首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural changes of Alzheimer's disease (AD) include a widespread alteration of neuronal cell processes in addition to senile plaques and neurofibrillary tangles. Since the antigenic characteristics of these abnormal neurites are similar to those of the abnormal neurites associated with the senile plaques, the question has been raised as to whether the widespread neuritic alteration is secondary to the deposition of amyloid. To answer this question, we examined brains from 2 subjects with a longer-lasting form of subacute sclerosing panencephalitis (SSPE) characterized by the presence of numerous neurofibrillary tangles but no senile plaques, 3 subjects with AD, and 2 age-matched controls. Light and electron immunocytochemical analyses revealed that abnormal neurites are present diffusely in SSPE cerebral cortex in the absence of amyloid deposits. These abnormal neurites were qualitatively identical to the widespread abnormal neurites of AD. The abnormal neurites, in contrast to the neurites of control brains, immunoreacted with antibodies to tau and ubiquitin. These distinctive antigenic features were due to the presence in these abnormal neurites of straight filaments, 14 to 16 nm in diameter, mixed with a few paired helical filaments. The spatial distribution of the widespread neuritic alteration correlated with that of neurofibrillary tangles in both conditions, but not with that of senile plaques in AD. The present findings demonstrate that a diffuse alteration of neurites similar to that present in AD takes place independently of the deposition of amyloid in SSPE, and they are consistent with the hypothesis that in AD, also, this alteration is not secondary to the deposition of amyloid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We compared neuropsychological findings in 28 longitudinally evaluated elderly subjects with their postmortem neuropathology, including senile plaque and neurofibrillary tangle counts from standardized sections. Nine of the subjects were not demented when evaluated just prior to their death. Numerous cortical senile plaques and other changes of Alzheimer's disease (AD) occurred in six of nine nondemented old-old subjects. Five of these six subjects had shown decline on yearly neuropsychological tests but their cognitive impairment was too mild to meet clinical criteria for dementia. Whereas cortical senile plaque count did not distinguish well between demented and nondemented subjects, every subject with numerous cortical neurofibrillary tangles was demented. The nondemented subjects with Alzheimer pathology may have had "preclinical" AD, or numerous cortical plaques may occur in some elderly subjects who would never develop clinical dementia.  相似文献   

3.
Relationship between plaques, tangles, and dementia in Down syndrome   总被引:10,自引:0,他引:10  
A H Ropper  R S Williams 《Neurology》1980,30(6):639-644
In patients with Down syndrome, senile plaques and neurofibrillary tangles accumulate in the cortex at an earlier age than in persons of normal karyotype. We studied 20 Down syndrome patients dying after age 30 (average age, 49); all had neocortical plaques and tangles, but only 3 of 20 had been demented. In 12 cases (average age, 53), tissue was available for quantitative study of plaque and tangle densities and estimation of cell loss in the hippocampus. Although at least 8 of these 12 cases had plaque and tangle densities comparable to those previously reported in demented old people, only 1 had dementia. The regional distribution of plaques and tangles in the hippocampus of these Down cases differed from the pattern in senile dementia. Although Alzheimer-like dementia occurs in Down disease, it is less prevalent than the plethoric plaques and tangles in the cortex.  相似文献   

4.
In order to clarify the distribution and pathological changes of the amyloid beta protein precursor (betaAPP), 10 Alzheimer's disease (AD) brains and seven normal control brains were examined by immunocytochemistry and in situ hybridization histochemistry. All betaAPP isoforms were distributed evenly in neuronal cell bodies and their axons and dendrites. The betaAPP-positive neuronal processes showed mesh-like networks. In AD brains, betaAPP-positive neurons and mesh-like networks were generally decreased in spite of some intensely labeled neurons. All betaAPP isoforms accumulated in neuronal processes, dystrophic neurites and senile plaques. In situ hybridization histochemistry confirmed that all isoforms of betaAPP were expressed in neurons in control brains. In AD brains, the betaAPP mRNA signal was generally decreased besides some intense signal neurons corresponding to immunostaining findings. Few astrocytes expressed betaAPP. Thus, uniform expression and distribution of betaAPP were disturbed in AD brains showing uneven decreases or increases of neuronal betaAPP expression in individual neurons and betaAPP accumulation in neurons, neuronal processes and abnormal structures including dystrophic neurites, senile plaques and neurofibrillary tangles.  相似文献   

5.
Hyperphosphorylation and accumulation of tau in neurons (and glial cells) is one the main pathologic hallmarks in Alzheimer's disease (AD) and other tauopathies, including Pick's disease (PiD), progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease and familial frontotemporal dementia and parkinsonism linked to chromosome 17 due to mutations in the tau gene (FTDP-17-tau). Hyperphosphorylation of tau is regulated by several kinases that phosphorylate specific sites of tau in vitro. GSK-3-immunoprecipitated sarcosyl-insoluble fractions in AD have the capacity to phosphorylate recombinant tau. In addition, GSK-3 phosphorylated at Ser9, that inactivates GSK-3, is found in the majority of neurons with neurofibrillary tangles and dystrophic neurites of senile plaques in AD, and in Pick bodies and other phospho-tau-containing neurons and glial cells in other tauopathies. Increased expression of active kinases, including stress-activated kinase, c-Jun N-terminal kinase (SAPK/JNK) and kinase p38 has been found in brain homogenates in all the tauopathies. Strong active SAPK/JNK and p38 immunoreactivity has been observed restricted to neurons and glial cells containing hyperphosphorylated tau, as well as in dystrophic neurites of senile plaques in AD. Moreover, SAPK/JNK- and p38-immunoprecipitated sub-cellular fractions enriched in abnormal hyperphosphorylated tau have the capacity to phosphorylate recombinant tau and c-Jun and ATF-2 which are specific substrates of SAPK/JNK and p38 in AD and PiD. Interestingly, increased expression of phosphorylated (active) SAPK/JNK and p38 and hyperphosphorylated tau containing neurites have been observed around betaA4 amyloid deposits in the brain of transgenic mice (Tg 2576) carrying the double APP Swedish mutation. These findings suggest that betaA4 amyloid has the capacity to trigger the activation of stress kinases which, in turn, phosphorylate tau in neurites surrounding amyloid deposits. Complementary findings have been reported from the autopsy of two AD patients who participated in an amyloid-beta immunization trial and died during the course of immunization-induced encephalitis. The neuropathological examination of the brain showed massive focal reduction of amyloid plaques but not of neurofibrillary degeneration. Activation of SAPK/JNK and p38 were reduced together with decreased tau hyperphosphorylation of aberrant neurites in association with decreased amyloid plaques in both Tg2576 mice and human brains. These findings support the amyloid cascade hypothesis of tau phosphorylation mediated by stress kinases in dystrophic neurites of senile plaques but not that of neurofibrillary tangles and neuropil threads in AD.  相似文献   

6.
Visual association pathology in preclinical Alzheimer disease   总被引:4,自引:0,他引:4  
The transition from normal aging to mild cognitive impairment to Alzheimer disease (AD) is often indistinct. Imaging studies suggest early changes in posterior brain regions, including posterior temporoparietal and occipital cortex, but pathologic studies show initial changes in the medial temporal lobe with progressive neocortical involvement as cognition deteriorates. We evaluated the regional distribution of AD pathology in 41 elderly brain donors from the Framingham Heart Study who were cognitively intact, mildly impaired, or demented on the basis of probable AD. We found that 52% of the cognitively intact subjects, and all subjects with mild cognitive impairment or dementia, had dense neurofibrillary tangles (NFTs), neuropil threads, and tau-immunoreactive neurites surrounding neuritic plaques (NPs) in visual association cortex Brodmann area 19. All cognitively intact subjects with area 19 NFTs also had dense core NP and beta amyloid (Abeta) angiopathy in area 19. Area 19 pathology was occasionally present in the absence of substantial pathology in the hippocampus or entorhinal cortex and was not correlated with medial temporal lobe pathology. Dense AD pathology in area 19 is present in some cognitively intact subjects with preclinical AD. The unique metabolic, connectional, and vascular features of this region may confer enhanced vulnerability to neurodegeneration.  相似文献   

7.
BACKGROUND: Psychosis is common in patients with Alzheimer disease. While the relationship between psychosis and clinical variables has been examined frequently, few studies have examined the relationship between psychosis and the 2 major neuropathological hallmarks of Alzheimer disease: neurofibrillary tangles and senile plaques. We characterized the occurrence of psychosis in relation to dementia severity and determined if subjects with Alzheimer disease and psychosis had a greater neurofibrillary tangle or senile plaque burden than subjects with Alzheimer disease and no psychosis. METHODS: One hundred nine subjects with Alzheimer disease were followed longitudinally with semistructured assessments in order to assign a Clinical Dementia Rating and determine whether psychosis was present. After the subjects died, their brains were obtained for histological examination. Analysis of variance was used to compare the densities of neurofibrillary tangles, total senile plaques, and cored senile plaques in subjects with psychosis vs subjects without psychosis, in several neocortical regions, the hippocampus, and the entorhinal cortex. RESULTS: Psychosis occurred commonly in Alzheimer disease, affecting 63% of subjects. The frequency of psychosis increased with increasing dementia severity. More importantly, we found that subjects with psychosis had a 2.3-fold (95% confidence interval, 1.2-3.9) greater density of neocortical neurofibrillary tangles than did subjects without psychosis. The increase was independent of dementia severity. No similar relationship with psychosis was seen for total senile plaques or cored senile plaques. CONCLUSIONS: The increase in psychosis frequency that occurs with the progression of dementia severity and the independent association between psychosis and neurofibrillary tangle density suggest the possibility that some common underlying process or processes specific to Alzheimer disease may regulate both phenomena. Arch Gen Psychiatry. 2000;57:1165-1173.  相似文献   

8.
The aim of this study of the cerebral cortex of 8 non-demented elderly subjects and of 17 subjects in the severe stage of Alzheimer's disease (AD) (Global Deterioration Scale stage 7/Functional Assessment Staging procedure stage 7a-f) was to examine the relationships between amyloid-beta (Abeta) deposits and neurofibrillary degeneration. The study shows that neuronal processes with neurofibrillary changes are detectable in only a minority of fibrillar plaques: from 31% to 49% of fibrillar plaques within frontal, temporal, parietal, limbic, occipital, and insular cortices. The correlations observed between the numerical densities of neurons with neurofibrillary tangles (NFTs) and the densities of Thioflavin-S-positive fibrillar plaques with neurofibrillary changes (r=0.61; P<0.01) indicate that neurofibrillary pathology in neocortical plaques reflects the topography and rate of neurofibrillary changes in neocortical neurons. The accumulation of abnormally phosphorylated tau in only some plaques indicates that fibrillar Abeta enhances paired helical filament accumulation locally only in dystrophic neurites already involved in neurofibrillary degeneration. The lack of correlation between the number of neurons with neurofibrillary changes and the number of all Thioflavin-S-positive fibrillar plaques (with and without neurofibrillary changes) suggests that beta-amyloidosis does not contribute to initiation of neurofibrillary degeneration in neurons.  相似文献   

9.
Hyperphosphorylation and accumulation of tau in neurons (and glial cells) is one of the main pathologic hallmarks in Alzheimer's disease (AD) and other tauopathies, including Pick's disease (PiD), progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease and familial frontotemporal dementia and parkinsonism linked to chromosome 17 due to mutations in the tau gene (FTDP-17-tau). Recent studies have shown increased expression of select active kinases, including stress-activated kinase, c-Jun N-terminal kinase (SAPK/JNK) and kinase p38 in brain homogenates in all the tauopathies. Strong active SAPK/JNK and p38 immunoreactivity has been observed restricted to neurons and glial cells containing hyperphosphorylated tau, as well as in dystrophic neurites of senile plaques in AD. Moreover, SAPK/JNK- and p38-immunoprecipitated sub-cellular fractions enriched in abnormal hyperphosphorylated tau have the capacity to phosphorylate recombinat tau and c-Jun and ATF-2 which are specific substrates of SAPK/JNK and p38 in AD and PiD. Interestingly, increased expression of phosphorylated SAPK/JNK and p38 in association with hyperphosphorylated tau containing neurites have been observed around betaA4 amyloid deposits in the brain of transgenic mice (Tg2576)carrying the double APP Swedish mutation. These findings suggest that betaA4 amyloid has the capacity to trigger the activation of stress kinases which, in turn, phosphorylate tau in neurites surrounding amyloid deposits. Reduction in the amyloid burden and decreased numbers of amyloid plaques but not of neurofibrillary degeneration has been observed in the brain of two AD patients who participated in an amyloid-beta immunization trial. Activation of stress kinases SAPK/JNK and p38 were reduced together with decreased tau hyperphosphorylation of aberrant neurites in association with decreased amyloid plaques. These findings support the amyloid cascade hypothesis of tau phosphorylation mediated by stress kinases in dystrophic neurites of senile plaques but not that of neurofibrillary tangles and neuropil threads in AD.  相似文献   

10.
Summary To investigate the neuropathological differences between normal aging and senile dementia of the Alzheimer type (SDAT) in very old people and to see how they compare with a younger population of demented elderly people, we performed an immunohistochemical quantitative analysis of the topography of senile plaques and neurofibrillary tangles in a series of 31 elderly patients aged from 96 to 102 years. According to the medical records, two groups were considered: 7 patients presenting with clinically documented SDAT and 24 patients with no or very mild cognitive impairment. The densities of senile plaques were comparable in both groups. Extensive neurofibrillary tangle formation was restricted to the CA1 hippocampal field of demented subjects, whereas the superior frontal cortex showed rare neurofibrillary tangles, independently of the clinical diagnosis. These results indicate an absence of direct correlation between the number of senile plaques and the clinical manifestation of SDAT. Furthermore, they suggest that the dementing process may involve different cortical structures in nonagenarians and centenarians than in younger demented individuals where a widespread cortical involvement is generally observed. Thus, the neurofibrillary tangle density in the CA1 field may be critical for the neuropathological diagnosis of SDAT in this particular group of very old patients.Supported by grants from the American Health Assistance Foundation and the Brookdale Foundation (to P.R.H.)  相似文献   

11.
Tau phosphorylation was examined in Alzheimer's disease (AD), Pick's disease (PiD), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) using phospho-specific tau antibodies recognizing the phosphorylated form of Ser202, Ser214 and Ser 396, and antibodies to non-phosphorylated glycogen synthase kinase-3alpha/beta (GSK-3alpha/beta), which regulates phosphorylation at these specific sites on tau and phosphorylated GSK-3betaSer9 (GSK-3beta-P); this antibody is directed to the inactive form of GSK-3beta. Phospho-specific tau antibodies recognized disease-specific band patterns on Western blots of sarcosyl-insoluble fractions: four bands of 73, 68, 64 and 60 kDa in AD, two bands of 68 and 64 kDa in PSP and CBD, and two bands of 64 and 60 kDa in PiD. Moreover, anti-phospho-tau Ser202, Ser214 and Ser369 decorated neurons with neurofibrillary tangles, dystrophic neurites of senile plaques, neuropil threads, Pick bodies, astrocytes and oligodendrocytes with coiled bodies. No differences in the expression of GSK-3alpha/beta were seen between neurons with and without neurofibrillary tangles. GSK-3alpha/beta was enriched in sarcosyl-insoluble fractions, suggesting association of this kinase with tau hyperphosphorylation. In addition, strong expression of the phosphorylated form of GSK-3beta was found in a subpopulation of neurons with neurofibrillary tangles, and in dystrophic neurites of senile plaques, neuropil threads, Pick bodies, tau-containing astrocytes and coiled bodies in AD, PiD, PSP and CBD. This was not due to cross-reactivity between GSK-3 and phospho-tau. Specific bands differing from those of phospho-tau were seen on Western blots of sarcosyl-insoluble fractions processed for GSK-3alpha/beta and GSK-3beta-P. Double-labeling immunohistochemistry discloses that GSK-3beta-P co-localizes with abnormal tau in about 50% of neurons with neurofibrillary tangles, and in neuronal processes, astrocytes and oligodendrocytes in various tauopathies. The present results support a pivotal role for GSK-3 in tau phosphorylation in neurons and glial cells. Moreover, the elevated number of tau-containing cells stained with anti-GSK-3beta-P antibodies suggests a partial inactivation of the kinase, or sequestration of the phosphorylated form, which may contribute to the regulation of the cascade of tau hyperphosphorylation in tauopathies, and to protect tau-containing cells from apoptosis.  相似文献   

12.
Argyrophilic grain disease constitutes one cause of late-onset dementia. Its classification among dementia disorders is still unclear because most of the reported argyrophilic grain disease cases are associated with neurofibrillary lesions (e.g. neurofibrillary tangles) which are also typical of Alzheimer's disease. In the present study we determine whether argyrophilic grain disease is associated with the senile plaques of Alzheimer's disease. The distribution and density of senile plaques was systematically investigated in 11 demented argyrophilic grain disease cases using Abeta immunohistochemistry and stereological techniques, and the results were compared with 11 Alzheimer's disease cases. All subjects with argyrophilic grain disease exhibited neurofibrillary changes corresponding to Braak stages I-III. Three of the 11 argyrophilic grain disease cases (27%) were completely devoid of Abeta deposits. In argyrophilic grain disease cases with senile plaques, the average total plaque-load was significantly lower (1%) than in Alzheimer's disease (3.1%) (P<0. 005). The regional distribution of the senile plaques and the proportion of diffuse vs. primitive or mature plaques in argyrophilic grain disease resembled values of senile plaques reported in non-demented elderly subjects, and was significantly different from Alzheimer's disease. Similarly the immunocytochemical profile of the Abeta deposition in argyrophilic grain disease resembled that of non-demented elderly subjects rather than that of subjects with Alzheimer's disease. As all argyrophilic grain disease cases under investigation were demented, including those devoid of senile plaques, the present study further supports the thesis that dementia in argyrophilic grain disease correlates more with the density and distribution of argyrophilic grains than with associated lesions of the Alzheimer-type.  相似文献   

13.
14.
Fractions enriched in neurofibrillary tangles (NFT) and amyloid fibrils were isolated from the cerebral cortex of three cases of senile dementia of the Alzheimer type. Distilled water suspensions of these fractions were excluded from all pore size gels and resisted digestion with various proteolytic enzymes. Formic acid/chloroform treatment of each fraction resulted in the appearance of 4,000-6,000, 15,000-17,000 and 24,000 molecular weight proteins, with concomitant diminution in the amount of excluded material at the top of each gel. The 4,000-6,000 dalton band was best seen in fractions containing randomly arranged amyloid fibrils, and its amino acid composition resembled that of the recently reported "beta" protein. A polyclonal antiserum to purified NFT reacted with tangles in neurons and in dystrophic neurites around plaques by immunoperoxidase staining. No reaction was obtained with cerebrovascular or plaque core amyloid immunohistologically, or with the 4-6 kD protein on immunoblots. Cross-reactivity with the neurofibrillary lesions occurring in Pick's disease, progressive supranuclear palsy, postencephalitic Parkinsonism and dementia pugilistica was also seen. Specific binding of this antiserum to the double filamentous structure was confirmed by immunoelectron microscopy. Although the presence of "beta" protein in both NFT and amyloid-containing fractions suggests that it may be an important constituent of both, cross-contamination cannot be excluded.  相似文献   

15.
Double-labeling immunofluorescence and confocal microscopy have been used to learn about the local relationship between amyloid, mitochondria, and cytochrome c oxidase (COX) in dystrophic neurites of senile plaques in the frontal cortex in Alzheimer's disease (AD). Dystrophic neurites surrounding amyloid plaques are filled with mitochondrial porin-immunoreactive structures. In contrast with tangle-bearing and non-tangle-bearing neurons, which express mitochondrial porin and COX subunit 4, porin-immunoreactive neurites of senile plaques lack COX subunit 4. Parallel western blot studies in mitochondria-enriched fractions of the frontal cortex in the same cases disclosed reduced expression levels of COX, but not of prohibitin, in AD stages VB/C of Braak. Co-localization of porin and lysosomal associated protein 1, as revealed by double-labeling immunofluorescence and confocal microscopy, suggests that mitochondria may be engulfed by lysosomes in dystrophic neurites. These findings support a local link between amyloid deposition, abnormal mitochondria and impaired respiratory chain function (resulting from decrease of COX expression) in dystrophic neurites of senile plaques in AD.  相似文献   

16.
Mutations at codons 717 and 670/671 in the amyloid precursor protein (APP) are rare genetic causes of familial Alzheimer’s disease (AD). A mutation at codon 693 of APP has also been described as the genetic defect in hereditary cerebral hemorrhage with amyloidosis of the Dutch type (HCHWA-D). We have reported a APP692Ala→Gly (Flemish) mutation as a cause of intracerebral hemorrhage and presenile dementia diagnosed as probable AD in a Dutch family. We now describe the post-mortem examination of two demented patients with the APP692 mutation. The neuropathological findings support the diagnosis of AD. Leptomeningial and parenchymal vessels showed extensive deposition of Aβ amyloid protein. Numerous senile plaques consisted of large Aβ amyloid cores, often measuring more than 30 μm in diameter and were surrounded by a fine meshwork of dystrophic neurites. In addition, there were a large number of paired helical filaments in pyramidal neurons and dystrophic neurites. Our findings show that the APP692 mutation leads to morphological abnormalities that are similar to AD, but the morphology of senile plaques is clearly distinct from that described in sporadic and chromosome 14-linked AD patients, in patients with APP717 mutations causing familial, presenile AD and in patients with the APP693 mutation causing HCHWA-D. Received: 11 August 1997 / Revised, accepted: 9 February 1998  相似文献   

17.
We compare clinicopathologic data from 10 subjects identified in the very mild stage of senile dementia of the Alzheimer type with findings from similar studies in four cognitively normal subjects. We based the diagnosis of very mild dementia in the 10 subjects on informant reports and the judgment of experienced clinicians. Deficits of some psychometric measures of memory, language, and speeded psychomotor performance were observed for these subjects. The histologic markers of Alzheimer's disease, including neurofibrillary tangles and both the "diffuse" and classic subtypes of senile plaques, were present in the neocortex in all 10 subjects but essentially were absent in the four controls. These findings indicate that even "questionable" dementia can be diagnostic for Alzheimer's disease. Furthermore, because truly normal aging may be unaccompanied by neocortical senile plaques and neurofibrillary tangles, the presence of these lesions should suggest the possibility of clinically undetected Alzheimer's disease.  相似文献   

18.
To assess the relationship between dementia, neuronal loss, and neuropathological findings in Alzheimer's disease (AD), we counted the number of neurons, senile plaques, and neurofibrillary tangles in a high-order association cortex. We studied the superior temporal sulcus of 34 individuals with AD and 17 nondemented control subjects, using statistically unbiased, stereological counting techniques. The number of superior temporal sulcus neurons in nondemented control subjects was stable across the sixth to ninth decades. In AD, more than 50% of the neurons were lost. Both neuronal loss and neurofibrillary tangles increased in parallel with the duration and severity of illness, but the amount of neuronal loss exceeded by manyfold the amount of neurofibrillary tangles accumulated. In contrast to the correlation between neurofibrillary tangels and neuronal loss, the number of senile plaques and the percentage of the superior temporal sulcus that was covered by Aβ (amyloid burden) were not related to neuronal loss, number of neurofibrillary tangles, or duration of disease. Neither the amount nor the rate of neuronal loss in the superior temporal sulcus in AD correlated with apolipoprotein E genotype. These data suggest that neuronal loss in association areas such as the superior temporal sulcus contributes directly to cognitive impairment in AD.  相似文献   

19.
Summary Immunocytochemistry with monoclonal antibodies to the -protein and to antigens associated with paired helical filaments (PHF) allows us to selectively stain two major components of neuritic (senile) plaques (NP): PHF and amyloid deposits. Using this method, the structure of NP in the brains of Alzheimer disease victims was compared to their structure in the brains of non-demented aged individuals selected for high numbers of NP. It is demonstrated that the dystrophic neurites participating in the plaque formation contain PHF only when cortical nerve cells in the same brain area form neurofibrillary tangles (NFT). People with many NP and many NFT were always demented, whereas people with many NP but few, if any NFT were not. It is speculated that there is individual susceptibility to the formation of PHF and that their appearance may represent a nonspecific response of the neuronal network to different kinds of injuries, like the deposition of amyloid in Alzheimer disease, or other pathogenic factors associated with various dementive neurodegenerative diseases. It is hypothesized that the deposition of brain amyloid in people resistant to neurofibrillary pathology may induced too little dysfunction for the development of dementia.Supported in part by grants AGO-4220 and HD-22634 from the National Institutes of Health  相似文献   

20.
BACKGROUND: Dementia is a frequent complication of idiopathic parkinsonism or PD, usually occurring later in the protracted course of the illness. The primary site of neuropathologic change in PD is the substantia nigra, but the neuropathologic and molecular basis of dementia in PD is less clear. Although Alzheimer's pathology has been a frequent finding, recent advances in immunostaining of alpha-synuclein have suggested the possible importance of cortical Lewy bodies (CLBs) in the brains of demented patients with PD. METHODS: The brains of 22 demented and 20 nondemented patients with a clinical and neuropathologic diagnosis of PD were evaluated with standard neuropathologic techniques. In addition, CLBs and dystrophic neurites were identified immunohistochemically with antibodies specific for alpha-synuclein and ubiquitin; plaques and tangles were identified by staining with thioflavine S. Associations between dementia status and pathologic markers were tested with logistic regression. RESULTS: CLBs positive for alpha-synuclein are highly sensitive (91%) and specific (90%) neuropathologic markers of dementia in PD and slightly more sensitive than ubiquitin-positive CLBs. They are better indicators of dementia than neurofibrillary tangles, amyloid plaques, or dystrophic neurites. CONCLUSION: CLBs detected by alpha-synuclein antibodies in patients with PD are a more sensitive and specific correlate of dementia than the presence of Alzheimer's pathology, which was present in a minority of the cases in this series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号