首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The selective cathepsin K inhibitor odanacatib (ODN) progressively increased bone mineral density (BMD) and decreased bone‐resorption markers during 2 years of treatment in postmenopausal women with low BMD. A 1‐year extension study further assessed ODN efficacy and safety and the effects of discontinuing therapy. In the base study, postmenopausal women with BMD T‐scores between ?2.0 and ?3.5 at the lumbar spine or femur received placebo or ODN 3, 10, 25, or 50 mg weekly. After 2 years, patients (n = 189) were rerandomized to ODN 50 mg weekly or placebo for an additional year. Endpoints included BMD at the lumbar spine (primary), total hip, and hip subregions; levels of bone turnover markers; and safety assessments. Continued treatment with 50 mg of ODN for 3 years produced significant increases from baseline and from year 2 in BMD at the spine (7.9% and 2.3%) and total hip (5.8% and 2.4%). Urine cross‐linked N‐telopeptide of type I collagen (NTx) remained suppressed at year 3 (?50.5%), but bone‐specific alkaline phosphatase (BSAP) was relatively unchanged from baseline. Treatment discontinuation resulted in bone loss at all sites, but BMD remained at or above baseline. After ODN discontinuation at month 24, bone turnover markers increased transiently above baseline, but this increase largely resolved by month 36. There were similar overall adverse‐event rates in both treatment groups. It is concluded that 3 years of ODN treatment resulted in progressive increases in BMD and was generally well tolerated. Bone‐resorption markers remained suppressed, whereas bone‐formation markers returned to near baseline. ODN effects were reversible: bone resorption increased transiently and BMD decreased following treatment discontinuation. © 2011 American Society for Bone and Mineral Research.  相似文献   

2.

Summary

The efficacy and safety of weekly oral odanacatib (ODN) 50 mg for up to 8 years were assessed in postmenopausal women with low bone mineral density (BMD). Treatment with ODN for up to 8 years resulted in continued or maintained increases in BMD at multiple sites and was well tolerated.

Introduction

ODN is a selective inhibitor of cathepsin K. In a 2-year phase 2b study (3/10/25/50 mg ODN once weekly [QW] or placebo) and extensions (50 mg ODN QW or placebo), ODN treatment for 5 years progressively increased BMD and decreased bone resorption markers in postmenopausal women with low BMD (ClinicalTrials.gov NCT00112437).

Methods

In this prespecified interim analysis at year 8 of an additional 5-year extension (years 6 to 10), patients (n?=?117) received open-label ODN 50 mg QW plus weekly vitamin D3 (5600 IU) and calcium supplementation as needed. Primary end points were lumbar spine BMD and safety. Patients were grouped by ODN exposure duration.

Results

Mean (95 % confidence interval [CI]) lumbar spine BMD changes from baseline were 4.6 % (2.4, 6.7; 3-year continuous ODN exposure), 12.9 % (8.1, 17.7; 5 years), 12.8 % (10.0, 15.7; 6 years), and 14.8 % (11.0, 18.6; 8 years). Similar patterns of results were observed for BMD of trochanter, femoral neck, and total hip versus baseline. Geometric mean changes from baseline to year 8 for bone resorption markers were approximately ?50 % (uNTx/Cr) and ?45 % (sCTx), respectively (all groups); bone formation markers remained near baseline levels. No osteonecrosis of the jaw, delayed fracture union, or morphea-like skin reactions were reported.

Conclusions

Treatment with ODN for up to 8 years resulted in gains in BMD at multiple sites. Bone resorption markers remained reduced, with no significant change observed in bone formation markers. Treatment with ODN for up to 8 years was well tolerated.
  相似文献   

3.
Romosozumab is a bone‐forming agent with a dual effect of increasing bone formation and decreasing bone resorption. In FRActure study in postmenopausal woMen with ostEoporosis (FRAME), postmenopausal women with osteoporosis received romosozumab 210 mg s.c. or placebo once monthly for 12 months, followed by denosumab 60 mg s.c. once every 6 months in both groups for 12 months. One year of romosozumab increased spine and hip BMD by 13% and 7%, respectively, and reduced vertebral and clinical fractures with persistent fracture risk reduction upon transition to denosumab over 24 months. Here, we further characterize the BMD gains with romosozumab by quantifying the percentages of patients who responded at varying magnitudes; report the mean T‐score changes from baseline over the 2‐year study and contrast these results with the long‐term BMD gains seen with denosumab during Fracture REduction Evaluation of Denosumab in Osteoporosis every 6 Months (FREEDOM) and its Extension studies; and assess fracture incidence rates in year 2, when all patients received denosumab. Among 7180 patients (n = 3591 placebo, n = 3589 romosozumab), most romosozumab‐treated patients experienced ≥3% gains in BMD from baseline at month 12 (spine, 96%; hip, 78%) compared with placebo (spine, 22%; hip, 16%). For romosozumab patients, mean absolute T‐score increases at the spine and hip were 0.88 and 0.32, respectively, at 12 months (placebo: 0.03 and 0.01) and 1.11 and 0.45 at 24 months (placebo‐to‐denosumab: 0.38 and 0.17), with the 2‐year gains approximating the effect of 7 years of continuous denosumab administration. Patients receiving romosozumab versus placebo in year 1 had significantly fewer vertebral fractures in year 2 (81% relative reduction; p < 0.001), with fewer fractures consistently observed across other fracture categories. The data support the clinical benefit of rebuilding the skeletal foundation with romosozumab before transitioning to antiresorptive therapy. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.  相似文献   

4.
Odanacatib, a selective cathepsin K inhibitor, increases areal bone mineral density (aBMD) at the spine and hip of postmenopausal women. To gain additional insight into the effects on trabecular and cortical bone, we analyzed quantitative computed tomography (QCT) data of postmenopausal women treated with odanacatib using Medical Image Analysis Framework (MIAF; Institute of Medical Physics, University of Erlangen, Erlangen, Germany). This international, randomized, double‐blind, placebo‐controlled, 2‐year, phase 3 trial enrolled 214 postmenopausal women (mean age 64 years) with low aBMD. Subjects were randomized to odanacatib 50 mg weekly (ODN) or placebo (PBO); all participants received calcium and vitamin D. Hip QCT scans at 24 months were available for 158 women (ODN: n = 78 women; PBO: n = 80 women). There were consistent and significant differential treatment effects (ODN‐PBO) for total hip integral (5.4%), trabecular volumetric BMD (vBMD) (12.2%), and cortical vBMD (2.5%) at 24 months. There was no significant differential treatment effect on integral bone volume. Results for bone mineral content (BMC) closely matched those for vBMD for integral and trabecular compartments. However, with small but mostly significant differential increases in cortical volume (1.0% to 1.3%) and thickness (1.4% to 1.9%), the percentage cortical BMC increases were numerically larger than those of vBMD. With a total hip BMC differential treatment effect (ODN‐PBO) of nearly 1000 mg, the proportions of BMC attributed to cortical gain were 45%, 44%, 52%, and 40% for the total, neck, trochanter, and intertrochanter subregions, respectively. In postmenopausal women treated for 2 years, odanacatib improved integral, trabecular, and cortical vBMD and BMC at all femur regions relative to placebo when assessed by MIAF. Cortical volume and thickness increased significantly in all regions except the femoral neck. The increase in cortical volume and BMC paralleled the increase in cortical vBMD, demonstrating a consistent effect of ODN on cortical bone. Approximately one‐half of the absolute BMC gain occurred in cortical bone. © 2014 American Society for Bone and Mineral Research.  相似文献   

5.
Sclerostin, a SOST protein secreted by osteocytes, negatively regulates formation of mineralized bone matrix and bone mass. We report the results of a randomized, double‐blind, placebo‐controlled multicenter phase 2 clinical trial of blosozumab, a humanized monoclonal antibody targeted against sclerostin, in postmenopausal women with low bone mineral density (BMD). Postmenopausal women with a lumbar spine T‐score –2.0 to –3.5, inclusive, were randomized to subcutaneous blosozumab 180 mg every 4 weeks (Q4W), 180 mg every 2 weeks (Q2W), 270 mg Q2W, or matching placebo for 1 year, with calcium and vitamin D. Serial measurements of spine and hip BMD and biochemical markers of bone turnover were performed. Overall, 120 women were enrolled in the study (mean age 65.8 years, mean lumbar spine T‐score –2.8). Blosozumab treatment resulted in statistically significant dose‐related increases in spine, femoral neck, and total hip BMD as compared with placebo. In the highest dose group, BMD increases from baseline reached 17.7% at the spine, and 6.2% at the total hip. Biochemical markers of bone formation increased rapidly during blosozumab treatment, and trended toward pretreatment levels by study end. However, bone specific alkaline phosphatase remained higher than placebo at study end in the highest‐dose group. CTx, a biochemical marker of bone resorption, decreased early in blosozumab treatment to a concentration less than that of the placebo group by 2 weeks, and remained reduced throughout blosozumab treatment. Mild injection site reactions were reported more frequently with blosozumab than placebo. In conclusion, treatment of postmenopausal women with an antibody targeted against sclerostin resulted in substantial increases in spine and hip BMD. These results support further study of blosozumab as a potential anabolic therapy for osteoporosis. © 2014 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR)  相似文献   

6.
Cathepsin K, a cysteine protease expressed in osteoclasts, degrades type 1 collagen. Odanacatib selectively and reversibly inhibited cathepsin K and rapidly decreased bone resorption in preclinical and phase I studies. A 1‐year dose‐finding trial with a 1‐year extension on the same treatment assignment was performed in postmenopausal women with low bone mineral density (BMD) to evaluate the safety and efficacy of weekly doses of placebo or 3, 10, 25, or 50 mg of odanacatib on BMD and biomarkers of skeletal remodeling. Women with BMD T‐scores of ?2.0 or less but not less than ?3.5 at the lumbar spine or femoral sites were randomly assigned to receive placebo or one of four doses of odanacatib; all received vitamin D with calcium supplementation as needed. The primary endpoint was percentage change from baseline lumbar spine BMD. Other endpoints included percentage change in BMD at hip and forearm sites, as well as changes in biomarkers of skeletal remodeling. Twenty‐four months of treatment produced progressive dose‐related increases in BMD. With the 50‐mg dose of odanacatib, lumbar spine and total‐hip BMD increased 5.5% and 3.2%, respectively, whereas BMD at these sites was essentially unchanged with placebo (?0.2% and ?0.9%). Biochemical markers of bone turnover exhibited dose‐related changes. The safety and tolerability of odanacatib generally were similar to those of placebo, with no dose‐related trends in any adverse experiences. In summary, 2 years of weekly odanacatib treatment was generally well‐tolerated and increased lumbar spine and total‐hip BMD in a dose‐related manner in postmenopausal women with low BMD. © 2010 American Society for Bone and Mineral Research  相似文献   

7.
The cathepsin K inhibitor odanacatib (ODN), currently in phase 3 development for postmenopausal osteoporosis, has a novel mechanism of action that reduces bone resorption while maintaining bone formation. In phase 2 studies, odanacatib increased areal bone mineral density (aBMD) at the lumbar spine and total hip progressively over 5 years. To determine the effects of ODN on cortical and trabecular bone and estimate changes in bone strength, we conducted a randomized, double‐blind, placebo‐controlled trial, using both quantitative computed tomography (QCT) and high‐resolution peripheral (HR‐p)QCT. In previously published results, odanacatib was superior to placebo with respect to increases in trabecular volumetric BMD (vBMD) and estimated compressive strength at the spine, and integral and trabecular vBMD and estimated strength at the hip. Here, we report the results of HR‐pQCT assessment. A total of 214 postmenopausal women (mean age 64.0 ± 6.8 years and baseline lumbar spine T‐score –1.81 ± 0.83) were randomized to oral ODN 50 mg or placebo, weekly for 2 years. With ODN, significant increases from baseline in total vBMD occurred at the distal radius and tibia. Treatment differences from placebo were also significant (3.84% and 2.63% for radius and tibia, respectively). At both sites, significant differences from placebo were also found in trabecular vBMD, cortical vBMD, cortical thickness, cortical area, and strength (failure load) estimated using finite element analysis of HR‐pQCT scans (treatment differences at radius and tibia = 2.64% and 2.66%). At the distal radius, odanacatib significantly improved trabecular thickness and bone volume/total volume (BV/TV) versus placebo. At a more proximal radial site, odanacatib attenuated the increase in cortical porosity found with placebo (treatment difference = –7.7%, p = 0.066). At the distal tibia, odanacatib significantly improved trabecular number, separation, and BV/TV versus placebo. Safety and tolerability were similar between treatment groups. In conclusion, odanacatib increased cortical and trabecular density, cortical thickness, aspects of trabecular microarchitecture, and estimated strength at the distal radius and distal tibia compared with placebo. © 2014 American Society for Bone and Mineral Research  相似文献   

8.
Finite element analysis of computed tomography (CT) scans provides noninvasive estimates of bone strength at the spine and hip. To further validate such estimates clinically, we performed a 5‐year case‐control study of 1110 women and men over age 65 years from the AGES‐Reykjavik cohort (case = incident spine or hip fracture; control = no incident spine or hip fracture). From the baseline CT scans, we measured femoral and vertebral strength, as well as bone mineral density (BMD) at the hip (areal BMD only) and lumbar spine (trabecular volumetric BMD only). We found that for incident radiographically confirmed spine fractures (n = 167), the age‐adjusted odds ratio for vertebral strength was significant for women (2.8, 95% confidence interval [CI] 1.8 to 4.3) and men (2.2, 95% CI 1.5 to 3.2) and for men remained significant (p = 0.01) independent of vertebral trabecular volumetric BMD. For incident hip fractures (n = 171), the age‐adjusted odds ratio for femoral strength was significant for women (4.2, 95% CI 2.6 to 6.9) and men (3.5, 95% CI 2.3 to 5.3) and remained significant after adjusting for femoral neck areal BMD in women and for total hip areal BMD in both sexes; fracture classification improved for women by combining femoral strength with femoral neck areal BMD (p = 0.002). For both sexes, the probabilities of spine and hip fractures were similarly high at the BMD‐based interventional thresholds for osteoporosis and at corresponding preestablished thresholds for “fragile bone strength” (spine: women ≤ 4500 N, men ≤ 6500 N; hip: women ≤ 3000 N, men ≤ 3500 N). Because it is well established that individuals over age 65 years who have osteoporosis at the hip or spine by BMD criteria should be considered at high risk of fracture, these results indicate that individuals who have fragile bone strength at the hip or spine should also be considered at high risk of fracture. © 2014 American Society for Bone and Mineral Research.  相似文献   

9.
Denosumab is a fully human monoclonal antibody that inhibits bone resorption by neutralizing RANKL, a key mediator of osteoclast formation, function, and survival. This phase 3, multicenter, double‐blind study compared the efficacy and safety of denosumab with alendronate in postmenopausal women with low bone mass. One thousand one hundred eighty‐nine postmenopausal women with a T‐score ≤ ?2.0 at the lumbar spine or total hip were randomized 1:1 to receive subcutaneous denosumab injections (60 mg every 6 mo [Q6M]) plus oral placebo weekly (n = 594) or oral alendronate weekly (70 mg) plus subcutaneous placebo injections Q6M (n = 595). Changes in BMD were assessed at the total hip, femoral neck, trochanter, lumbar spine, and one‐third radius at 6 and 12 mo and in bone turnover markers at months 1, 3, 6, 9, and 12. Safety was evaluated by monitoring adverse events and laboratory values. At the total hip, denosumab significantly increased BMD compared with alendronate at month 12 (3.5% versus 2.6%; p < 0.0001). Furthermore, significantly greater increases in BMD were observed with denosumab treatment at all measured skeletal sites (12‐mo treatment difference: 0.6%, femoral neck; 1.0%, trochanter; 1.1%, lumbar spine; 0.6%, one‐third radius; p ≤ 0.0002 all sites). Denosumab treatment led to significantly greater reduction of bone turnover markers compared with alendronate therapy. Adverse events and laboratory values were similar for denosumab‐ and alendronate‐treated subjects. Denosumab showed significantly larger gains in BMD and greater reduction in bone turnover markers compared with alendronate. The overall safety profile was similar for both treatments.  相似文献   

10.
Annual intravenous administration of 5 mg of zoledronate decreases fracture risk over 3 years. The optimal dosing interval of 5 mg of zoledronate is not known. In order to determine the duration of the antiresorptive action of a single 5‐mg dose of intravenous zoledronate, we conducted a 3‐year double‐blind, randomized, placebo‐controlled trial in a volunteer sample of 50 postmenopausal women with osteopenia. The coprimary endpoints were the bone turnover markers β‐C‐terminal telopeptide of type I collagen (β‐CTX) and serum procollagen type‐I N‐terminal propeptide (P1NP). Secondary endpoints were bone mineral density (BMD) at the lumbar spine, total hip, and total body. After 3 years, mean (95% confidence interval) levels of serum β‐CTX and P1NP were 44% (27–60) and 40% (24%–56%) lower in the zoledronate group (p < .001 versus placebo for each marker). BMD was higher in the zoledronate group than in the placebo group by an average of 6.8% (4.6%–9.1%) at the lumbar spine, 4.0% (1.8%–6.3%) at the total hip, and 2.0% (0.9%–3.0%) at the total body (p < .001 for each skeletal site). Between‐group differences in markers of bone turnover and BMD were stable from 12 to 36 months. These data demonstrate that the antiresorptive effects of a single 5‐mg dose of zoledronate are sustained for 3 years; clinical trials to investigate the antifracture efficacy of dosing intervals longer than 1 year are justified. © 2010 American Society for Bone and Mineral Research.  相似文献   

11.
Clinical data suggest concomitant therapy with bisphosphonates and parathyroid hormone (PTH) may blunt the anabolic effect of PTH; rodent models suggest that infrequently administered bisphosphonates may interact differently. To evaluate the effects of combination therapy with an intravenous infusion of zoledronic acid 5 mg and daily subcutaneous recombinant human (rh)PTH(1–34) (teriparatide) 20 µg versus either agent alone on bone mineral density (BMD) and bone turnover markers, we conducted a 1‐year multicenter, multinational, randomized, partial double‐blinded, controlled trial. 412 postmenopausal women with osteoporosis (mean age 65 ± 9 years) were randomized to a single infusion of zoledronic acid 5 mg plus daily subcutaneous teriparatide 20 µg (n = 137), zoledronic acid alone (n = 137), or teriparatide alone (n = 138). The primary endpoint was percentage increase in lumbar spine BMD (assessed by dual‐energy X‐ray absorptiometry [DXA]) at 52 weeks versus baseline. Secondary endpoints included change in BMD at the spine at earlier time points and at the total hip, trochanter, and femoral neck at all time points. At week 52, lumbar spine BMD had increased 7.5%, 7.0%, and 4.4% in the combination, teriparatide, and zoledronic acid groups, respectively (p < .001 for combination and teriparatide versus zoledronic acid). In the combination group, spine BMD increased more rapidly than with either agent alone (p < .001 versus both teriparatide and zoledronic acid at 13 and 26 weeks). Combination therapy increased total‐hip BMD more than teriparatide alone at all times (all p < .01) and more than zoledronic acid at 13 weeks (p < .05), with final 52‐week increments of 2.3%, 1.1%, and 2.2% in the combination, teriparatide, and zoledronic acid groups, respectively. With combination therapy, bone formation (assessed by serum N‐terminal propeptide of type I collagen [PINP]) increased from 0 to 4 weeks, declined minimally from 4 to 8 weeks, and then rose throughout the trial, with levels above baseline from 6 to 12 months. Bone resorption (assessed by serum β‐C‐telopeptide of type I collagen [β‐CTX]) was markedly reduced with combination therapy from 0 to 8 weeks (a reduction of similar magnitude to that seen with zoledronic acid alone), followed by a gradual increase after week 8, with levels remaining above baseline for the latter half of the year. Levels for both markers were significantly lower with combination therapy versus teriparatide alone (p < .002). Limitations of the study included its short duration, lack of endpoints beyond DXA‐based BMD (e.g., quantitative computed tomography and finite‐element modeling for bone strength), lack of teriparatide placebo, and insufficient power for fracture outcomes. We conclude that while teriparatide increases spine BMD more than zoledronic acid and zoledronic acid increases hip BMD more than teriparatide, combination therapy provides the largest, most rapid increments when both spine and hip sites are considered. © 2011 American Society for Bone and Mineral Research.  相似文献   

12.
Several studies have shown that high bone turnover is associated with greater rates of bone loss and greater bone mineral density (BMD) response to antiresorptive therapy in postmenopausal osteoporosis. However, it is not known whether greater rates of bone loss before therapy are associated with greater BMD response to antiresorptive therapy. In the HORIZON‐PFT study and its extension, one group of women who were randomized to receive placebo for 3 years (years 1, 2, and 3) were then switched to zoledronic acid (ZOL) 5 mg annually for up to three injections (years 4, 5, and 6, P3Z3 arm) (n = 1223). We measured total hip BMD at baseline, 1, 2, and 3 years on placebo and at 4.5 and 6 years on ZOL. The procollagen type I N‐terminal propeptide (PINP) was measured at 3, 4.5, and 6 years. By design, not all subjects were followed for as long as 6 years, so this analysis focused on the results at 4.5 years. Those with the largest loss in total hip BMD on placebo in years 0 to 3 had the largest gain during ZOL (years 3 to 4.5): (r = –0.39, p < 0.0001). The change in total hip BMD in years 0 to 3 on placebo was related to the serum PINP at the end of the 3‐year period (r = –0.24, p < 0.0001). The change in total hip BMD on ZOL from year 3 to 4.5 was related to the serum PINP at the end of the 3‐year period (r = 0.26, p < 0.0001). We conclude that BMD response to ZOL is greater in postmenopausal women who had larger loss before treatment. This association may result from higher bone turnover being associated with both greater bone loss on placebo and greater BMD response to ZOL. © 2014 American Society for Bone and Mineral Research.  相似文献   

13.
Bone mineral density (BMD) is a strong predictor of fracture, yet most fractures occur in women without osteoporosis by BMD criteria. To improve fracture risk prediction, the World Health Organization recently developed a country‐specific fracture risk index of clinical risk factors (FRAX) that estimates 10‐year probabilities of hip and major osteoporotic fracture. Within differing baseline BMD categories, we evaluated 6252 women aged 65 or older in the Study of Osteoporotic Fractures using FRAX 10‐year probabilities of hip and major osteoporotic fracture (ie, hip, clinical spine, wrist, and humerus) compared with incidence of fractures over 10 years of follow‐up. Overall ability of FRAX to predict fracture risk based on initial BMD T‐score categories (normal, low bone mass, and osteoporosis) was evaluated with receiver‐operating‐characteristic (ROC) analyses using area under the curve (AUC). Over 10 years of follow‐up, 368 women incurred a hip fracture, and 1011 a major osteoporotic fracture. Women with low bone mass represented the majority (n = 3791, 61%); they developed many hip (n = 176, 48%) and major osteoporotic fractures (n = 569, 56%). Among women with normal and low bone mass, FRAX (including BMD) was an overall better predictor of hip fracture risk (AUC = 0.78 and 0.70, respectively) than major osteoporotic fractures (AUC = 0.64 and 0.62). Simpler models (eg, age + prior fracture) had similar AUCs to FRAX, including among women for whom primary prevention is sought (no prior fracture or osteoporosis by BMD). The FRAX and simpler models predict 10‐year risk of incident hip and major osteoporotic fractures in older US women with normal or low bone mass. © 2011 American Society for Bone and Mineral Research  相似文献   

14.
Odanacatib (ODN), a selective oral inhibitor of cathepsin K, was an investigational agent previously in development for the treatment of osteoporosis. In this analysis, the effects of ODN on bone remodeling/modeling and structure were examined in the randomized, double-blind, placebo-controlled, event-driven, Phase 3, Long-term Odanacatib Fracture Trial (LOFT; NCT00529373) and planned double-blind extension in postmenopausal women with osteoporosis. A total of 386 transilial bone biopsies, obtained from consenting patients at baseline (ODN n = 17, placebo n = 23), month 24 (ODN n = 112, placebo n = 104), month 36 (ODN n = 42, placebo n = 41), and month 60 (ODN n = 27, placebo n = 20) were assessed by dynamic and static bone histomorphometry. Patient characteristics at baseline and BMD changes over 5 years for this subset were comparable to the overall LOFT population. Qualitative assessment of biopsies revealed no abnormalities. Consistent with the mechanism of ODN, osteoclast number was higher with ODN versus placebo over time. Regarding bone remodeling, dynamic bone formation indices in trabecular, intracortical, and endocortical surfaces were generally similar in ODN-treated versus placebo-treated patients after 2 years of treatment. Regarding periosteal modeling, the proportion of patients with periosteal double labels and the bone formation indices increased over time in the ODN-treated patients compared with placebo. This finding supported the observed numerical increase in cortical thickness at month 60 versus placebo. In conclusion, ODN treatment for 5 years did not reduce bone remodeling and increased the proportion of patients with periosteal bone formation. These results are consistent with the mechanism of action of ODN, and are associated with continued BMD increases and reduced risk of fractures compared with placebo in the LOFT Phase 3 fracture trial. © 2020 American Society for Bone and Mineral Research.  相似文献   

15.
This randomized, double‐blind, placebo‐controlled, dose‐response late phase 2 study evaluated the efficacy and safety of bazedoxifene in postmenopausal Japanese women 85 years of age or younger with osteoporosis. Eligible subjects received daily treatment with oral doses of bazedoxifene 20 or 40 mg or placebo for 2 years. Efficacy assessments included bone mineral density (BMD) at the lumbar spine and other skeletal sites, bone turnover marker levels, lipid parameters, and incidence of new fractures. Of 429 randomized subjects, 387 were evaluable for efficacy, and 423 were included in the safety analyses (mean age, 64 years). At 2 years, the mean percent changes from baseline in lumbar spine BMD were significantly greater with bazedoxifene 20 and 40 mg (2.43% and 2.74%, respectively) than with placebo (?0.65%, p < .001 for both). Both bazedoxifene doses significantly improved BMD at the total hip, femoral neck, and greater trochanter compared with placebo (p < .001 for all). Decreases in bone turnover markers were observed with bazedoxifene 20 and 40 mg as early as 12 weeks (p < .05 for all) and were sustained throughout the study. Total and low‐density lipoprotein cholesterol levels were significantly decreased from baseline with both bazedoxifene doses compared with placebo (p < .05 for all). Incidences of new vertebral and nonvertebral fractures were similar among the bazedoxifene and placebo groups. Overall, the incidence of adverse events with bazedoxifene 20 and 40 mg was similar to that with placebo. Bazedoxifene significantly improved BMD, reduced bone turnover, and was well tolerated in postmenopausal Japanese women with osteoporosis. © 2011 American Society for Bone and Mineral Research.  相似文献   

16.
Management of women discontinuing bisphosphonates after 3 to 5 years of treatment is controversial. Little is known about how much bone mineral density (BMD) is lost after discontinuation or whether there are risk factors for greater rates of bone loss post‐discontinuation. We report patterns of change in BMD and prediction models for the changes in BMD in postmenopausal women during a 5‐year treatment‐free period after alendronate (ALN) therapy. We studied 406 women enrolled in the Fracture Intervention Trial (FIT) who had taken ALN for a mean of 5 years and were then enrolled in the placebo arm of the FIT Long‐Term Extension (FLEX) trial for an additional 5 years, describing 5‐year percent changes in total hip, femoral neck, and lumbar spine BMD over the treatment‐free period. Prediction models of 5‐year percent changes in BMD considered all linear combinations of candidate risk factors for bone loss such as BMD at the start of the treatment‐free period, the change in BMD on ALN, age, and fracture history. Serum for three markers of bone turnover was available in 76 women, and these bone turnover markers were included as candidate predictors for these 76 women. Mean 5‐year BMD changes were –3.6% at the total hip, –1.7% at the femoral neck, and 1.3% at the lumbar spine. Five‐year BMD losses of >5% were experienced by 29% of subjects at the total hip, 11% of subjects at the femoral neck, and 1% of subjects at the lumbar spine. Several risk factors such as age and BMI were associated with greater bone loss, but no models based on these risk factors predicted bone loss rates. Although about one‐third of women who discontinued ALN after 5 years experienced >5% bone loss at the total hip, predicting which women will lose at a higher rate was not possible.  相似文献   

17.
Prostaglandins (PGs) are essential signaling factors in bone mechanotransduction. In animals, inhibition of the enzyme responsible for PG synthesis (cyclooxygenase) by nonsteroidal anti‐inflammatory drugs (NSAIDs) blocks the bone‐formation response to loading when administered before, but not immediately after, loading. The aim of this proof‐of‐concept study was to determine whether the timing of NSAID use influences bone mineral density (BMD) adaptations to exercise in humans. Healthy premenopausal women (n = 73) aged 21 to 40 years completed a supervised 9‐month weight‐bearing exercise training program. They were randomized to take (1) ibuprofen (400 mg) before exercise, placebo after (IBUP/PLAC), (2) placebo before, ibuprofen after (PLAC/IBUP), or (3) placebo before and after (PLAC/PLAC) exercise. Relative changes in hip and lumbar spine BMD from before to after exercise training were assessed using a Hologic Delphi‐W dual‐energy X‐ray absorptiometry (DXA) instrument. Because this was the first study to evaluate whether ibuprofen use affects skeletal adaptations to exercise, only women who were compliant with exercise were included in the primary analyses (IBUP/PLAC, n = 17; PLAC/PLAC, n = 23; and PLAC/IBUP, n = 14). There was a significant effect of drug treatment, adjusted for baseline BMD, on the BMD response to exercise for regions of the hip (total, p < .001; neck, p = .026; trochanter, p = .040; shaft, p = .019) but not the spine (p = .242). The largest increases in BMD occurred in the group that took ibuprofen after exercise. Total‐hip BMD changes averaged –0.2% ± 1.3%, 0.4% ± 1.8%, and 2.1% ± 1.7% in the IBUP/PLAC, PLAC/PLAC, and PLAC/IBUP groups, respectively. This preliminary study suggests that taking NSAIDs after exercise enhances the adaptive response of BMD to exercise, whereas taking NSAIDs before may impair the adaptive response. © 2010 American Society for Bone and Mineral Research  相似文献   

18.
Intravenous zoledronate reduces fracture risk (5 mg at 18-month intervals) and prevents bone loss (doses of 1 to 5 mg for 3 to >5 years), but the duration of action of a single 5 mg dose and the effects of lower doses beyond 5 years are unknown. We report the second open-label extension (years 5 to 10) of a 2-year randomized, multidose, placebo-controlled, double-blinded trial. A total of 116 older women who completed 5 years of participation either continued observation without further treatment (zoledronate 5 mg and placebo at baseline) or received repeat doses of 1 or 2.5 mg zoledronate (zoledronate 1 mg and zoledronate 2.5 mg at baseline, respectively). Outcomes were spine, hip, and total body bone mineral density (BMD) and serum markers of bone turnover. After a single 5 mg dose of zoledronate, mean BMD at the lumbar spine and total hip was maintained at or above baseline levels for 9 and 10 years, respectively. The mean level of the bone resorption marker β-C-terminal telopeptide of type I collagen (β-CTX) was at least 25% lower than that in the placebo group for 9 years. In women administered 5-yearly doses of 2.5 mg zoledronate, mean BMD at the total hip and lumbar spine was maintained at or above baseline levels for 9 and 10 years, respectively. Redosing with 1 or 2.5 mg zoledronate at 5 years reduced bone turnover markers for 3 to 4 years. BMD increased for 3 to 4 years after redosing with 1 mg zoledronate. In the group given 5-yearly 2.5 mg zoledronate, β-CTX was at least 20% lower than that in the placebo group for 10 years. Both a single baseline 5 mg dose of zoledronate and 5-yearly doses of 1 and 2.5 mg zoledronate prevented bone loss at hip and spine for 8 to 10 years in older postmenopausal women. Clinical trials to evaluate the effects on fracture risk of these very infrequent and lower doses of zoledronate are justified. © 2021 American Society for Bone and Mineral Research (ASBMR).  相似文献   

19.
Current standard‐dose calcium supplements (eg, 1000 mg/d) may increase the risk for cardiovascular events. Effectiveness of lower‐dose supplements in preventing bone loss should thus be considered. This study aimed to assess whether calcium supplements of 500 or 250 mg/d effectively prevent bone loss in perimenopausal and postmenopausal Japanese women. We recruited 450 Japanese women between 50 and 75 years of age. They were randomly assigned to receive 500 mg of calcium (as calcium carbonate), 250 mg of calcium, or placebo daily. Medical examinations conducted three times over a 2‐year follow‐up period assessed bone mineral density (BMD) of the lumbar spine and femoral neck. One‐factor repeated measures ANOVA was used for statistical tests. Subgroup analyses were also conducted. Average total daily calcium intake at baseline for the 418 subjects who underwent follow‐up examinations was 493 mg/d. Intention‐to‐treat analysis showed less dramatic decreases in spinal BMD for the 500‐mg/d calcium supplement group compared to the placebo group (1.2% difference over 2 years, p = 0.027). Per‐protocol analysis (≥80% compliance) revealed that spinal BMD for the 500‐mg/d and 250‐mg/d calcium supplement groups decreased less than the placebo group (1.6%, p = 0.010 and 1.0%, p = 0.078, respectively), and that femoral neck BMD for the 500‐mg/d calcium supplement group decreased less relative to the placebo group (1.0%, p = 0.077). A low‐dose calcium supplement of 500 mg/d can effectively slow lumbar spine bone loss in perimenopausal and postmenopausal women with habitually low calcium intake, but its effect on the femoral neck is less certain. Calcium supplementation dosage should thus be reassessed. (Clinical Trials Registry number: UMIN000001176). © 2012 American Society for Bone and Mineral Research.  相似文献   

20.
This 2-year, double-masked, randomized, placebo-controlled trial was designed to evaluate the safety and efficacy in preventing bone loss in postmenopausal women of two doses of transdermal 17β-estradiol (estradiol) delivered by a matrix patch, compared with placebo. One hundred and sixty healthy, hysterectomized postmenopausal volunteers aged 40–60 years with serum estradiol levels <20 pg/ml were started on treatment at four centers in The Netherlands. Every 6 months, bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry (DXA) at the lumbar spine, non-dominant wrist and left hip, and markers of bone turnover were assessed in urine and serum. The treatment arms were: estradiol, 100 mg/day (E-100, n= 53), oestradiol, 50 mg/day (E-50, n= 54), placebo (P-100, placebo to E-100, n= 27 or P-50, placebo to E-50, n= 26). Treatment was continued for up to 2 years. After 24 months, BMD of the lumbar spine in the E-100 group differed by 7.7% [5.8–9.5%] (mean [95% confidence interval]) from the placebo group and showed a mean (s.e.m.) increase in BMD from baseline of 5.9% (0.69%). For the E-50 group the difference compared with placebo was 6.2% [4.4–8.0%] and the absolute increase was 4.5% (0.62%); in the placebo group, the absolute change was –2.3% (0.48%). In the total wrist, the changes were: E-100: difference compared with placebo 2.5% [1.5–3.6%], absolute increase 0.6% (0.3%); E-50: difference compared with placebo 2.9% [1.8–3.9%], absolute increase 0.7% (0.25%); and absolute change on placebo: –2.5% (0.35%). In the total hip, the changes were: E-100: difference compared with placebo 3.7% [2.2–5.2%], absolute increase 2.8% (0.5%); E-50: difference compared with placebo: 3.2% [1.8–4.7%], absolute change 2.4% (0.36%); and absolute change on placebo –1.4% (0.66%). Three markers of bone turnover – serum bone-specific alkaline phosphatase, serum osteocalcin and urinary CTX – fell significantly during the trial. Breast pain was reported by 8% of women on placebo, by 6% of women on E-50 and by 17% of women on E-100. Estradiol delivered by the E-50 matrix patch effectively reversed bone loss in hysterectomized postmenopausal women with few side-effects. The marginal additional gain in BMD with the higher dose may be offset by a more important side effect profile. Received: 9 May 2001 / Accepted: 29 August 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号