首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: It has been proposed that proliferation of human peritoneal mesothelial cells (HPMCs) accompanied by collagen synthesis may contribute to the development of peritoneal fibrosis (PF) in patients of long-term continuous ambulatory peritoneal dialysis (CAPD). However, the precise molecular mechanism regulating HPMC proliferation has never been reported. Dipyridamole has been reported to have potential as an antiproliferative and antifibrotic agent. We investigated the mechanism and effect of dipyridamole in regulation of HPMC proliferation. METHODS: HPMCs were cultured from human omentum by an enzyme digestion METHOD: Cell proliferation was measured by the methyltetrazolium assay and intracellular cAMP was measured using an enzyme immunoassay kit. Cell-cycle distribution of HPMC was analyzed by flow cytometry. Extracellular signal-regulated protein kinase (p44/p42 ERK) activity and expressions of cell-cycle proteins (cyclin D(1), CDK4, pRB and p27(Kip1)) were determined by Western blotting. RESULTS: The addition of DP suppressed PDGF-stimulated HPMC proliferation by cell-cycle arrest at the G1 phase. The antimitogenic effect of dipyridamole was mediated through the cAMP pathway. PDGF (25 ng/mL) increased the ERK1/2 activity of HPMC within 15 minutes, which maximized at 30 minutes, and the pretreatment with dipyridamole (17 microg/mL) substantially reduced the ERK response to PDGF by approximately 78.5%. PDGF induced elevated protein levels of cyclin D(1), but the CDK4 protein level did not change. Dipyridamole and DBcAMP had no effect on the levels of cyclin D(1) and CDK4 in PDGF-stimulated HPMC. PDGF decreased p27(Kip1) and induced pRB phosphorylation of HPMC. In contrast, dipyridamole prevented PDGF-induced p27(Kip1) degradation and attenuated PDGF-stimulated pRB phosphorylation. CONCLUSION: Dipyridamole appears to inhibit PDGF-stimulated HPMC proliferation through attenuated ERK activity, preservation of p27(Kip1), and decreased pRB phosphorylation. Thus, dipyridamole may have therapeutic efficacy to prevent or alleviate PF.  相似文献   

2.
BACKGROUND: Prevention or treatment of peritoneal fibrosing syndrome has become an important issue in patients on continuous ambulatory peritoneal dialysis (CAPD). Recent evidence has suggested that mesothelial stem cell proliferation and matrix over-production predispose the development of peritoneal fibrosis. We investigated whether pentoxifylline (PTX) affects human peritoneal mesothelial cell (HPMC) growth and collagen synthesis. METHODS: HPMC was cultured from human omentum by an enzymic disaggregation method. Cell proliferation was assayed using a methyltetrazolium uptake method. Cell cycle analysis was performed by flow cytometry. Collagen synthesis was measured by 3H-proline incorporation into pepsin-resistant, salt-precipitated collagen. Prostaglandins and cAMP were determined by enzyme immunoassay. Northern blot analysis was used to determine mRNA expression. RESULTS: Our data show that PTX inhibited serum-stimulated HPMC growth and collagen synthesis in a dose-dependent manner. Cell cycle analysis showed that PTX arrested the HPMCs in the G1 phase. PTX decreased the procollagen alpha1 (I) mRNA expression either stimulated by serum or transforming growth factor-beta (TGF-beta). PTX did not alter prostaglandins synthesis but dose-dependently increased intracellular cAMP level. PTX, the same as 3-isobutyl-l-methylxanthine, could potentiate prostaglandin E1 (PGE1) increased cAMP levels of HPMC. The antimitogenic and antifibrogenic effects of PTX on HPMC were reversed by N-[2]-((p-Bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide (H-89). Therefore, the mechanism of these effects may be due to the phospodiesterase inhibitory property of PTX. CONCLUSIONS: These data suggest that PTX may have a role in treating peritoneal fibrosing syndrome.  相似文献   

3.
BACKGROUND: Peritoneal matrix accumulation is characteristic of peritoneal fibrosis (PF). Continuous ambulatory peritoneal dialysis (CAPD) patients who had persistent transforming growth factor-beta (TGF-beta) in their drained effluent had an increased risk of PF. We previously reported that TGF-beta stimulates the expression of types I and III collagen mRNA in cultured human peritoneal mesangial cells (HPMCs), which may predispose them to develop PF. Pharmacological interventions to attenuate TGF-beta-stimulated matrix accumulation in HPMC may have therapeutic potential for the treatment of PF. The SMAD family and the extracellular signal-regulated protein kinase (ERK1/2, p44/p42) pathways have been shown to participate in TGF-beta signaling. Our current study identified these signal pathways in HPMCs and investigated the molecular mechanisms involved in the inhibitory effects of dipyridamole on TGF-beta-induced collagen gene expression in HPMCs. METHODS: HPMCs were cultured from human omentum by an enzyme digestion METHOD: Expression of collagen alpha1(I) mRNA was determined by Northern blotting. The SMAD proteins and the ERK1/2 activity were determined by Western blotting. RESULTS: TGF-beta-stimulated collagen alpha1(I) mRNA expression of HPMC was inhibited by dipyridamole in a dose-dependent manner. Smad2 and ERK1/2 were activated in response to TGF-beta; however, TGF-beta had little effect on the protein expression of Smad4. The addition of PD98059, which blocked activation of ERK1/2, suppressed TGF-beta-induced collagen alpha1(I) mRNA expression in a dose-dependent manner. At a concentration that inhibited collagen gene expression (17 microg/mL), dipyridamole suppressed ERK1/2 activation by TGF-beta. In contrast, the same concentration of dipyridamole had no effect on TGF-beta-induced activation of Smad2. CONCLUSION: Dipyridamole inhibits TGF-beta-induced collagen gene expression in HPMC through modulation of the ERK pathway. Our study of dipyridamole may provide therapeutic basis for clinical applications in the prevention of PF.  相似文献   

4.
BACKGROUND: During peritoneal dialysis, mesothelial cells become detached from the peritoneum and accumulate in the dialysate. Our aim was to evaluate the potential of peritoneal effluent (PF)-derived human peritoneal mesothelial cells (HPMC) as target for gene therapy. We used erythropoietin (EPO) as our target gene. METHODS: Various extracellular matrixes (ECM) were tested for optimal adhesion and growth of HPMC. The EPO gene was introduced to mouse peritoneal mesothelial cells (MPMC) and HPMC by transfection or retroviral transduction. EPO secretion from PMC was measured by enzyme-linked immunosorbent assay (ELISA) and by the TF-1 cell proliferation assay. We performed intraperitoneal or intramuscular transplantations of the genetically modified cells into regular or 5/6 nephrectomized Balb/c mice and nude mice. Finally, we measured serum EPO and hematocrit levels. RESULTS: ECM-coated plates provided up to sixfold increase in the efficiency of PMC isolation from PF. Gelatin coated dishes (20 microg/cm2) were found optimal for isolation of PF-HPMC. RPR-120535 liposome was found to be best for PMC transduction. In vitro studies showed EPO secretion from modified HPMC over 6 months. Intraperitoneal transplantation aided with collagen matrix was the most effective. EPO, in MPMC transplanted mice, was detected up to 3 weeks (peak at 13 +/- 1 mIU/mL), and anemia of uremic mice was corrected (35.3 +/- 0.9 mIU/mL to 41.9 +/- 1.1 mIU/mL). CONCLUSION: PF-HPMC can be considered as an appropriate target for gene therapy since these cells can be efficiently isolated, modified, and transplanted. Nevertheless, implantation techniques in the peritoneum should be directed at obtaining longer duration of transgene expression in vivo, and means should be developed for enabling regulated expression of the gene.  相似文献   

5.
6.
7.
The integrity of the mesothelial layer is essential for bothdefence and solute transport in continuous ambulatory peritonealdialysis (CAPD). The human peritoneal mesothelial cell (HPMC)culture has been shown to be a very useful tool to study theperitoneal mesothelial stem cell behaviour. We investigatedwhether hydralazine, an antihypertensive agent frequently used,might affect HPMC growth and collagen synthesis. HPMCs werecultured from specimens of human omentum by enzymatic disaggregationof omentum. HPMC growth was evaluated by modified methyltetrazolium(MTT) assay. Cell viability was confirmed by trypan blue exclusionand lactate dehydrogenase assay. Collagen synthesis was measuredby 3H-proline incorporation into pepsin-resistant, salt-precipitatedcollagen. Intracellular cAMP levels were measured by enzymeimmunoassay. The procollagen 1 (I) mRNA expression was evaluatedby Northern blot analysis. Hydralazine inhibited serum-stimulatedHPMC growth in a dose-dependent manner. The maximal inhibitionwas 93% at a concentration of 100 µg/ml. Hydralazine inhibitedcollagen synthesis in confluent mesothelial cells (47% inhibitionat a concentration of 100 .tg/ml). The procollagen 1 (I) mRNAexpression was also decreased by hydralazine (about 50% decreaseat 100 µg/ml). These effects may be due to the phosphodiesteraseinhibition property of hydralazine to increase intracellularcAMP levels. These data suggest that the use of hydralazinein CAPD patients may affect peritoneal membrane function andintegrity.  相似文献   

8.
9.
BACKGROUND: Peritoneal matrix accumulation is a major characteristic of encapsulating peritoneal sclerosis (EPS), which is a serious complication in long-term peritoneal dialysis (PD) patients. We reported previously that TGF-beta stimulates collagen gene expression in cultured HPMC, and is attenuated by pentoxifylline (PTX). The SMAD family and the mitogen-activated protein kinase (MAPK) (ERK1/2, JNK and p38(HOG)) pathways have been shown to participate in TGF-beta signalling. However, how PTX modulates the intracellular signalling downstream to TGF-beta remains undetermined in HPMC. In this study, we explored these signalling pathways in HPMC, and investigated the molecular mechanisms involved in the inhibitory effects of PTX on TGF-beta-induced collagen gene expression in HPMC. METHODS: HPMC was cultured from human omentum by an enzyme digestion method. The expression of collagen alpha1(I) mRNA was determined by northern blotting, while the SMAD proteins and the MAPK kinase activity were determined by western blotting. RESULTS: TGF-beta-stimulated collagen alpha1(I) mRNA expression of HPMC was inhibited by PTX. The Smad2, ERK1/2 and p38(HOG) pathways were activated in response to TGF-beta. However, TGF-beta displayed no activation of the JNK pathway in HPMC. The addition of PD98059 and SB203580, which blocked the activation of ERK1/2 and p38(HOG), respectively, suppressed the TGF-beta-induced collagen alpha1(I) mRNA expression. At a concentration (300 micro g/ml) that inhibited the collagen gene expression, PTX suppressed the ERK1/2 and p38(HOG) activation by TGF-beta. In contrast, PTX had no effect on the TGF-beta-induced activation of Smad2, under the same concentration. CONCLUSION: PTX inhibits the TGF-beta-induced collagen gene expression in HPMC through modulating the ERK1/2 and p38(HOG) pathways. Our study of PTX may provide the therapeutic basis for clinical applications in the prevention of EPS.  相似文献   

10.
腹膜纤维化(PF)是终末期肾病(ESRD)患者退出腹膜透析的主要原因。腹膜组织长期暴露于腹膜透析液中,致腹膜形态及功能发生改变,并最终走向腹膜纤维化,使得腹膜超滤量下降,患者无法再利用腹膜透析进行肾脏替代治疗。近年来,越来越多的研究将目光聚集在腹膜纤维化的防治上,利用涌现出的"新药"开展了一系列的细胞实验以及动物实验,在这些实验中尤以吡非尼酮对纤维化的防治效果引人注目。本文将针对近年来防治腹膜纤维化试验成果进行总结,同时对吡非尼酮的临床应用前景进行阐述。  相似文献   

11.
Ha H  Yu MR  Lee HB 《Kidney international》2001,59(2):463-470
BACKGROUND: Progressive peritoneal fibrosis, membrane hyperpermeability, and ultrafiltration failure have been observed in long-term peritoneal dialysis (PD) using glucose as an osmotic agent. High glucose activates protein kinase C (PKC), which is one important signal pathway in the activation of transforming growth factor-beta 1 (TGF-beta 1) and fibronectin (FN). To gain a better understanding of mechanisms involved in peritoneal fibrosis, we examined the effects of high glucose on human peritoneal mesothelial cell (HPMC) TGF-beta 1 and FN mRNA expression and protein synthesis and determined the involvement of PKC in the high glucose-induced HPMC activation. METHODS: Synchronized confluent HPMC were incubated with different concentrations of glucose with and without inhibition of PKC. PKC activity and diacylglycerol (DAG) levels were measured. The expression of TGF-beta 1 and FN mRNAs by HPMC was measured by Northern blot analysis. TGF-beta 1 protein was measured by enzyme-linked immunosorbent assay (ELISA) and mink lung epithelial cell growth inhibition assay. FN protein was measured by Western blot analysis and ELISA. RESULTS: PKC activity and DAG levels in HPMC cultured under 50 mmol/L (high) glucose increased 2.3- and 2.0-fold, respectively, that of 5.6 mmol/L (control) glucose at 24 hours and this was sustained up to 72 hours. The expression of TGF-beta 1 and FN mRNA by HPMC cultured under high glucose increased 1.6- and 1.7-fold, respectively, that of control values at 24 hours. TGF-beta bioactivity as well as protein content in heat-activated conditioned media from high glucose was significantly higher than that of control values at 24 and 48 hours. FN protein also increased in response to high glucose, as measured by Western blot analysis and ELISA. PKC activator phorbol 12-myristate 13-acetate (PMA) induced 2.2- and 1.4-fold increase in TGF-beta 1 and FN mRNA expression, respectively. Depletion of PKC and calphostin C, a PKC inhibitor, effectively prevented both PMA and high glucose-induced, but not constitutive, expression of TGF-beta 1 and FN. CONCLUSION: The present data demonstrate that high glucose up-regulates TGF-beta 1 and FN synthesis by HPMC, and that this high glucose-induced up-regulation is largely mediated by PKC. These results suggest that activation of PKC by high glucose in conventional PD solutions may constitute an important signal for activation of HPMC, leading to progressive accumulation of extracellular matrix and eventual peritoneal fibrosis.  相似文献   

12.
BACKGROUND: Efficient peritoneal dialysis depends on an intact layer of mesothelial cells that line the peritoneal membrane. This layer is disrupted in patents on continuous ambulatory peritoneal dialysis during episodes of peritonitis (acute injury) and replaced by fibrous tissue during extended dialysis (chronic injury). Little is understood of human peritoneal mesothelial cell (HPMC) responses to wounding and episodes of peritonitis. METHODS: HPMC were harvested from spent peritoneal dialysis effluent and maintained under defined in vitro conditions. Adhesive interactions with extracellular matrix (ECM) molecules and chemotactic and wound-healing responses were measured in vitro using purified ECM molecules. RESULTS: HPMC express multiple functional cell receptors recognizing and binding to ECM molecules, including several members of the integrin family. HPMC exhibit directed migration in wound healing and chemotaxis assays with ECM molecules. Epidermal growth factor (EGF) stimulates a reversible change to a fibroblastic phenotype, accompanied by increased expression of beta1 integrins, particularly alpha2beta1, increased adhesion to type I collagen, and significantly greater HPMC migration on type I collagen in wound healing and chemotaxis assays. CONCLUSIONS: HPMC possess the migratory capacity to contribute to the efficient repair of damaged peritoneal membrane after acute injury, and growth factors, such as EGF, facilitate peritoneal membrane healing by augmenting cell adhesion and migration.  相似文献   

13.
14.
BACKGROUND: Functional failure of the peritoneal membrane is the most serious problem in long-term continuous ambulatory peritoneal dialysis (CAPD). Transforming growth factor-beta (TGF-ss) is one of the key mediators of fibrosis in some organs, and is thought to be involved in peritoneal alterations. In this study, we examined the role of TGF-beta1/TGF-ss receptors for human peritoneal mesothelial cells (HPMCs) and fibroblasts, and their interactions in CAPD patients. METHODS: HPMCs were cultured for 48 h in a medium containing normal- dose glucose (7 mM), high-dose glucose (30 mM) and mannitol as an osmotic agent, equal to 30 mM glucose. Cell proliferation was observed using the Tetra Color One assay. The concentration of TGF-beta1 in culture supernatants was measured by enzyme-linked immunosorbent assay (ELISA). The expression of TGF-ss receptor types I and II was observed by flow cytometry. HPMCs and fibroblasts were co-cultured and assayed using transwell inserts in order to identify the effects of the high-concentration glucose solution. RESULTS: HPMC proliferation was inhibited by the high concentration of glucose but not by mannitol. The inhibition was abrogated by the neutralizing antibody for TGF-beta1. TGF-beta1 was induced by a high concentration of glucose but not by mannitol. The expression of both TGF-ss receptors was augmented in culture with the high concentration of glucose but not with mannitol. In the co-culture assay, the number of HPMCs was decreased and fibroblasts were significantly increased in culture with the high concentration of glucose. CONCLUSIONS: A high concentration of glucose induced a large amount of TGF-beta1 and enhanced the expression of TGF-ss receptors. HPMCs were sensitive to TGF-beta1 in response to a high concentration of glucose. These data suggest that TGF-beta1 from HPMCs exposed to a high concentration of glucose down-regulates the proliferation of HPMCs and accelerates peritoneal fibrosis.  相似文献   

15.
16.
OBJECTIVE: To study fibroblasts and mast cells in human peritoneal adhesions and to evaluate whether their interaction plays a role in adhesion development. SUMMARY BACKGROUND DATA: Myofibroblasts play a critical role in wound repair/fibrosis. Mast cells influence the formation of peritoneal adhesions in a rat model, and they are modulators of fibroblast functions. METHODS: Peritoneal adhesion biopsies were processed for either histology (H&E, toluidine blue) or immunohistochemistry (tryptase, laminin, collagen type IV and VIII, and alpha-SMA) or grown as explants for obtention of fibroblasts. The effects of mast cell (HMC-1) sonicate and selected mast cell mediators and cytokines on fibroblast proliferation ([ (3)H]thymidine) and collagen synthesis ([ (3)H]proline) and on fibroblast contractile activity (tridimensional collagen lattice) were evaluated. Mast cell mediators influencing fibroblast proliferation were partially characterized by enzymatic susceptibility and FPLC gel filtration column chromatography. RESULTS: Most of the fibroblasts in peritoneal adhesions were identified as alpha-SMA-positive myofibroblasts. Mast cell hyperplasia was observed and more than one third of the mast cells were degranulated. Few mast cells showed a faint staining for laminin or collagen type IV and VIII. Mast cell sonicate increased fibroblast proliferation and contractile activity while decreasing collagen synthesis. Mast cell sonicate proliferating activities were found to be proteinase-sensitive with a molecular weight of more than 158 kd, of approximately 40 kd, and of less than 10 kd. TGF-beta and tryptase enhanced collagen synthesis; TNF-alpha and chymase decreased it. None of the selected mediators increased fibroblast proliferation. CONCLUSIONS: Myofibroblasts are the main connective tissue cells present in human peritoneal adhesions, and mast cells play a direct role in peritoneal adhesion formation.  相似文献   

17.
18.
《Renal failure》2013,35(9):1095-1102
Rational: Peritoneal sclerosis is one of the important complications of long-term peritoneal dialysis (PD). In this study, efficacy of atorvastatin on peritoneal histology and functions in non-uremic rats on PD was tested. Objectives: Twenty-two non-uremic Wistar albino rats were randomized into three groups: Sham (intraperitoneal saline), peritoneal dialysis (PD, intraperitoneal 3.86% dextrose containing PD solution), and treatment (TX, intraperitoneal 3.86% dextrose containing PD solution plus atorvastatin added into drinking water). At the end of a 4-week period, 1 h peritoneal equilibration test was performed. Serum lipids and certain cytokines, mediators, markers, and antioxidant enzyme activities in serum and dialysate were studied. Peritoneal thickness was measured and peritoneal inflammation, fibrosis, and vascular proliferation were scored in histological sections. Main findings: In histological examinations, inflammation, fibrosis, and vascular proliferation were significantly more frequent in PD group than Sham group and it seemed to decrease significantly when atorvastatin was used in conjunction with PD. Additionally, peritoneum was significantly thicker in PD group when compared to that of Sham and TX groups. Serum parameters did not significantly differ between groups. On the other hand, dialysate glutathione reductase (GR) activity and TGF-β were significantly lower in TX group than that of the PD group, whereas dialysate IL-6 level was higher in TX group. Principal conclusions: In our study, atorvastatin use appeared to diminish structural changes in peritoneum. Decreased expression of TGF-β in dialysate may be one of the possible underlying mechanisms.  相似文献   

19.
BACKGROUND: After long-term treatment with continuous ambulatory peritoneal dialysis (CAPD), some patients may develop peritoneal fibrosis. Peritoneal mesothelial cells (PMCs) participate in the inflammatory reactions in the peritoneal cavity, and transforming growth factor-beta1 (TGF-beta1) and interleukin-1beta (IL-1beta) are involved in peritoneal fibrosis. Diltiazem is used frequently in patients with CAPD to treat hypertension. The objectives of this study were to examine the effects of diltiazem on collagen- and IL-1beta-induced TGF-beta1 production on human PMCs and the signalling pathway of diltiazem in this induction. METHODS: Human PMCs were cultured from the enzymatic disaggregation of human omentum. Collagen synthesis was measured by [3H]proline incorporation into pepsin-resistant, salt-precipitated collagen. The expression of collagen I and III, and TGF-beta1 mRNA was evaluated by northern blotting. The production of TGF-beta1 by human PMCs was measured by immunoassay. The changes of intracellular calcium level after adding Fura-2-AM were measured by fluorescence spectrophotometry. Western blotting was used to assess mitogen-activated protein kinase (MAPK) signalling proteins. RESULTS: We found that diltiazem (<0.2 mM) inhibited collagen I and III mRNA expression and collagen syntheses on a dose-dependent basis. Diltiazem (0.2 mM) suppressed IL-1beta- (5 ng/ml) induced TGF-beta1 production on human PMCs at both the protein and mRNA levels. Diltiazem (0.2 mM) also inhibited IL-1beta- (5 ng/ml) induced collagen I and III mRNA expression. Intracellular calcium levels did not change after the treatment with diltiazem, IL-1beta or both. The IL-1beta-treated human PMCs increased phospho-JNK (stress-activated c-Jun N-terminal kinase) and phospho-p38 MAPK expression, while diltiazem could suppress this phenomenon. CONCLUSIONS: Diltiazem suppressed collagen synthesis of human PMCs and inhibited IL-1beta-induced TGF-beta1 production on human PMCs. This signalling transduction may be through p38 MAPK and JNK pathways instead of intracellular calcium. These results suggest diltiazem to be a potential therapeutic regimen in preventing peritoneal fibrosis and support further in vivo studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号