首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the associations of 3D geometric measures and volumetric bone mineral density (vBMD) of the proximal femur assessed by quantitative computed tomography (QCT) with hip fracture risk among elderly men. This study was a prospective case‐cohort design nested within the Osteoporotic Fractures in Men Study (MrOS) cohort. QCT scans of 230 men (65 with confirmed hip fractures) were evaluated with Mindways' QCTPRO‐BIT software. Measures that are indicative of bone strength for the femoral neck (FN) and for the trochanteric region (TR) were defined. Bending strength measures were estimated by minimum section modulus, buckling strength by buckling ratio, and a local thinning index (LTI). Integral and trabecular vBMD measures were also derived. Areal BMD (aBMD) of the total proximal femur from dual‐energy X‐ray absorptiometry (DXA) is presented for comparison. Associations of skeletal measures with incident hip fracture were estimated with hazard ratios (HR) per standard deviation and their 95% confidence intervals (CI) from Cox proportional hazard regression models with adjustment for age, body mass index (BMI), site, and aBMD. Men with hip fractures were older than men without fracture (77.1 ± 6.0 years versus 73.3 ± 5.7 years, p < 0.01). Age, BMI, and site‐adjusted HRs were significant for all measures except TR_LTI. Total femural BMD by DXA (HR = 4.9, 95% CI 2.5–9.9) and QCT (HR = 5.5, 95% CI 2.5–11.7) showed the strongest association followed by QCT FN integral vBMD (HR = 3.6, 95% CI 1.8–6.9). In models that additionally included aBMD, FN buckling ratio (HR = 1.9, 95% CI 1.1–3.2) and trabecular vBMD of the TR (HR = 2.0, 95% CI 1.2–3.4) remained associated with hip fracture risk, independent of aBMD. QCT‐derived 3D geometric indices of instability of the proximal femur were significantly associated with incident hip fractures, independent of DXA aBMD. Buckling of the FN is a relevant failure mode not entirely captured by DXA. Further research to study these relationships in women is warranted. © 2016 American Society for Bone and Mineral Research.  相似文献   

2.

Summary

The quantitative computed tomography (QCT) scans in an individually matched case–control study of women with hip fracture were analysed. There were widespread deficits in the femoral volumetric bone mineral density (vBMD) and cortical thickness of cases, and cortical vBMD and thickness discriminated hip fracture independently of BMD by dual-energy X-ray absorptiometry (DXA).

Introduction

Acknowledging the limitations of QCT associated with partial volume effects, we used QCT in an individually matched case–control study of women with hip fracture to better understand its structural basis.

Methods

Fifty postmenopausal women (55–89 years) who had sustained hip fractures due to low-energy trauma underwent QCT scans of the contralateral hip within 3 months of the fracture. For each case, postmenopausal women, matched by age (±5 years), weight (±5 kg) and height (±5 cm), were recruited as controls. We quantified cortical, trabecular and integral vBMD and apparent cortical thickness (AppCtTh) in four quadrants of cross-sections along the length of the femoral head (FH), femoral neck (FN), intertrochanter and trochanter and examined their association with hip fracture.

Results

Women with hip or intracapsular (IC) fracture had significantly (p?<?0.05) lower vBMD and AppCtTh than the controls in the majority of cross-sections and quadrants of the proximal femur, and both cortical and trabecular compartments are involved. Cortical vBMD and AppCtTh in the FH and FN were associated with hip and IC fractures independent of hip areal BMD (aBMD). The combination of AppCtTh and trabecular or integral vBMD discriminated hip fracture, whereas the combination of FH and FN AppCtTh discriminated IC fracture significantly (p?<?0.05) better than the hip aBMD.

Conclusion

Deficits in vBMD and AppCtTh in cases were widespread in the proximal femur, and cortical vBMD and AppCtTh discriminated hip fracture independently of aBMD by DXA.  相似文献   

3.
Obesity is associated with greater areal BMD (aBMD) and is considered protective against hip and vertebral fracture. Despite this, there is a higher prevalence of lower leg and proximal humerus fracture in obesity. We aimed to determine if there are site‐specific differences in BMD, bone structure, or bone strength between obese and normal‐weight adults. We studied 100 individually‐matched pairs of normal (body mass index [BMI] 18.5 to 24.9 kg/m2) and obese (BMI >30 kg/m2) men and women, aged 25 to 40 years or 55 to 75 years. We assessed aBMD at the whole body (WB), hip (TH), and lumbar spine (LS) with dual‐energy X‐ray absorptiometry (DXA), LS trabecular volumetric BMD (Tb.vBMD) by quantitative computed tomography (QCT), and vBMD and microarchitecture and strength at the distal radius and tibia with high‐resolution peripheral QCT (HR‐pQCT) and micro–finite element analysis. Serum type 1 procollagen N‐terminal peptide (P1NP) and collagen type 1 C‐telopeptide (CTX) were measured by automated electrochemiluminescent immunoassay (ECLIA). Obese adults had greater WB, LS, and TH aBMD than normal adults. The effect of obesity on LS and WB aBMD was greater in older than younger adults (p < 0.01). Obese adults had greater vBMD than normal adults at the tibia (p < 0.001 both ages) and radius (p < 0.001 older group), thicker cortices, higher cortical BMD and tissue mineral density, lower cortical porosity, higher trabecular BMD, and higher trabecular number than normal adults. There was no difference in bone size between obese and normal adults. Obese adults had greater estimated failure load at the radius (p < 0.05) and tibia (p < 0.01). Differences in HR‐pQCT measurements between obese and normal adults were seen more consistently in the older than the younger group. Bone turnover markers were lower in obese than in normal adults. Greater BMD in obesity is not an artifact of DXA measurement. Obese adults have higher BMD, thicker and denser cortices, and higher trabecular number than normal adults. Greater differences between obese and normal adults in the older group suggest that obesity may protect against age‐related bone loss and may increase peak bone mass. © 2014 American Society for Bone and Mineral Research.  相似文献   

4.
The structure of the femoral neck contributes to hip strength, but the relationship of specific structural features of the hip to hip fracture risk is unclear. The objective of this study is to determine the contribution of structural features and volumetric density of both trabecular and cortical bone in the proximal femur to the prediction of hip fracture in older men. Baseline QCT scans of the hip were obtained in 3347 men ≥65 yr of age enrolled in the Osteoporotic Fractures in Men Study (MrOS). All men were followed prospectively for an average of 5.5 yr. Areal BMD (aBMD) by DXA was also assessed. We determined the associations between QCT‐derived measures of femoral neck structure, volumetric bone density, and hip fracture risk. Forty‐two men sustained incident hip fractures during follow‐up: an overall rate of 2.3/1000 person‐years. Multivariable analyses showed that, among the QCT‐derived measures, lower percent cortical volume (hazard ratio [HR] per SD decrease: 3.2; 95% CI: 2.2–4.6), smaller minimal cross‐sectional area (HR: 1.6; 95% CI: 1.2–2.1), and lower trabecular BMD (HR: 1.7; 95% CI: 1.2–2.4) were independently related to increased hip fracture risk. Femoral neck areal BMD was also strongly related to hip fracture risk (HR: 4.1; 95% CI: 2.7–6.4). In multivariable models, percent cortical volume and minimum cross‐sectional area remained significant predictors of hip fracture risk after adjustment for areal BMD, but overall prediction was not improved by adding QCT parameters to DXA. Specific structural features of the proximal femur were related to an increased risk of hip fracture. Whereas overall hip fracture prediction was not improved relative to aBMD, by adding QCT parameters, these results yield useful information concerning the causation of hip fracture, the evaluation of hip fracture risk, and potential targets for therapeutic intervention.  相似文献   

5.
Areal bone mineral density (aBMD) measured with dual‐energy X‐ray absorptiometry (DXA) has been associated with fracture risk in children and adolescents, but it remains unclear whether this association is due to volumetric BMD (vBMD) of the cortical and/or trabecular bone compartments or bone size. The aim of this study was to determine whether vBMD or bone size was associated with X‐ray‐verified fractures in men during growth. In total, 1068 men (aged 18.9 ± 0.6 years) were included in the population‐based Gothenburg Osteoporosis and Obesity Determinants (GOOD) Study. Areal BMD was measured by DXA, whereas cortical and trabecular vBMD and bone size were measured by peripheral quantitative computerized tomography (pQCT). X‐ray records were searched for fractures. Self‐reported fractures in 77 men could not be confirmed in these records. These men were excluded, resulting in 991 included men, of which 304 men had an X‐ray‐verified fracture and 687 were nonfracture subjects. Growth charts were used to establish the age of peak height velocity (PHV, n = 600). Men with prevalent fractures had lower aBMD (lumbar spine 2.3%, p = .005; total femur 2.6%, p = .004, radius 2.1%, p < .001) at all measured sites than men without fracture. Using pQCT measurements, we found that men with a prevalent fracture had markedly lower trabecular vBMD (radius 6.6%, p = 7.5 × 10?8; tibia 4.5%, p = 1.7 × 10?7) as well as a slightly lower cortical vBMD (radius 0.4%, p = .0012; tibia 0.3%, p = .015) but not reduced cortical cross‐sectional area than men without fracture. Every SD decrease in trabecular vBMD of the radius and tibia was associated with 1.46 [radius 95% confidence interval (CI) 1.26–1.69; tibia 95% CI 1.26–1.68] times increased fracture prevalence. The peak fracture incidence coincided with the timing of PHV (±1 year). In conclusion, trabecular vBMD but not aBMD was independently associated with prevalent X‐ray‐verified fractures in young men. Further studies are needed to determine if assessment of trabecular vBMD could enhance prediction of fractures during growth in males. © 2010 American Society for Bone and Mineral Research  相似文献   

6.
Skeletal muscle and bone form highly‐integrated systems that undergo significant age‐related changes, but the relationships between muscle mass and trabecular versus cortical bone or trabecular microarchitecture have not been systematically investigated. Thus, we examined the association between appendicular skeletal muscle mass (ASM) relative to height squared (relative ASM) and bone parameters at several sites assessed by conventional as well as high‐resolution peripheral QCT in a cohort of 272 women and 317 men aged 20 to 97 years. In women, relative ASM was associated with cortical thickness (CtTh) at the femoral neck, lumbar spine, radius, and tibia (age‐and physical activity adjusted r = 0.19–0.32; all p < 0.01). Relative ASM was also associated with trabecular volumetric bone mineral density (vBMD) at the femoral neck and spine (all p < 0.05), and trabecular bone volume to tissue volume (BV/TV), number (TbN), thickness (TbTh), and separation (TbSp) at the radius (all p ≤ 0.05). In all men, relative ASM was associated with CtTh at all sites (age‐ and physical activity–adjusted r = 0.17–0.28; all p < 0.01). Associations between relative ASM and trabecular vBMD at the spine in men were lost after adjusting for age; however, relative ASM was associated with trabecular vBMD at the femoral neck and TbN and TbSp at the radius (all p < 0.01). We also investigated circulating factors associated with bone health that may be indicative of relative ASM and found that serum insulin‐like growth factor (IGF) binding protein‐2 (IGFBP‐2) levels were the most robust negative predictors of relative ASM in both sexes. Collectively, these data add to the growing body of evidence supporting the highly‐integrated nature of skeletal muscle and bone, and provide new insights into potential biomarkers that reflect the health of the musculoskeletal system. © 2012 American Society for Bone and Mineral Research.  相似文献   

7.
Sclerostin is predominantly expressed by osteocytes. Serum sclerostin levels are positively correlated with areal bone mineral density (aBMD) measured by dual‐energy X‐ray absorptiometry (DXA) and bone microarchitecture assessed by high‐resolution peripheral quantitative computed tomography (HR‐pQCT) in small studies. We assessed the relation of serum sclerostin levels with aBMD and microarchitectural parameters based on HR‐pQCT in 1134 men aged 20 to 87 years using multivariable models adjusted for confounders (age, body size, lifestyle, comorbidities, hormones regulating bone metabolism, muscle mass and strength). The apparent age‐related increase in serum sclerostin levels was faster before the age of 63 years than afterward (0.43 SD versus 0.20 SD per decade). In 446 men aged ≤63 years, aBMD (spine, hip, whole body), trabecular volumetric BMD (Tb.vBMD), and trabecular number (Tb.N) at the distal radius and tibia were higher in the highest sclerostin quartile versus the three lower quartiles combined. After adjustment for aBMD, men in the highest sclerostin quartile had higher Tb.vBMD (mainly in the central compartment) and Tb.N at both skeletal sites (p < 0.05 to 0.001). In 688 men aged >63 years, aBMD was positively associated with serum sclerostin levels at all skeletal sites. Cortical vBMD (Ct.vBMD) and cortical thickness (Ct.Th) were lower in the first sclerostin quartile versus the three higher quartiles combined. Tb.vBMD increased across the sclerostin quartiles, and was associated with lower Tb.N and more heterogeneous trabecular distribution (higher Tb.Sp.SD) in men in the lowest sclerostin quartile. After adjustment for aBMD, men in the lowest sclerostin quartile had lower Tb.vBMD and Tb.N, but higher Tb.Sp.SD (p < 0.05 to 0.001) at both the skeletal sites. In conclusion, serum sclerostin levels in men are strongly positively associated with better bone microarchitectural parameters, mainly trabecular architecture, regardless of the potential confounders.  相似文献   

8.
In a prospective study of 1446 black and white adults 70-79 yr of age (average follow-up, 6.4 yr), vertebral TrvBMD from QCT predicted non-spine fracture in black and white women and black men, but it was not a stronger predictor than total hip aBMD from DXA. Hip aBMD predicted non-spine fracture in black men. INTRODUCTION: Areal BMD (aBMD) at multiple skeletal sites predicts clinical non-spine fractures in white and black women and white men. The predictive ability of vertebral trabecular volumetric BMD (TrvBMD) for all types of clinical non-spine fractures has never been tested or compared with hip aBMD. Also, the predictive accuracy of hip aBMD has never been tested prospectively for black men. MATERIALS AND METHODS: We measured vertebral TrvBMD with QCT and hip aBMD with DXA in 1446 elderly black and white adults (70-79 yr) in the Health, Aging, and Body Composition Study. One hundred fifty-two clinical non-spine fractures were confirmed during an average of 6.4 yr of >95% complete follow-up. We used Cox proportional hazards regression to determine the hazard ratio (HR) and 95% CIs of non-spine fracture per SD reduction in hip aBMD and vertebral TrvBMD. RESULTS: Vertebral TrvBMD and hip aBMD were both associated with risk of non-spine fracture in black and white women and black men. The age-adjusted HR of fracture per SD decrease in BMD was highest in black men (hip aBMD: HR = 2.04, 95% CI = 1.03, 4.04; vertebral TrvBMD: HR = 3.00, 95% CI = 1.29, 7.00) and lowest in white men (hip aBMD: HR = 1.23, 95% CI = 0.85, 1.78; vertebral TrvBMD: HR = 1.06, 95% CI = 0.73, 1.54). Adjusted for age, sex, and race, each SD decrease in hip aBMD was associated with a 1.67-fold (95% CI = 1.36, 2.07) greater risk of fracture, and each SD decrease in vertebral TrvBMD was associated with a 1.47-fold (95% CI = 1.18, 1.82) greater risk. Combining measurements of hip aBMD and vertebral TrvBMD did not improve fracture prediction. CONCLUSIONS: Low BMD measured by either spine QCT or hip DXA predicts non-spine fracture in older black and white women and black men. Vertebral TrvBMD is not a stronger predictor than hip aBMD of non-spine fracture.  相似文献   

9.
Recent studies have demonstrated an important role for circulating serotonin in regulating bone mass in rodents. In addition, patients treated with selective serotonin reuptake inhibitors (SSRIs) have reduced areal bone mineral density (aBMD). However, the potential physiologic role of serotonin in regulating bone mass in humans remains unclear. Thus we measured serum serotonin levels in a population‐based sample of 275 women and related these to total‐body and spine aBMD assessed by dual‐energy X‐ray absorptiometry, femur neck total and trabecular volumetric BMD (vBMD) and vertebral trabecular vBMD assessed by quantitative computed tomography (QCT), and bone microstructural parameters at the distal radius assessed by high‐resolution peripheral QCT (HRpQCT). Serotonin levels were inversely associated with body and spine aBMD (age‐adjusted R = ?0.17 and ?0.16, P < .01, respectively) and with femur neck total and trabecular vBMD (age‐adjusted R = ?0.17 and ?0.25, P < .01 and < .001, respectively) but not lumbar spine vBMD. Bone volume/tissue volume, trabecular number, and trabecular thickness at the radius were inversely associated with serotonin levels (age‐adjusted R = ?0.16, ?0.16, and ?0.14, P < .05, respectively). Serotonin levels also were inversely associated with body mass index (BMI; age‐adjusted R = ?0.23, P < .001). Multivariable models showed that serotonin levels remained significant negative predictors of femur neck total and trabecular vBMD, as well as trabecular thickness at the radius, after adjusting for age and BMI. Collectively, our data provide support for a physiologic role for circulating serotonin in regulating bone mass in humans. © 2010 American Society for Bone and Mineral Research  相似文献   

10.
In assessing osteoporotic fractures of the proximal femur, the main objective of this in vivo case‐control study was to evaluate the performance of quantitative computed tomography (QCT) and a dedicated 3D image analysis tool [Medical Image Analysis Framework—Femur option (MIAF‐Femur)] in differentiating hip fracture and non–hip fracture subjects. One‐hundred and seven women were recruited in the study, 47 women (mean age 81.6 years) with low‐energy hip fractures and 60 female non–hip fracture control subjects (mean age 73.4 years). Bone mineral density (BMD) and geometric variables of cortical and trabecular bone in the femoral head and neck, trochanteric, and intertrochanteric regions and proximal shaft were assessed using QCT and MIAF‐Femur. Areal BMD (aBMD) was assessed using dual‐energy X‐ray absorptiometry (DXA) in 96 (37 hip fracture and 59 non–hip fracture subjects) of the 107 patients. Logistic regressions were computed to extract the best discriminates of hip fracture, and area under the receiver characteristic operating curve (AUC) was calculated. Three logistic models that discriminated the occurrence of hip fracture with QCT variables were obtained (AUC = 0.84). All three models combined one densitometric variable—a trabecular BMD (measured in the femoral head or in the trochanteric region)—and one geometric variable—a cortical thickness value (measured in the femoral neck or proximal shaft). The best discriminant using DXA variables was obtained with total femur aBMD (AUC = 0.80, p = .003). Results highlight a synergistic contribution of trabecular and cortical components in hip fracture risk and the utility of assessing QCT BMD of the femoral head for improved understanding and possible insights into prevention of hip fractures. © 2011 American Society for Bone and Mineral Research.  相似文献   

11.
To explore the possible mechanisms underlying sex‐specific differences in skeletal fragility that may be obscured by two‐dimensional areal bone mineral density (aBMD) measures, we compared quantitative computed tomography (QCT)‐based vertebral bone measures among pairs of men and women from the Framingham Heart Study Multidetector Computed Tomography Study who were matched for age and spine aBMD. Measurements included vertebral body cross‐sectional area (CSA, cm2), trabecular volumetric BMD (Tb.vBMD, g/cm3), integral volumetric BMD (Int.vBMD, g/cm3), estimated vertebral compressive loading and strength (Newtons) at L3, the factor‐of‐risk (load‐to‐strength ratio), and vertebral fracture prevalence. We identified 981 male‐female pairs (1:1 matching) matched on age (± 1 year) and QCT‐derived aBMD of L3 (± 1%), with an average age of 51 years (range 34 to 81 years). Matched for aBMD and age, men had 20% larger vertebral CSA, lower Int.vBMD (–8%) and Tb.vBMD (–9%), 10% greater vertebral compressive strength, 24% greater vertebral compressive loading, and 12% greater factor‐of‐risk than women (p < 0.0001 for all), as well as higher prevalence of vertebral fracture. After adjusting for height and weight, the differences in CSA and volumetric bone mineral density (vBMD) between men and women were attenuated but remained significant, whereas compressive strength was no longer different. In conclusion, vertebral size, morphology, and density differ significantly between men and women matched for age and spine aBMD, suggesting that men and women attain the same aBMD by different mechanisms. These results provide novel information regarding sex‐specific differences in mechanisms that underlie vertebral fragility. © 2014 American Society for Bone and Mineral Research.  相似文献   

12.
Summary  Two-dimensional areal bone mineral density (aBMD) of the proximal femur measured by three-dimensional quantitative computed tomography (QCT) in 91 elderly women was compared to dual-energy X-ray absorptiometry (DXA) aBMD results measured in the same patients. The measurements were highly correlated, though QCT aBMD values were marginally lower in absolute units. Transformation of the QCT aBMD values to T score values using National Health and Nutrition Examination Survey (NHANES) DXA-derived reference data improved agreement and clinical utility. Introduction  World Health Organization guidelines promulgate aBMD (g cm−2) measurement of the proximal femur for the diagnosis of bone fragility. In recent years, there has been increasing interest in QCT to facilitate understanding of three-dimensional bone structure and strength. Objective  To assist in comparison of QCT-derived data with DXA aBMD results, a technique for deriving aBMD from QCT measurements has been developed. Methods  To test the validity of the QCT method, 91 elderly females were scanned on both DXA and CT scanners. QCT-derived DXA equivalent aBMD (QCTDXA aBMD) was calculated using CTXA Hip™ software (Mindways Software Inc., Austin, TX, USA) and compared to DXA-derived aBMD results. Results  Test retest analysis indicated lower root mean square (RMS) errors for CTXA; F test between CTXA and DXA was significantly different at femoral neck (FN) and trochanter (TR) (p < 0.05). QCT underestimates DXA values by 0.02 ± 0.05 g cm−2 (total hip, TH), 0.01 ± 0.04 g cm−2 (FN), 0.03 ± 0.07 g cm−2 (inter-trochanter, IT), and 0.02 ± 0.05 g cm−2 (TR). The RMS errors (standard error of estimate) between QCT and DXA T scores for TH, FN, IT, and TR were 0.36, 0.40, 0.39, and 0.49, respectively. Conclusions  This study shows that results from QCT aBMD appropriately adjusted can be evaluated against NHANES reference data to diagnose osteoporosis.  相似文献   

13.
Finite‐element analysis (FEA) of quantitative computed tomography (QCT) scans can estimate site‐specific whole‐bone strength. However, it is uncertain whether the site‐specific detail included in FEA‐estimated proximal femur (hip) strength can determine fracture risk at sites with different biomechanical characteristics. To address this question, we used FEA of proximal femur QCT scans to estimate hip strength and load‐to‐strength ratio during a simulated sideways fall and measured total hip areal and volumetric bone mineral density (aBMD and vBMD) from QCT images in an age‐stratified random sample of community‐dwelling adults age 35 years or older. Among 314 women (mean age ± SD: 61 ± 15 years; 235 postmenopausal) and 266 men (62 ± 16 years), 139 women and 104 men had any prevalent fracture, whereas 55 Women and 28 men had a prevalent osteoporotic fracture that had occurred at age 35 years or older. Odds ratios by age‐adjusted logistic regression analysis for prevalent overall and osteoporotic fractures each were similar for FEA hip strength and load‐to‐strength ratio, as well as for total hip aBMD and vBMD. C‐statistics (estimated areas under ROC curves) also were similar [eg, 0.84 to 0.85 (women) and 0.75 to 0.78 (men) for osteoporotic fractures]. In women and men, the association with prevalent osteoporotic fractures increased below an estimated hip strength of approximately 3000 N. Despite its site‐specific nature, FEA‐estimated hip strength worked equally well at predicting prevalent overall and osteoporotic fractures. Furthermore, an estimated hip strength below 3000 N may represent a critical level of systemic skeletal fragility in both sexes that warrants further investigation. © 2011 American Society for Bone and Mineral Research.  相似文献   

14.

Summary

We used new approaches to the analysis of diagnostic scans to detect changes in bone density in different regions of the hip after 3 years of treatment with the zoledronic acid. We showed that the drug significantly increases hip bone density compared to placebo at regions where hip fractures usually occur.

Introduction

This study aims to identify whether treatment with zoledronic acid exerts site-specific differential effects on volumetric bone mineral density (vBMD) at the hip.

Methods

We analysed quantitative computed tomography scans of the hip obtained at baseline and 36 months in 179 women participating in the HORIZON Pivotal Fracture Trial. Cortical, trabecular and integral BMDs were determined at three main regions of interest—the femoral neck (FN), trochanter (TR) and total hip (TH)—and several sub-regions of interest, namely the proximal, middle, distal, anterior, posterior, inferomedial and superolateral FN, and the middle and distal TR.

Results

Volumetric BMD increased significantly (p?<?0.05) from baseline with zoledronic acid compared to placebo. Trabecular vBMD increased as follows: FN, 5.4 %; FN sub-regions, 6.0 % (proximal), 4.4 % (middle), 5.6 % (distal), 7.5 % (anterior), 7.0 % (superolateral) and 5.4 % (posterior); TR, 6.5 % and TH, 5.7 %. Cortical vBMD increased as follows: FN sub-regions, 5.0 % (proximal FN) and 2.3 % (anterior); TR, 4.6 %; middle TR, 2.7 % and TH, 3.8 %.

Conclusions

The effects on vBMD of annual infusion of 5 mg of zoledronic acid are site-specific and dominated by trabecular changes.  相似文献   

15.
Vertebral fractures (VFs) are among the most severe and prevalent osteoporotic fractures. Their association with bone microstructure have been investigated in several retrospective case‐control studies with spine radiography for diagnosis of VF. The aim of this population‐based cross‐sectional study of 1027 women aged 75 to 80 years was to investigate if prevalent VF, identified by vertebral fracture assessment (VFA) by dual‐energy X‐ray absorptiometry (DXA), was associated with appendicular volumetric bone density, structure, and bone material strength index (BMSi), independently of hip areal bone mineral density (aBMD). aBMD was measured using DXA (Discovery; Hologic); BMSi with microindentation (Osteoprobe); and bone geometry, volumetric BMD, and microstructure with high‐resolution peripheral quantitative computed tomography (HRpQCT) (XtremeCT; Scanco Medical AG). aBMD was lower (spine 3.2%, total hip [TH] 3.8%) at all sites in women with VF, but tibia BMSi did not differ significantly compared to women without VF. In multivariable adjusted logistic regression models, radius trabecular bone volume fraction and tibia cortical area (odds ratio [OR] 1.26; 95% confidence interval [CI], [1.06 to 1.49]; and OR 1.27 [95% CI, 1.08 to 1.49], respectively) were associated with VF prevalence, whereas BMSi and cortical porosity were not. The risk of having one, two, or more than two VFs was increased 1.27 (95% CI, 1.04 to 1.54), 1.83 (95% CI, 1.28 to 2.61), and 1.78 (95% CI, 1.03 to 3.09) times, respectively, for each SD decrease in TH aBMD. When including either cortical area, trabecular bone volume fraction or TBS in the model together with TH aBMD and covariates, only TH aBMD remained independently associated with presence of any VF. In conclusion, TH aBMD was consistently associated with prevalent VFA‐verified VF, whereas neither trabecular bone volume fraction, cortical area, cortical porosity, nor BMSi were independently associated with VF in older women. © 2017 American Society for Bone and Mineral Research.  相似文献   

16.
A bone fractures only when loaded beyond its strength. The purpose of this study was to determine the association of femoral strength, as estimated by finite element (FE) analysis of dual‐energy X‐ray absorptiometry (DXA) scans, with incident hip fracture in comparison to hip bone mineral density (BMD), Fracture Risk Assessment Tool (FRAX), and hip structure analysis (HSA) variables. This prospective case‐cohort study included a random sample of 1941 women and 668 incident hip fracture cases (295 in the random sample) during a mean ± SD follow‐up of 12.8 ± 5.7 years from the Study of Osteoporotic Fractures (n = 7860 community‐dwelling women ≥67 years of age). We analyzed the baseline DXA scans (Hologic 1000) of the hip using a validated plane‐stress, linear‐elastic finite element (FE) model of the proximal femur and estimated the femoral strength during a simulated sideways fall. Cox regression accounting for the case‐cohort design assessed the association of estimated femoral strength with hip fracture. The age–body mass index (BMI)‐adjusted hazard ratio (HR) per SD decrease for estimated strength (2.21; 95% CI, 1.95–2.50) was greater than that for total hip (TH) BMD (1.86; 95% CI, 1.67–2.08; p < 0.05), FN BMD (2.04; 95% CI, 1.79–2.32; p > 0.05), FRAX scores (range, 1.32–1.68; p < 0.0005), and many HSA variables (range, 1.13–2.43; p < 0.005), and the association was still significant (p < 0.05) after further adjustment for hip BMD or FRAX scores. The association of estimated strength with incident hip fracture was strong (Harrell's C index 0.770), significantly better than TH BMD (0.759; p < 0.05) and FRAX scores (0.711–0.743; p < 0.0001), but not FN BMD (0.762; p > 0.05). Similar findings were obtained for intracapsular and extracapsular fractures. In conclusion, the estimated femoral strength from FE analysis of DXA scans is an independent predictor and performs at least as well as FN BMD in predicting incident hip fracture in postmenopausal women. © 2014 American Society for Bone and Mineral Research.  相似文献   

17.
Several studies, using dual‐energy X‐ray absorptiometry (DXA), have reported substantial bone loss after bariatric surgery. However, profound weight loss may cause artifactual changes in DXA areal bone mineral density (aBMD) results. Assessment of volumetric bone mineral density (vBMD) by quantitative computed tomography (QCT) may be less susceptible to such artifacts. We assessed changes in BMD of the lumbar spine and proximal femur prospectively for 1 year using DXA and QCT in 30 morbidly obese adults undergoing Roux‐en‐Y gastric bypass surgery and 20 obese nonsurgical controls. At 1 year, subjects who underwent gastric bypass surgery lost 37 ± 2 kg compared with 3 ± 2 kg lost in the nonsurgical controls (p < 0.0001). Spine BMD declined more in the surgical group than in the nonsurgical group whether assessed by DXA (?3.3 versus ?1.1%, p = 0.034) or by QCT (?3.4 versus 0.2%, p = 0.010). Total hip and femoral neck aBMD declined significantly in the surgical group when assessed by DXA (?8.9 versus ?1.1%, p < 0.0001 for the total hip and ?6.1 versus ?2.0%, p = 0.002 for the femoral neck), but no changes in hip vBMD were noted using QCT. Within the surgical group, serum P1NP and CTX levels increased by 82% ± 10% and by 220% ± 22%, respectively, by 6 months and remained elevated over 12 months (p < 0.0001 for all). Serum calcium, vitamin D, and PTH levels remained stable in both groups. We conclude that moderate vertebral bone loss occurs in the first year after gastric bypass surgery. However, striking declines in DXA aBMD at the proximal femur were not confirmed with QCT vBMD measurements. These discordant results suggest that artifacts induced by large changes in body weight after bariatric surgery affect DXA and/or QCT measurements of bone, particularly at the hip. © 2014 American Society for Bone and Mineral Research.  相似文献   

18.
Type 2 diabetes (T2DM) is associated with a significant increase in risk of nonvertebral fractures, but information on risk of vertebral fractures (VFs) in subjects with T2DM, particularly among men, is lacking. Furthermore, it is not known whether spine bone mineral density (BMD) can predict the risk of VF in T2DM. We sought to examine the effect of diabetes status on prevalent and incident vertebral fracture, and to estimate the effect of lumbar spine BMD (areal and volumetric) as a risk factor for prevalent and incident morphometric vertebral fracture in T2DM (n = 875) and nondiabetic men (n = 4679). We used data from the Osteoporotic Fractures in Men (MrOS) Study, which enrolled men aged ≥65 years. Lumbar spine areal BMD (aBMD) was measured with dual‐energy X‐ray absorptiometry (DXA), and volumetric BMD (vBMD) by quantitative computed tomography (QCT). Prevalence (7.0% versus 7.7%) and incidence (4.4% versus 4.5%) of VFs were not higher in T2DM versus nondiabetic men. The risk of prevalent (OR, 1.05; 95% CI, 0.78 to 1.40) or incident vertebral‐fracture (OR, 1.28; 95% CI, 0.81 to 2.00) was not higher in T2DM versus nondiabetic men in models adjusted for age, clinic site, race, BMI, and aBMD. Higher spine aBMD was associated with lower risk of prevalent VF in T2DM (OR, 0.55; 95% CI, 0.48 to 0.63) and nondiabetic men (OR, 0.66; 95% CI, 0.5 to 0.88) (p for interaction = 0.24) and of incident VF in T2DM (OR, 0.50; 95% CI, 0.41 to 0.60) and nondiabetic men (OR, 0.54; 95% CI, 0.33 to 0.88) (p for interaction = 0.77). Results were similar for vBMD. In conclusion, T2DM was not associated with higher prevalent or incident VF in older men, even after adjustment for BMI and BMD. Higher spine aBMD and vBMD are associated with lower prevalence and incidence of VF in T2DM as well as nondiabetic men. © 2017 American Society for Bone and Mineral Research.  相似文献   

19.
Measurement of areal bone mineral density (aBMD) by dual‐energy x‐ray absorptiometry (DXA) has been shown to predict fracture risk. High‐resolution peripheral quantitative computed tomography (HR‐pQCT) yields additional information about volumetric BMD (vBMD), microarchitecture, and strength that may increase understanding of fracture susceptibility. Women with (n = 68) and without (n = 101) a history of postmenopausal fragility fracture had aBMD measured by DXA and trabecular and cortical vBMD and trabecular microarchitecture of the radius and tibia measured by HR‐pQCT. Finite‐element analysis (FEA) of HR‐pQCT scans was performed to estimate bone stiffness. DXA T‐scores were similar in women with and without fracture at the spine, hip, and one‐third radius but lower in patients with fracture at the ultradistal radius (p < .01). At the radius fracture, patients had lower total density, cortical thickness, trabecular density, number, thickness, higher trabecular separation and network heterogeneity (p < .0001 to .04). At the tibia, total, cortical, and trabecular density and cortical and trabecular thickness were lower in fracture patients (p < .0001 to .03). The differences between groups were greater at the radius than at the tibia for inner trabecular density, number, trabecular separation, and network heterogeneity (p < .01 to .05). Stiffness was reduced in fracture patients, more markedly at the radius (41% to 44%) than at the tibia (15% to 20%). Women with fractures had reduced vBMD, microarchitectural deterioration, and decreased strength. These differences were more prominent at the radius than at the tibia. HR‐pQCT and FEA measurements of peripheral sites are associated with fracture prevalence and may increase understanding of the role of microarchitectural deterioration in fracture susceptibility. © 2010 American Society for Bone and Mineral Research.  相似文献   

20.
High‐resolution peripheral quantitative computed tomography (HR‐pQCT) is a new in vivo imaging technique for assessing 3D microstructure of cortical and trabecular bone at the distal radius and tibia. No studies have investigated the extent to which measurements of the peripheral skeleton by HR‐pQCT reflect those of the spine and hip, where the most serious fractures occur. To address this research question, we performed dual‐energy X‐ray absorptiometry (DXA), central QCT (cQCT), HR‐pQCT, and image‐based finite‐element analyses on 69 premenopausal women to evaluate relationships among cortical and trabecular bone density, geometry, microstructure, and stiffness of the lumbar spine, proximal femur, distal radius, and distal tibia. Significant correlations were found between the stiffness of the two peripheral sites (r = 0.86), two central sites (r = 0.49), and between the peripheral and central skeletal sites (r = 0.56–0.70). These associations were explained in part by significant correlations in areal bone mineral density (aBMD), volumetric bone mineral density (vBMD), and cross‐sectional area (CSA) between the multiple skeletal sites. For the prediction of proximal femoral stiffness, vBMD (r = 0.75) and stiffness (r = 0.69) of the distal tibia by HR‐pQCT were comparable with direct measurements of the proximal femur: aBMD of the hip by DXA (r = 0.70) and vBMD of the hip by cQCT (r = 0.64). For the prediction of vertebral stiffness, trabecular vBMD (r = 0.58) and stiffness (r = 0.70) of distal radius by HR‐pQCT were comparable with direct measurements of lumbar spine: aBMD by DXA (r = 0.78) and vBMD by cQCT (r = 0.67). Our results suggest that bone density and microstructural and mechanical properties measured by HR‐pQCT of the distal radius and tibia reflect the mechanical competence of the central skeleton. © 2010 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号