首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Denosumab reduces bone resorption and vertebral and nonvertebral fracture risk. Denosumab discontinuation increases bone turnover markers 3 months after a scheduled dose is omitted, reaching above‐baseline levels by 6 months, and decreases bone mineral density (BMD) to baseline levels by 12 months. We analyzed the risk of new or worsening vertebral fractures, especially multiple vertebral fractures, in participants who discontinued denosumab during the FREEDOM study or its Extension. Participants received ≥2 doses of denosumab or placebo Q6M, discontinued treatment, and stayed in the study ≥7 months after the last dose. Of 1001 participants who discontinued denosumab during FREEDOM or Extension, the vertebral fracture rate increased from 1.2 per 100 participant‐years during the on‐treatment period to 7.1, similar to participants who received and then discontinued placebo (n = 470; 8.5 per 100 participant‐years). Among participants with ≥1 off‐treatment vertebral fracture, the proportion with multiple (>1) was larger among those who discontinued denosumab (60.7%) than placebo (38.7%; p = 0.049), corresponding to a 3.4% and 2.2% risk of multiple vertebral fractures, respectively. The odds (95% confidence interval) of developing multiple vertebral fractures after stopping denosumab were 3.9 (2.1–7. 2) times higher in those with prior vertebral fractures, sustained before or during treatment, than those without, and 1.6 (1.3–1.9) times higher with each additional year of off‐treatment follow‐up; among participants with available off‐treatment total hip (TH) BMD measurements, the odds were 1.2 (1.1–1.3) times higher per 1% annualized TH BMD loss. The rates (per 100 participant‐years) of nonvertebral fractures during the off‐treatment period were similar (2.8, denosumab; 3.8, placebo). The vertebral fracture rate increased upon denosumab discontinuation to the level observed in untreated participants. A majority of participants who sustained a vertebral fracture after discontinuing denosumab had multiple vertebral fractures, with greatest risk in participants with a prior vertebral fracture. Therefore, patients who discontinue denosumab should rapidly transition to an alternative antiresorptive treatment. Clinicaltrails.gov : NCT00089791 (FREEDOM) and NCT00523341 (Extension). © 2017 American Society for Bone and Mineral Research.  相似文献   

2.
Denosumab has been shown to reduce the incidence of vertebral, nonvertebral, and hip fractures. The aim of the current study was to determine whether the antifracture efficacy of denosumab was dependent on baseline fracture probability assessed by FRAX. The primary data of the phase 3 FREEDOM study of the effects of denosumab in women with postmenopausal osteoporosis were used to compute country-specific probabilities using the FRAX tool (version 3.2). The outcome variable comprised all clinical osteoporotic fractures (including clinical vertebral fractures). Interactions between fracture probability and efficacy were explored by Poisson regression. At baseline, the median 10-year probability of a major osteoporotic fracture (with bone mineral density) was approximately 15% and for hip fracture was approximately 5% in both groups. In the simplest model adjusted for age and fracture probability, treatment with denosumab over 3 years was associated with a 32% (95% confidence interval [CI] 20% to 42%) decrease in clinical osteoporotic fractures. Denosumab reduced fracture risk to a greater extent in those at moderate to high risk. For example, at 10% probability, denosumab decreased fracture risk by 11% (p = 0.629), whereas at 30% probability (90th percentile of study population) the reduction was 50% (p = 0.001). The reduction in fracture was independent of prior fracture, parental history of hip fracture, or secondary causes of osteoporosis. A low body mass index (BMI) was associated with greater efficacy. Denosumab significantly decreased the risk of clinical osteoporotic fractures in postmenopausal women. Overall, the efficacy of denosumab was greater in those at moderate to high risk of fracture as assessed by FRAX.  相似文献   

3.
Dual-energy X-ray absorptiometric bone mineral density (DXA BMD) is a strong predictor of fracture risk in untreated patients. However, previous patient-level studies suggest that BMD changes explain little of the fracture risk reduction observed with osteoporosis treatment. We investigated the relevance of DXA BMD changes as a predictor for fracture risk reduction using data from the FREEDOM trial, which randomly assigned placebo or denosumab 60 mg every 6 months to 7808 women aged 60 to 90 years with a spine or total hip BMD T-score < -2.5 and not < -4.0. We took a standard approach to estimate the percent of treatment effect explained using percent changes in BMD at a single visit (months 12, 24, or 36). We also applied a novel approach using estimated percent changes in BMD from baseline at the time of fracture occurrence (time-dependent models). Denosumab significantly increased total hip BMD by 3.2%, 4.4%, and 5.0% at 12, 24, and 36 months, respectively. Denosumab decreased the risk of new vertebral fractures by 68% (p < 0.0001) and nonvertebral fracture by 20% (p = 0.01) over 36 months. Regardless of the method used, the change in total hip BMD explained a considerable proportion of the effect of denosumab in reducing new or worsening vertebral fracture risk (35% [95% confidence interval (CI): 20%-61%] and 51% [95% CI: 39%-66%] accounted for by percent change at month 36 and change in time-dependent BMD, respectively) and explained a considerable amount of the reduction in nonvertebral fracture risk (87% [95% CI: 35% - >100%] and 72% [95% CI: 24% - >100%], respectively). Previous patient-level studies may have underestimated the strength of the relationship between BMD change and the effect of treatment on fracture risk or this relationship may be unique to denosumab.  相似文献   

4.
Various definitions of nonvertebral fracture have been used in osteoporosis trials, precluding comparisons of efficacy. Using only subgroups of nonvertebral fractures for trial outcomes may underestimate the benefits and cost‐effectiveness of treatments. The objectives of this study were to determine (1) the effect of antiresorptive treatment on various nonvertebral fracture outcomes, (2) whether risk reduction from antiresorptive treatment is greater for nonvertebral fractures that have stronger associations with low BMD, and (3) sample size estimates for clinical trials of osteoporosis treatments. Study‐level data were combined from five randomized fracture‐prevention trials of antiresorptive agents that reduce the risk of nonvertebral fracture in postmenopausal women: alendronate, clodronate, denosumab, lasofoxifene, and zoledronic acid. Pooled effect estimates were calculated with random‐effects models. The five trials included 30,118 women; 2997 women had at least one nonvertebral fracture. There was no significant heterogeneity between treatments for any outcome (all p > 0.10). Antiresorptive treatment had similar effects on all fractures (summary hazard ratio [HR] = 0.76, 95% CI 0.70–0.81), high‐trauma fractures (HR = 0.74, 95% CI 0.57–0.96), low‐trauma fractures (HR = 0.77, (95% CI 0.71–0.83), nonvertebral six (ie, hip, pelvis, leg, wrist, humerus, and clavicle) fractures (HR = 0.73, 95% CI 0.66–0.80), other than nonvertebral six fractures (HR = 0.78, 95% CI 0.70–0.87), and all fractures other than finger, face, and toe (HR = 0.75, 95% CI 0.70–0.81). Risk reduction was not greater for fractures with stronger associations with low BMD (p = 0.77). A trial of all nonvertebral fractures would require fewer participants (n = 2641 per arm) than one of a subgroup of six fractures (n = 3289), for example. In summary, antiresorptive treatments reduced all nonvertebral fractures regardless of degree of trauma or special groupings, supporting the use of all nonvertebral fractures as a standard endpoint of osteoporosis trials and the basis for estimating the benefits and cost‐effectiveness of treatments. © 2011 American Society for Bone and Mineral Research  相似文献   

5.
Delmas PD  Genant HK  Crans GG  Stock JL  Wong M  Siris E  Adachi JD 《BONE》2003,33(4):522-532
Prevalent vertebral fractures and baseline bone mineral density (BMD) predict subsequent fracture risk. The objective of this analysis is to examine whether baseline vertebral fracture severity can predict new vertebral and nonvertebral fracture risk. In the randomized, double-blind 3-year Multiple Outcomes of Raloxifene Evaluation (MORE) trial, 7705 postmenopausal women with osteoporosis (low BMD or prevalent vertebral fractures) were randomly assigned to placebo, raloxifene 60 mg/day, or raloxifene 120 mg/day. Post hoc analyses studied the association between baseline fracture severity and new fracture risk in the placebo group and the effects of placebo, raloxifene 60 mg/day, and raloxifene 120 mg/day on new fracture risk in women with the most severe prevalent vertebral fractures (n = 614). Vertebral fracture severity was visually assessed using semiquantitative analysis of radiographs and categorized by estimated decreases in vertebral heights. Reported new nonvertebral fractures were radiographically confirmed. Baseline vertebral fracture severity predicted vertebral and nonvertebral fracture risk at 3 years. In women without prevalent vertebral fractures, 4.3 and 5.5% had new vertebral and nonvertebral fractures, respectively. In women with mild, moderate, and severe prevalent vertebral fractures, 10.5, 23.6, and 38.1% respectively had new vertebral fractures, whereas 7.2, 7.7, and 13.8% respectively experienced new nonvertebral fractures. Number of prevalent vertebral fractures and baseline BMD also predicted vertebral fracture risk, but the severity of prevalent vertebral fractures was the only predictor of nonvertebral fracture risk and remained a significant predictor after adjustment for baseline characteristics, including baseline BMD. In patients with severe baseline vertebral fractures, raloxifene 60 mg/day decreased the risks of new vertebral [RR 0.74 (95% Cl 0.54, 0.99); P = 0.048] and nonvertebral (clavicle, humerus, wrist, pelvis, hip, and leg) fractures [RH 0.53 (95% CI 0.29, 0.99); P = 0.046] at 3 years. To prevent one new fracture at 3 years in women with severe baseline vertebral fractures with raloxifene 60 mg/day, the number needed to treat (NNT) was 10 for vertebral and 18 for nonvertebral fractures. Similar results were observed in women receiving raloxifene 120 mg/day. In summary, baseline vertebral fracture severity was the best independent predictor for new vertebral and nonvertebral fracture risk. Raloxifene decreased new vertebral and nonvertebral fracture risk in the subgroup of women with severe vertebral fractures at baseline. These fractures may reflect architectural deterioration, independent of BMD, leading to increased skeletal fragility.  相似文献   

6.
The WHO Fracture Risk Assessment Tool (FRAX; http://www.shef.ac.uk/FRAX ) estimates the 10‐year probability of major osteoporotic fracture. Clodronate and bazedoxifene reduced nonvertebral and clinical fracture more effectively on a relative scale in women with higher FRAX scores. We used data from the Fracture Intervention Trial (FIT) to evaluate the interaction between FRAX score and treatment with alendronate. We combined the Clinical Fracture (CF) arm and Vertebral Fracture (VF) arm of FIT. The CF and VF arm of FIT randomized 4432 and 2027 women, respectively, to placebo or alendronate for 4 and 3 years, respectively. FRAX risk factors were assessed at baseline. FRAX scores were calculated by WHO. We used Poisson regression models to assess the interaction between alendronate and FRAX score on the risk of nonvertebral, clinical, major osteoporotic, and radiographic vertebral fractures. Overall, alendronate significantly reduced the risk of nonvertebral fracture (incidence rate ratio [IRR] 0.86; 95% confidence interval [CI], 0.75–0.99), but the effect was greater for femoral neck (FN) bone mineral density (BMD) T‐score ≤ ?2.5 (IRR 0.76; 95% CI, 0.62–0.93) than for FN T‐score > ?2.5 (IRR 0.96; 95% CI, 0.80–1.16) (p = 0.02, interaction between alendronate and FN BMD). However, there was no evidence of an interaction between alendronate and FRAX score with FN BMD for risk of nonvertebral fracture (interaction p = 0.61). The absolute benefit of alendronate was greatest among women with highest FRAX scores. Results were similar for clinical fractures, major osteoporotic fractures, and radiographic vertebral fractures and whether or not FRAX scores included FN BMD. Among this cohort of women with low bone mass there was no significant interaction between FRAX score and alendronate for nonvertebral, clinical or major osteoporotic fractures, or radiographic vertebral fractures. These results suggest that the effect of alendronate on a relative scale does not vary by FRAX score. A randomized controlled trial testing the effect of antifracture agents among women with high FRAX score but without osteoporosis is warranted. © 2012 American Society for Bone and Mineral Research.  相似文献   

7.
The 2‐year, randomized, double‐blind, active‐controlled fracture endpoint VERO study included postmenopausal women with established osteoporosis, who had at least 2 moderate or 1 severe baseline vertebral fractures (VFx), and bone mineral density (BMD) T‐score ≤–1.5. Patients were treated with either s.c. daily teriparatide 20 μg or oral weekly risedronate 35 mg. As previously reported, the risk of new VFx and clinical fractures (a composite of clinical VFx and nonvertebral fragility fractures [NVFFx]) was statistically significantly reduced with teriparatide compared with risedronate. Here we present the prospectively planned subgroup analyses of fracture data across subgroups, which were predefined by the following baseline characteristics: age, number and severity of prevalent VFx, prevalent nonvertebral fractures (NVFx), glucocorticoid use, prior osteoporosis drugs, recent bisphosphonate use, clinical VFx in the year before study entry, and baseline BMD. Heterogeneity of the treatment effect on the primary endpoint (new VFx), and the four key secondary endpoints (including clinical fractures and NVFFx) were investigated by logistic and Cox proportional hazards regression models. A total of 1360 women were randomized and treated (680 per group). Mean age was 72.1 years, mean (SD) number of prevalent VFx was 2.7 (2.1), 55.4% had a BMD T‐score <–2.5, 36.5% had a recent clinical VFx, 28.3% had a prior major NVFx, 43.2% were osteoporosis drug‐naïve, 39.3% were recent bisphosphonate users, and 9.3% were taking glucocorticoids at a prednisone‐equivalent dose of >5 mg/d. For most fracture endpoints, the risk reduction of teriparatide versus risedronate did not significantly differ in any of the subgroups analyzed (treatment‐by‐subgroup interaction p > 0.1), with most subgroups mirroring results from the total study population. In conclusion, in postmenopausal women with severe osteoporosis, the antifracture efficacy of teriparatide compared with risedronate was consistent in a wide range of patient settings, including treatment‐naïve and previously treated patients. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.  相似文献   

8.
Denosumab is the first fully human monoclonal antibody that inhibits the formation, function, and survival of osteoclasts by blocking the interaction of receptor activator of nuclear factor-κB (RANK) ligand with its osteoclastic receptor RANK. Clinical studies have shown that the decreased bone resorption and increased bone mineral density resulting from the use of denosumab 60 mg twice yearly entail significant risk reduction of vertebral, hip, and nonvertebral fractures in women with postmenopausal osteoporosis, with an acceptable rate of side effects so far. Following its approval by the US Food and Drug Administration and the European Medicines Agency, a number of clinical trials with denosumab are ongoing to demonstrate its value for other indications and to further characterize its effects on immunomodulation. Denosumab offers a new choice for the treatment of postmenopausal osteoporosis in patients at high risk for fracture.  相似文献   

9.
Although treat-to-target strategies are being discussed in osteoporosis, there is little evidence of what the target should be to reduce fracture risk maximally. We investigated the relationship between total hip BMD T-score and the incidence of nonvertebral fracture in women who received up to 10 years of continued denosumab therapy in the FREEDOM (3 years) study and its long-term Extension (up to 7 years) study. We report the percentages of women who achieved a range of T-scores at the total hip or femoral neck over 10 years of denosumab treatment (1343 women completed 10 years of treatment). The incidence of nonvertebral fractures was lower with higher total hip T-score. This relationship plateaued at a T-score between -2.0 and -1.5 and was independent of age and prevalent vertebral fractures, similar to observations in treatment-naïve subjects. Reaching a specific T-score during denosumab treatment was dependent on the baseline T-score, with higher T-scores at baseline more likely to result in higher T-scores at each time point during the study. Our findings highlight the importance of follow-up BMD measurements in patients receiving denosumab therapy because BMD remains a robust indicator of fracture risk. These data support the notion of a specific T-score threshold as a practical target for therapy in osteoporosis. © 2019 The Authors Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR)  相似文献   

10.
Discontinuation of denosumab is associated with a rapid return of bone mineral density (BMD) to baseline and an increased risk of multiple vertebral fractures. No subsequent treatment regimen has yet been established for preventing either loss of BMD or multiple vertebral fractures after denosumab discontinuation. The aim of this 8-year observational study was to investigate the effect of a single zoledronate infusion, administered 6 months after the last denosumab injection, on fracture occurrence and loss of BMD. We report on 120 women with postmenopausal osteoporosis who were treated with 60 mg denosumab every 6 months for 2 to 5 years (mean duration 3 years) and then 5 mg zoledronate 6 months after the last denosumab injection. All patients were evaluated clinically, by dual-energy X-ray absorptiometry (DXA) and vertebral fracture assessment (VFA), before the first and after the last denosumab injection and at 2.5 years (median) after denosumab discontinuation. During this off-treatment period, 3 vertebral fractures (1.1 per 100 patient-years) and 4 nonvertebral fractures (1.5 per 100 patient-years) occurred. No patients developed multiple vertebral fractures. Sixty-six percent (confidence interval [CI] 57% to 75%) of BMD gained with denosumab was retained at the lumbar spine and 49% (CI 31% to 67%) at the total hip. There was no significant difference in the decrease of BMD between patients with BMD gains of >9% versus <9% while treated with denosumab. Previous antiresorptive treatment or prevalent fractures had no impact on the decrease of BMD, and all bone loss occurred within the first 18 months after zoledronate infusion. In conclusion, a single infusion of 5 mg zoledronate after a 2- to 5-year denosumab treatment cycle retained more than half of the gained BMD and was not associated with multiple vertebral fractures, as reported in patients who discontinued denosumab without subsequent bisphosphonate treatment. © 2020 American Society for Bone and Mineral Research.  相似文献   

11.
Denosumab is a fully human monoclonal antibody against receptor activator of NF‐κB ligand (RANKL) that decreases osteoclast formation, function and survival, and is approved for the treatment of postmenopausal women with osteoporosis at increased or high risk for fracture, among other indications. During the pivotal 3‐year fracture trial FREEDOM, denosumab 60 mg subcutaneously every 6 months significantly reduced new vertebral (68%), hip (40%), and nonvertebral (20%) fractures; increased bone mineral density (BMD); and reduced bone turnover markers compared with placebo in postmenopausal women with osteoporosis. Questions have arisen regarding imbalances of certain low‐frequency adverse events (AEs) observed in FREEDOM, as well as the top 5 most frequent adverse reactions listed in the United States prescribing information (USPI; back pain, pain in extremity, musculoskeletal pain, hypercholesterolemia, and cystitis). We examined the incidences of these AEs in women who originally received placebo during FREEDOM and then received denosumab for up to 3 years during the FREEDOM Extension (Crossover Group). This provided a unique opportunity for comparison with the original 3‐year denosumab FREEDOM observations. We also examined the incidences of these AEs over 6 years of denosumab treatment (Long‐term Group; ie, comparing a second 3 years of treatment with findings in the first 3 years). There was no indication of increasing trends regarding the imbalances of either low‐frequency AEs or common AEs observed in FREEDOM. © 2017 American Society for Bone and Mineral Research.  相似文献   

12.
Abaloparatide‐SC is a novel 34–amino acid peptide created to be a potent and selective activator of the parathyroid hormone receptor type 1 (PTHR1) signaling pathway. In the Abaloparatide Comparator Trial in Vertebral Endpoints (ACTIVE) Phase 3 trial (NCT01343004), abaloparatide reduced new morphometric vertebral fractures by 86% compared with placebo (p < 0.001) and nonvertebral fractures by 43% (p = 0.049) in postmenopausal women with osteoporosis. Abaloparatide‐SC increased bone mineral density (BMD) 3.4% at the total hip, 2.9% at the femoral neck, and 9.2% at the lumbar spine at 18 months (all p < 0.001 versus placebo). The analysis reported here was designed to evaluate whether fracture risk reductions and BMD accrual were consistent across different levels of baseline risk. Risk factor subgroups were predefined categorically for BMD T‐score of the lumbar spine, total hip, and femoral neck (≤–2.5 versus >–2.5 and ≤–3.0 versus >–3.0), history of nonvertebral fracture (yes versus no), prevalent vertebral fracture (yes versus no), and age (<65 versus 65 to <75 versus ≥75 years) at baseline. Forest plots show that there were no clinically meaningful interactions between any of the baseline risk factors and the treatment effect of abaloparatide‐SC on new morphometric vertebral fractures, nonvertebral fractures, or BMD increases. Abaloparatide provides protection against fractures consistently across a wide variety of ages and baseline risks, including those with and without prior fractures, and it has potential utility for a broad group of postmenopausal women with osteoporosis. © 2016 American Society for Bone and Mineral Research.  相似文献   

13.
Osteoporosis is a chronic disease and requires long‐term treatment with pharmacologic therapy to ensure sustained antifracture benefit. Denosumab reduced the risk for new vertebral, nonvertebral, and hip fractures over 36 months in the Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Months (FREEDOM) trial. Whereas discontinuation of denosumab has been associated with transient increases in bone remodeling and declines in bone mineral density (BMD), the effect on fracture risk during treatment cessation is not as well characterized. To understand the fracture incidence between treatment groups after cessation of investigational product, we evaluated subjects in FREEDOM who discontinued treatment after receiving two to five doses of denosumab or placebo, and continued study participation for ≥7 months. The off‐treatment observation period for each individual subject began 7 months after the last dose and lasted until the end of the study. This subgroup of 797 subjects (470 placebo, 327 denosumab), who were evaluable during the off‐treatment period, showed similar baseline characteristics for age, prevalent fracture, and lumbar spine and total hip BMD T‐scores. During treatment, more placebo‐treated subjects as compared with denosumab‐treated subjects sustained a fracture and had significant decreases in BMD. During the off‐treatment period (median 0.8 years per subject), 42% versus 28% of placebo‐ and denosumab‐treated subjects, respectively, initiated other therapy. Following discontinuation, similar percentages of subjects in both groups sustained a new fracture (9% placebo, 7% denosumab), resulting in a fracture rate per 100 subject‐years of 13.5 for placebo and 9.7 for denosumab (hazard ratio [HR] 0.82; 95% confidence interval [CI], 0.49–1.38), adjusted for age and total hip BMD T‐score at baseline. There was no apparent difference in fracture occurrence pattern between the groups during the off‐treatment period. In summary, there does not appear to be an excess in fracture risk after treatment cessation with denosumab compared with placebo during the off‐treatment period for up to 24 months. © 2013 American Society for Bone and Mineral Research.  相似文献   

14.
Intravenous (IV) zoledronic acid, a new once-yearly bisphosphonate therapy, is approved by the US Food and Drug Administration for treatment of postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, and osteoporosis in men. IV zoledronic acid significantly reduced the risk of vertebral, nonvertebral, and hip fractures in postmenopausal women and decreased risk of clinical fracture and clinical vertebral fracture in men and women with hip fracture. Two promising new therapies are in late clinical development. Denosumab is a monoclonal receptor activator of nuclear factor-κB ligand (RANKL) antibody given by subcutaneous injection every 6 months that has been shown to significantly reduce risk of vertebral-, nonvertebral-, and hip fracture in postmenopausal women. Bazedoxifene, an estrogen agonist/antagonist, has significantly reduced the risk of vertebral fracture in postmenopausal women; a post hoc analysis showed reduction in risk of nonvertebral fracture in high-risk women.  相似文献   

15.
Although low absolute values of bone mineral density (BMD) predict increased fracture risk in osteoporosis, it is not certain how well increases in BMD with antiresorptive therapy predict observed reductions in fracture risk. This work examines the relationships between changes in BMD after 1 year or 3 years of raloxifene or placebo therapy and the risk for new vertebral fractures at 3 years. In the Multiple Outcomes of Raloxifene Evaluation (MORE) trial, 7705 postmenopausal women with osteoporosis were randomized to placebo or raloxifene 60 mg/day or 120 mg/day. Relationships between baseline BMD and changes in BMD from baseline with the risk of new vertebral fractures were analyzed in this cohort using logistic regression models with the raloxifene doses pooled. As has been observed in other populations, women with the lowest baseline lumbar spine or femoral neck BMD in the MORE cohort had the greatest risk for vertebral fractures. Furthermore, for any percentage change, either increase or decrease in femoral neck or lumbar spine BMD at 1 year or 3 years, raloxifene-treated patients had a statistically significantly lower vertebral fracture risk compared with placebo-treated patients. The decrease in fracture risk with raloxifene was similar across the range of percentage change in femoral neck BMD observed at 3 years; patients receiving raloxifene had a 36% lower risk of vertebral fracture compared with those receiving placebo. At any percentage change in femoral neck and lumbar spine BMD observed at 1 year, raloxifene treatment decreased the risks of new vertebral fractures at 3 years by 38% and 41%, respectively. The logistic regression model showed that the percentage changes in BMD with raloxifene treatment accounted for 4% of the observed vertebral fracture risk reduction, and the other 96% of the risk reduction remains unexplained. The present data show that the measured BMD changes observed with raloxifene therapy are poor predictors of vertebral fracture risk reduction with raloxifene therapy.  相似文献   

16.
Strontium ranelate (2 g/day) was studied in 5082 postmenopausal women. A reduction in incident vertebral fracture risk by 40% was shown after 3 years. This effect was independent of age, initial BMD, and prevalent vertebral fractures. INTRODUCTION: Strontium ranelate is an orally active treatment able to decrease the risk of vertebral and hip fractures in osteoporotic postmenopausal women. The aim of this study was to assess the efficacy of strontium ranelate according to the main determinants of vertebral fracture risk: age, baseline BMD, prevalent fractures, family history of osteoporosis, baseline BMI, and addiction to smoking. MATERIALS AND METHODS: We pooled data of two large multinational randomized double-blind studies with a population of 5082 (2536 receiving strontium ranelate 2 g/day and 2546 receiving a placebo), 74 years of age on average, and a 3-year follow-up. An intention-to-treat principle was used, as well as a Cox model for comparison and relative risks. RESULTS: The treatment decreased the risk of both vertebral (relative risk [RR] = 0.60 [0.53-0.69] p < 0.001) and nonvertebral (RR = 0.85 [0.74-0.99] p = 0.03) fractures. The decrease in risk of vertebral fractures was 37% (p = 0.003) in women <70 years, 42% (p < 0.001) for those 70-80 years of age, and 32% (p = 0.013) for those > or = 80 years. The RR of vertebral fracture was 0.28 (0.07-0.99) in osteopenic and 0.61 (0.53-0.70) in osteoporotic women, and baseline BMD was not a determinant of efficacy. The incidence of vertebral fractures in the placebo group increased with the number of prevalent vertebral fractures, but this was not a determinant of the effect of strontium ranelate. In 2605 patients, the risk of experiencing a first vertebral fracture was reduced by 48% (p < 0.001). The risk of experiencing a second vertebral fracture was reduced by 45% (p < 0.001; 1100 patients). Moreover, the risk of experiencing more than two vertebral fractures was reduced by 33% (p < 0.001; 1365 patients). Family history of osteoporosis, baseline BMI, and addiction to smoking were not determinants of efficacy. CONCLUSIONS: This study shows that a 3-year treatment with strontium ranelate leads to antivertebral fracture efficacy in postmenopausal women independently of baseline osteoporotic risk factors.  相似文献   

17.
The World Health Organization (WHO) Fracture Risk Assessment Tool (FRAX) computes 10‐year probability of major osteoporotic fracture from multiple risk factors, including femoral neck (FN) T‐scores. Lumbar spine (LS) measurements are not currently part of the FRAX formulation but are used widely in clinical practice, and this creates confusion when there is spine‐hip discordance. Our objective was to develop a hybrid 10‐year absolute fracture risk assessment system in which nonvertebral (NV) fracture risk was assessed from the FN and clinical vertebral (V) fracture risk was assessed from the LS. We identified 37,032 women age 45 years and older undergoing baseline FN and LS dual‐energy X‐ray absorptiometry (DXA; 1990–2005) from a population database that contains all clinical DXA results for the Province of Manitoba, Canada. Results were linked to longitudinal health service records for physician billings and hospitalizations to identify nontrauma vertebral and nonvertebral fracture codes after bone mineral density (BMD) testing. The population was randomly divided into equal‐sized derivation and validation cohorts. Using the derivation cohort, three fracture risk prediction systems were created from Cox proportional hazards models (adjusted for age and multiple FRAX risk factors): FN to predict combined all fractures, FN to predict nonvertebral fractures, and LS to predict vertebral (without nonvertebral) fractures. The hybrid system was the sum of nonvertebral risk from the FN model and vertebral risk from the LS model. The FN and hybrid systems were both strongly predictive of overall fracture risk (p < .001). In the validation cohort, ROC analysis showed marginally better performance of the hybrid system versus the FN system for overall fracture prediction (p = .24) and significantly better performance for vertebral fracture prediction (p < .001). In a discordance subgroup with FN and LS T‐score differences greater than 1 SD, there was a significant improvement in overall fracture prediction with the hybrid method (p = .025). Risk reclassification under the hybrid system showed better alignment with observed fracture risk, with 6.4% of the women reclassified to a different risk category. In conclusion, a hybrid 10‐year absolute fracture risk assessment system based on combining FN and LS information is feasible. The improvement in fracture risk prediction is small but supports clinical interest in a system that integrates LS in fracture risk assessment. © 2011 American Society for Bone and Mineral Research.  相似文献   

18.
Denosumab: Anti-RANKL antibody   总被引:2,自引:0,他引:2  
Denosumab (anti-receptor activator of nuclear factorκB ligand [RANKL] antibody) is a novel agent, a fully human monoclonal antibody that inhibits osteoclastic-medicated bone resorption by binding to osteoblast-produced RANKL. By reducing RANKL binding to the osteoclast receptor RANK, bone resorption and turnover decrease. In phase 2 dose-ranging studies, denosumab had a rapid onset and offset effect. Also, in patients who had received 2 years of denosumab and were discontinued for the third year, rechallenge with denosumab during the fourth year demonstrated a return of responsiveness to denosumab that mimicked the initial treatment. Phase 3 pivotal fracture data were recently presented with positive outcome data; denosumab (60 mg subcutaneously every 6 months) significantly reduced vertebral, nonvertebral, and hip fracture risk compared with placebo, and had an excellent safety profile through 3 years of use. Denosumab will offer a novel approach to managing postmenopausal osteoporosis, one that should be associated with a high adherence rate and global fracture risk reduction.  相似文献   

19.
Romosozumab is a bone‐forming agent with a dual effect of increasing bone formation and decreasing bone resorption. In FRActure study in postmenopausal woMen with ostEoporosis (FRAME), postmenopausal women with osteoporosis received romosozumab 210 mg s.c. or placebo once monthly for 12 months, followed by denosumab 60 mg s.c. once every 6 months in both groups for 12 months. One year of romosozumab increased spine and hip BMD by 13% and 7%, respectively, and reduced vertebral and clinical fractures with persistent fracture risk reduction upon transition to denosumab over 24 months. Here, we further characterize the BMD gains with romosozumab by quantifying the percentages of patients who responded at varying magnitudes; report the mean T‐score changes from baseline over the 2‐year study and contrast these results with the long‐term BMD gains seen with denosumab during Fracture REduction Evaluation of Denosumab in Osteoporosis every 6 Months (FREEDOM) and its Extension studies; and assess fracture incidence rates in year 2, when all patients received denosumab. Among 7180 patients (n = 3591 placebo, n = 3589 romosozumab), most romosozumab‐treated patients experienced ≥3% gains in BMD from baseline at month 12 (spine, 96%; hip, 78%) compared with placebo (spine, 22%; hip, 16%). For romosozumab patients, mean absolute T‐score increases at the spine and hip were 0.88 and 0.32, respectively, at 12 months (placebo: 0.03 and 0.01) and 1.11 and 0.45 at 24 months (placebo‐to‐denosumab: 0.38 and 0.17), with the 2‐year gains approximating the effect of 7 years of continuous denosumab administration. Patients receiving romosozumab versus placebo in year 1 had significantly fewer vertebral fractures in year 2 (81% relative reduction; p < 0.001), with fewer fractures consistently observed across other fracture categories. The data support the clinical benefit of rebuilding the skeletal foundation with romosozumab before transitioning to antiresorptive therapy. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.  相似文献   

20.

Summary

In the Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6?Months (FREEDOM) study, women with incident clinical fractures reported significant declines in health-related quality of life (HRQoL). The largest declines were observed when the assessment was <3?months post fracture. The largest impact of incident clinical fractures was on physical function, and that of incident clinical vertebral fractures was on back pain.

Introduction

In the FREEDOM trial, denosumab significantly reduced the risk of new vertebral, hip, and nonvertebral fractures. We evaluated the effect of denosumab on HRQoL and the association between incident clinical fractures and HRQoL.

Methods

The FREEDOM trial enrolled 7,868 women aged 60–90?years with a total hip and/or lumbar spine BMD T-score <?2.5 and not <?4.0 at either site. Women were randomized to receive denosumab 60?mg or placebo every 6?months, in addition to daily calcium and vitamin D. HRQoL was assessed with the Osteoporosis Assessment Questionnaire-Short Version (OPAQ-SV) at baseline and every 6?months for 36?months. The OPAQ-SV assesses physical function, emotional status, and back pain. Higher scores indicate better health status.

Results

No statistically significant differences in mean change in HRQoL from baseline to end of study were found when comparing treatment groups. Compared with women without any incident fractures during the study, women with incident clinical fractures reported significant declines in physical function (?4.0 vs. ?0.5) and emotional status (?5.0 vs. ?0.8) at month?36 (P?<?0.001 for both). Importantly, time-dependent covariate analyses demonstrated that the largest declines were observed when the assessment was <3?months post fracture. The largest impact of incident clinical fractures was on physical function, and that of incident clinical vertebral fractures was on back pain.

Conclusions

These findings not only demonstrate that incident clinical fractures impact HRQoL but also contribute new information regarding the impact of these fracture events on HRQoL over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号