetitive NMDA receptor antagonist, and ifenprodil, a selective NR2B subunit-containing NMDA receptor antagonist, in a dose-dependent manner. Under these conditions, the increase of RyR-1 and -2 in the VTA was significantly blocked by ifenprodil. The immunohistochemical analysis revealed the colocalization of RyR-1 and -2 with NR2B subunits in dopaminergic neurons in the mouse VTA. These findings suggest that RyRs could be involved in the development of METH-induced place preference and that NR2B subunit-containing NMDA receptors in mice showing METH-induced place preference play an important role in expression of RyRs.  相似文献   

16.
N-methyl-D-aspartate (NMDA) receptors play an important role in the production of rhythmical trigeminal motor activity resembling suckling and chewing. The developmental relationship between the expression of NMDA receptor subunits and the function of neurons comprising brainstem oral-motor circuitry is not clear. We conducted receptor immunohistochemistry studies to demonstrate the expression of NR2A and NR2B subunits in trigeminal motoneurons (Mo5) and mesencephalic trigeminal neurons (Me5) during the first 2 weeks of development. During this time period, rats begin the transition from suckling to chewing, two distinct motor behaviors. In Mo5, NR2A and NR2B immunoreactivity was observed throughout the time frame sampled. A significant increase in the NR2A:NR2B ratio occurred between P3-4 and P11 due to a reduction in the number of NR2B immunoreactive neurons. The temporal and spatial expression of NR2A and NR2B was differentially regulated between caudal and rostral regions of Me5. In contrast to Mo5, the NR2A:NR2B ratio decreased between P0-1 and P11 in caudal Me5 due to a concurrent increase in the number of NR2A and NR2B immunoreactive neurons. In rostral Me5, NR2A and NR2B immunoreactivity emerged at P3 and P11, respectively. Our data provides further insight into the molecular changes of trigeminal neurons during the transition from suckling to chewing behaviors. The differences in the NR2A:NR2B ratio between Mo5 and Me5 suggest functional differences in these neurons during NMDA-mediated neurotransmission.  相似文献   

17.
Most vagal afferent neurons in rat nodose ganglia express mRNA coding for the NR1 subunit of the heteromeric N-methyl-D-aspartate (NMDA) receptor ion channel. NMDA receptor subunit immunoreactivity has been detected on axon terminals of vagal afferents in the dorsal hindbrain, suggesting a role for presynaptic NMDA receptors in viscerosensory function. Although NMDA receptor subunits (NR1, NR2B, NR2C, and NR2D) have been linked to distinct neuronal populations in the brain, the NMDA receptor subunit phenotype of vagal afferent neurons has not been determined. Therefore, we examined NMDA receptor subunit (NR1, NR2B, NR2C, and NR2D) immunoreactivity in vagal afferent neurons. We found that, although the left nodose contained significantly more neurons (7,603), than the right (5,978), the proportions of NMDA subunits expressed in the left and right nodose ganglia were not significantly different. Immunoreactivity for NMDA NR1 subunit was present in 92.3% of all nodose neurons. NR2B immunoreactivity was present in 56.7% of neurons; NR2C-expressing nodose neurons made up 49.4% of the total population; NR2D subunit immunoreactivity was observed in just 13.5% of all nodose neurons. Double labeling revealed that 30.2% of nodose neurons expressed immunoreactivity to both NR2B and NR2C, whereas NR2B and NR2D immunoreactivities were colocalized in 11.5% of nodose neurons. NR2C immunoreactivity colocalized with NR2D in 13.1% of nodose neurons. Our results indicate that most vagal afferent neurons express NMDA receptor ion channels composed of NR1, NR2B, and NR2C subunits and that a minority phenotype that expresses NR2D also expresses NR1, NR2B, and NR2C.  相似文献   

18.
19.
Channel properties and synaptic targeting of N-methyl-D-aspartate (NMDA) receptors determine their importance in synaptic transmission, long-term synaptic plasticity, and developmental reorganization of synaptic circuits. To investigate the involvement of the C-terminal domain of the NR2B subunit in regulating channel properties and synaptic localization, we analyzed gene-targeted mice expressing C-terminally truncated NR2B subunits (NR2B(DeltaC/DeltaC) mice; Sprengel et al. [1998] Cell 92:279-89). Because homozygous NR2B(DeltaC/DeltaC) mice die perinatally, we studied embryonic neocortical neurons differentiating in culture. At early stages in vitro, neurons predominantly expressed NR1/NR2B receptors, as shown by the NR2B subunit-specific antagonist ifenprodil. At these nascent synapses, NMDA excitatory postsynaptic currents (EPSCs) in neurons from NR2B(DeltaC/DeltaC) mice showed a strong-amplitude reduction to 20% of control, but AMPA EPSCs were unaltered. Analysis of the MK-801 block of NMDA receptor-mediated whole-cell currents revealed a decreased peak open probability of NMDA receptor channels (to about 60%) in neurons from NR2B(DeltaC/DeltaC) mice, although their single channel conductance was unchanged. To study effects on synaptic targeting, we determined the fraction of synaptically localized NMDA receptors relative to the whole-cell NMDA receptor population. In neurons from NR2B(DeltaC/DeltaC) mice, the synaptic NMDA receptor fraction was drastically reduced, suggesting that the C-terminal domain of the NR2B subunit plays a major role in synaptic targeting of NMDA receptors at nascent synapses. With increasing time in culture, the reduction in NMDA EPSCs in neurons from NR2B(DeltaC/DeltaC) mice diminished. This is explained by the expression of additional NMDA receptor subtypes containing NR2A subunits at more mature synapses.  相似文献   

20.
Modifications of the size, shape and number of dendritic spines is thought to be an important component of activity-dependent changes of neuronal circuits, and may play an important role in the plasticity of drug addiction. The present study examined whether homeostatic increases in synaptic N-methyl-d-aspartate (NMDA) receptors in response to chronic ethanol exposure is associated with corresponding morphological changes in dendritic spines. Prolonged exposure of rat hippocampal cultures to either the NMDA receptor antagonist d(-)-2-amino-5-phosphono-pentanoic acid or to ethanol increased punctate staining of F-actin and the postsynaptic density protein-95 (PSD-95). The increase in dendritic F-actin occurred only with clusters that co-localized with PSD-95 clusters, indicating that these actin structures likely represent dendritic spines. The ethanol-induced increases in PSD-95 and F-actin clusters were activity-dependent and reversible. Finally, inhibition of protein palmitoylation prevented ethanol-induced increases in synaptic NMDA receptor clustering and F-actin without altering the basal clustering of either F-actin or PSD-95. These observations support a model in which chronic ethanol exposure induces homeostatic increases of NR2B-containing NMDA receptors and PSD-95 to the postsynaptic density. This in turn may provide a scaffolding platform for the subsequent recruitment of actin signaling cascades that alter actin cycling and promote spine enlargement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号