首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Thyroid hormone (TH) is essential for normal brain development, but the specific actions of TH differ across developmental time and brain region. These actions of TH are mediated largely by a combination of thyroid hormone receptor (TR) isoforms that exhibit specific temporal and spatial patterns of expression during animal and human brain development. In addition, TR action is influenced by different co-factors, proteins that directly link the TR protein to functional changes in gene expression. Several recent studies now show that TRs may be unintended targets of chemicals manufactured for industrial purposes, and to which humans and wildlife are routinely exposed. Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and bisphenol-A (BPA), and specific halogenated derivatives and metabolites of these compounds, have been shown to bind to TRs and perhaps have selective effects on TR functions. A number of common chemicals including polybrominated biphenyls (PBBs) and phthalates may also exert such effects. Considering the importance of TH in brain development, it will be important to pursue the possibilities that these chemicals - or interactions among chemical classes - are affecting children's health by influencing TH signaling in the developing brain.  相似文献   

4.
5.
6.
7.
8.
Functions of thyroid hormone receptors in mice.   总被引:6,自引:0,他引:6  
D Forrest  B Vennstr?m 《Thyroid》2000,10(1):41-52
  相似文献   

9.
The current review focuses on the molecular mechanisms and developmental roles of thyroid hormone receptors (TRs) in gene regulation and metamorphosis in Xenopus laevis and discusses implications for TR function in vertebrate development and diversity. Questions addressed are: (1) what are the molecular mechanisms of gene regulation by TR, (2) what are the developmental roles of TR in mediating the thyroid hormone (TH) signal, (3) what are the roles of the different TR isoforms, and (4) how do changes in these molecular and developmental mechanisms affect evolution? Even though detailed knowledge of molecular mechanisms of TR-mediated gene regulation is available from in vitro studies, relatively little is known about how TR functions in development in vivo. Studies on TR function during frog metamorphosis are leading the way toward bridging the gap between in vitro and in vivo studies. In particular, a dual function model for the role of TR in metamorphosis has been proposed and investigated. In this model, TRs repress genes allowing tadpole growth in the absence of TH during premetamorphosis and activate genes important for metamorphosis when TH is present. Despite the lack of metamorphosis in most other vertebrates, TR has important functions in development across vertebrates. The underlying molecular mechanisms of TR in gene regulation are conserved through evolution, so other mechanisms involving TH-target genes and TH tissue-sensitivity and dependence underlie differences in role of TR across vertebrates. Continued analysis of molecular and developmental roles of TR in X. laevis will provide the basis for understanding how TR functions in gene regulation in vivo across vertebrates and how TR is involved in the generation of evolutionary diversity.  相似文献   

10.
11.
Thyroid hormone receptor mutations in cancer   总被引:3,自引:0,他引:3  
  相似文献   

12.
13.
Mechanism of thyroid hormone action.   总被引:9,自引:0,他引:9  
  相似文献   

14.
15.
16.
17.
18.
R Thomas Zoeller 《Thyroid》2007,17(9):811-817
Thyroid hormone (TH) is essential for normal brain development, but the specific actions of TH differ across developmental time and brain region. These actions of TH are mediated largely by a combination of thyroid hormone receptor (TR) isoforms that exhibit specific temporal and spatial patterns of expression during animal and human brain development. In addition, TR action is influenced by different cofactors, proteins that directly link the TR protein to functional changes in gene expression. Considering the importance of TH signaling in development, it is important to consider environmental chemicals that may interfere with this signaling. Recent research indicates that environmental chemicals can interfere with thyroid function and with TH signaling. The key issues are to understand the mechanism by which these chemicals act and the dose at which they act, and whether adaptive responses intrinsic to the thyroid system can ameliorate potential adverse consequences (i.e., compensate). In addition, several recent studies show that TRs may be unintended targets of chemicals manufactured for industrial purposes to which humans and wildlife are routinely exposed. Polychlorinated biphenyls, polybrominated diphenyl ethers, bisphenol-A, and specific halogenated derivatives and metabolites of these compounds have been shown to bind to TRs and perhaps have selective effects on TR functions. A number of common chemicals, including polybrominated biphenyls and phthalates, may also exert such effects. When we consider the importance of TH in brain development, it will be important to pursue the possibilities that these chemicals-or interactions among chemical classes-are affecting children's health by influencing TH signaling in the developing brain.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号