首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exercise training attenuates left ventricular (LV) dysfunction after myocardial infarction (MI). It could be speculated that these effects of exercise are mediated by increased endothelial NO synthase (eNOS) activity. In the present study we tested the hypothesis that eNOS plays a critical role in the exercise-induced amelioration of LV dysfunction after MI. MI or sham was induced in eNOS−/−, eNOS+/− and eNOS+/+ mice. After 8 weeks of voluntary wheel running (∼ 7 km/day in all groups) or sedentary housing, global cardiac function was determined in vivo and (immuno)histochemistry was performed to assess cardiomyocyte size, fibrosis, capillary density and apoptosis in remote myocardium. At baseline eNOS−/− mice had higher mean aortic pressure compared to eNOS+/− and eNOS+/+ mice, but had normal global cardiac function. MI resulted in marked LV remodeling, including cardiomyocyte hypertrophy and a reduction in capillary density, increased fibrosis and apoptosis, as well as LV systolic and diastolic dysfunction to the same extent in all genotypes. In eNOS+/+ MI mice exercise abolished fibrosis and apoptosis in the remote myocardium, attenuated LV systolic dysfunction and ameliorated pulmonary congestion. These beneficial effects were lost in eNOS+/− and eNOS−/− mice, while LV systolic dysfunction and pulmonary congestion in eNOS+/− mice were exacerbated by exercise. In conclusion, the beneficial effects of exercise after MI on LV remodeling and dysfunction depend critically on endogenous eNOS. The observation that the lack of one eNOS allele is sufficient to negate all beneficial effects of exercise, strongly suggests that exercise depends on full eNOS expression.  相似文献   

2.
BackgroundCardiac thyrotropin-releasing hormone (TRH) is a tripeptide with still unknown functions. We demonstrated that the left ventricle (LV) TRH system is hyperactivated in spontaneously hypertensive rats and its inhibition prevented cardiac hypertrophy and fibrosis. Therefore, we evaluated whether in vivo cardiac TRH inhibition could improve myocardial function and attenuate ventricular remodeling in a rat model of myocardial infarction (MI).Methods and ResultsIn Wistar rats, MI was induced by a permanent left anterior descending coronary artery ligation. A coronary injection of a specific small interfering RNA against TRH was applied simultaneously. The control group received a scrambled small interfering RNA. Cardiac remodeling variables were evaluated one week later. In MI rats, TRH inhibition decreased LV end-diastolic (1.049 ± 0.102 mL vs 1.339 ± 0.102 mL, P < .05), and end-systolic volumes (0.282 ± 0.043 mL vs 0.515 ± 0.037 mL, P < .001), and increased LV ejection fraction (71.89 ± 2.80% vs 65.69 ± 2.85%, P < .05). Although both MI groups presented similar infarct size, small interfering RNA against TRH treatment attenuated the cardiac hypertrophy index and myocardial interstitial collagen deposition in the peri-infarct myocardium. These effects were accompanied by attenuation in the rise of transforming growth factor-β, collagen I, and collagen III, as well as the fetal genes (atrial natriuretic peptide, B-type natriuretic peptide, and beta myosin heavy chain) expression in the peri-infarct region. In addition, the expression of Hif1α and vascular endothelial growth factor significantly increased compared with all groups.ConclusionsCardiac TRH inhibition improves LV systolic function and attenuates ventricular remodeling after MI. These novel findings support the idea that TRH inhibition may serve as a new therapeutic strategy against the progression of heart failure.  相似文献   

3.
Osteopontin (OPN), an extracellular matrix protein, is expressed in the myocardium with hypertrophy and failure. We tested the hypothesis that OPN plays a role in left ventricular (LV) remodeling after myocardial infarction (MI). Accordingly, OPN expression and LV structural and functional remodeling were determined in wild-type (WT) and OPN knockout (KO) mice 4 weeks after MI. Northern analysis showed increased OPN expression in the infarcted region, peaking 3 days after MI and gradually decreasing over the next 28 days. In the remote LV, OPN expression was biphasic, with peaks at 3 and 28 days. In situ hybridization and immunohistochemical analyses showed increased OPN mRNA and protein primarily in the interstitium. Infarct size, heart weight, and survival were similar in KO and WT mice after MI (P=NS), whereas the lung wet weight/dry weight ratio was increased in the KO mice (P<0.005 versus sham-operated mice). Peak LV developed pressure was reduced to a similar degree after MI in the KO and WT mice. The number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive myocytes was similar in KO and WT mice after MI. In contrast, post-MI LV chamber dilation was approximately twice as great in KO versus WT mice (P<0.001). Myocyte length increased after MI in WT mice (P<0.001) but not in KO mice. Electron microscopy showed increased collagen content in WT mice after MI but not in KO mice after MI. Type I collagen content was increased approximately 3-fold and approximately 7-fold in remote and infarcted regions, respectively, of WT hearts after MI but not in KO hearts (P<0.01 versus WT hearts). Likewise, Northern analyses showed increased collagen I(alpha(1)) mRNA after MI in remote regions of WT hearts but not in KO hearts. Thus, increased OPN expression plays an important role in regulating post-MI LV remodeling, at least in part, by promoting collagen synthesis and accumulation.  相似文献   

4.
Cardiac rupture remains a fatal complication of acute myocardial infarction (MI) with its mechanism partially understood. We hypothesized that damage to the collagen matrix of infarcted myocardium is the central mechanism of rupture and therefore responsible for the difference in the incidence of rupture between genders. We examined left ventricular (LV) remodeling during the acute phase post-MI in 129sv mice. Following induction of MI, we monitored rupture events and assessed the extent of LV remodeling by echocardiography. Muscle tensile strength, content of insoluble and soluble collagen, expression and activity of matrix metalloproteinases (MMPs) and density of inflammatory cells were determined in the infarcted and non-infarcted myocardium. We then tested the effects of MMP inhibition on rupture. Compared to female mice, males with MI displayed greater extent of LV remodeling, reduced muscle tensile strength, loss of insoluble collagen, local inflammatory response and MMP-9 activation, changes associated with a 3 times higher incidence of rupture than in females. MMP-9 expression by circulating blood mononuclear cells was also increased in male mice with acute MI. Treatment of male mice with an MMP inhibitor reduced MMP activity and halved rupture incidence. Our findings demonstrate that the differences in the severity of inflammation, MMP activation and damage to collagen matrix account for gender difference in cardiac rupture. Our study illustrates the breakdown of fibril collagen as a central mechanism of cardiac rupture.  相似文献   

5.
MMP Induction and Inhibition in Myocardial Infarction   总被引:9,自引:0,他引:9  
Short-term survival following a myocardial infarction (MI) has greatly improved, due in part to therapeutic interventions that restore blood flow and limit infarct size. The increased incidence of infarct-stimulated left ventricular (LV) remodeling that advances to congestive heart failure (CHF), however, is a significant long-term complication and a leading cause of mortality. Changes to ECM structure and function are primary components of LV remodeling and are precipitated by the early increase in infarct area collagen levels that replace necrotic myocytes and form a scar. ECM turnover is coordinated through the synthesis and degradation of ECM and non-ECM components, particularly the matrix metalloproteinases (MMP), a family of proteolytic enzymes that cleave ECM. MMPs have multiple roles in remodeling events that lead to LV dilation. The inhibition or targeted deletion of specific MMPs attenuates LV remodeling events post-MI. MMP inhibitors have been used in animal models to delineate LV remodeling mechanisms and to evaluate the pharmacologic potential of targeting the ECM to modify LV remodeling post-MI. This review summarizes the current knowledge and limitations of MMP inhibition in the post-MI myocardium.  相似文献   

6.
BackgroundAlthough animal studies showed that Follistatin-like 1 (FSTL1) exerts cardioprotective effects against ischemic injury, little is known in humans. We examined whether FSTL1 is secreted in an infarcted myocardium and whether its production is associated with left ventricular (LV) remodeling in survivors of acute myocardial infarction.Methods and ResultsFSTL1 levels were measured by enzyme-linked immunosorbent assay in plasma collected from the aortic root and the anterior interventricular vein in 93 patients with anterior acute myocardial infarction. Measurement of FSTL1 levels and left ventriculography were repeated during the early phase (2 weeks) and the chronic phase (6 months) after MI. A persistent increment in FSTL1 levels from the aortic root to the anterior interventricular vein, reflecting FSTL1 production in the infarcted myocardium at both the early and chronic phases, was seen in 22 patients (24%). A linear regression analysis revealed that a persistent transmyocardial increment in FSTL1 levels was significantly associated with percent changes in LV end-diastolic volume index, LV end-systolic volume index, and LV ejection fraction from the early to the chronic phase (r = 0.44, 0.51, and −0.43, respectively, all P < .001).ConclusionsThe persistent production of FSTL1 in the infarcted myocardium was associated with adverse LV remodeling in survivors of acute myocardial infarction.  相似文献   

7.
BackgroundMitral leaflet enlargement has been identified as an adaptive mechanism to prevent mitral regurgitation in dilated left ventricles (LVs) caused by chronic aortic regurgitation (AR). This enlargement is deficient in patients with functional mitral regurgitation, which remains frequent in the population with ischemic cardiomyopathy. Maladaptive fibrotic changes have been identified in post-myocardial infarction (MI) mitral valves. It is unknown if these changes can interfere with valve growth and whether they are present in other valves.ObjectivesThis study sought to test the hypothesis that MI impairs leaflet growth, seen in AR, and induces fibrotic changes in mitral and tricuspid valves.MethodsSheep models of AR, AR + MI, and controls were followed for 90 days. Cardiac magnetic resonance, echocardiography, and computed tomography were performed at baseline and 90 days to assess LV volume, LV function, mitral regurgitation and mitral leaflet size. Histopathology and molecular analyses were performed in excised valves.ResultsBoth experimental groups developed similar LV dilatation and dysfunction. At 90 days, mitral valve leaflet size was smaller in the AR + MI group (12.8 ± 1.3 cm2 vs. 15.1 ± 1.6 cm2, p = 0.03). Mitral regurgitant fraction was 4% ± 7% in the AR group versus 19% ± 10% in the AR + MI group (p = 0.02). AR + MI leaflets were thicker compared with AR and control valves. Increased expression of extracellular matrix remodeling genes was found in both the mitral and tricuspid leaflets in the AR + MI group.ConclusionsIn these animal models of AR, the presence of MI was associated with impaired adaptive valve growth and more functional mitral regurgitation, despite similar LV size and function. More pronounced extracellular remodeling was observed in mitral and tricuspid leaflets, suggesting systemic valvular remodeling after MI.  相似文献   

8.
Background- To investigate the role of endothelial nitric oxide synthase (NOS3) in left ventricular (LV) remodeling after myocardial infarction (MI), the impact of left anterior descending coronary artery ligation on LV size and function was compared in 2- to 4-month-old wild-type (WT) and NOS3-deficient mice (NOS3(-/-)). Methods and Results- Two days after MI, both strains of mice had a similar LV size, fractional shortening, and ejection fraction by echocardiography. Twenty-eight days after MI, both strains had dilated LVs with decreased fractional shortening and lower ejection fractions. Although the infarcted fraction of the LV was similar in both strains, LV end-diastolic internal diameter, end-diastolic volume, and mass were greater, but fractional shortening, ejection fraction, and the maximum rate of developed LV pressure (dP/dt(max)) were lower in NOS3(-/-) than in WT mice. Impairment of diastolic function, as measured by the time constant of isovolumic relaxation (tau) and the maximum rate of LV pressure decay (dP/dt(min)), was more marked in NOS3(-/-) than in WT mice. Mortality after MI was greater in NOS3(-/-) than in WT mice. Long-term administration of hydralazine normalized blood pressure in NOS3(-/-) mice, but it did not prevent the LV dilatation, impaired systolic and diastolic function, and increased LV mass that followed MI. In WT mice, capillary density and myocyte width in the nonischemic portion of the LV did not differ before and 28 days after MI, whereas in NOS3(-/-) mice, capillary density decreased and myocyte width increased after MI, whether or not hydralazine was administered. Conclusions- These results suggest that the presence of NOS3 limits LV dysfunction and remodeling in a murine model of MI by an afterload-independent mechanism, in part by decreasing myocyte hypertrophy in the remote myocardium.  相似文献   

9.
Nitric oxide (NO) is an important modulator of cardiac performance and left ventricular (LV) remodeling after myocardial infarction (MI). We tested the effect of cardiomyocyte-restricted overexpression of one NO synthase isoform, NOS3, on LV remodeling after MI in mice. LV structure and function before and after permanent LAD coronary artery ligation were compared in transgenic mice with cardiomyocyte-restricted NOS3 overexpression (NOS3-TG) and their wild-type littermates (WT). Before MI, systemic hemodynamic measurements, echocardiographic assessment of LV fractional shortening (FS), heart weight, and myocyte width (as assessed histologically) did not differ in NOS3-TG and WT mice. The inotropic response to graded doses of isoproterenol was significantly reduced in NOS3-TG mice. One week after LAD ligation, the infarcted fraction of the LV did not differ in WT and NOS3-TG mice (34+/-4% versus 36+/-12%, respectively). Four weeks after MI, however, end-systolic LVID was greater, and fractional shortening and maximum and minimum rates of LV pressure development were less in WT than in NOS3-TG mice. LV weight/body weight ratio was greater in WT than in NOS3-TG mice (5.3+/-0.2 versus 4.6+/-0.5 mg/g; P<0.01). Myocyte width in noninfarcted myocardium was greater in WT than in NOS3-TG mice (18.8+/-2.0 versus 16.6+/-1.6 microm; P<0.05), whereas fibrosis in noninfarcted myocardium was similar in both genotypes. Cardiomyocyte-restricted overexpression of NOS3 limits LV dysfunction and remodeling after MI, in part by decreasing myocyte hypertrophy in noninfarcted myocardium.  相似文献   

10.
Objectives. We sought to investigate the cardiac effects of growth hormone (GH) administration during the early phase of pathologic remodeling in a rat model of large myocardial infarction (MI).Background. Recent evidence suggests that exogenous administration of GH evokes a hypertrophic response and increases left ventricular (LV) function in vivo in rats with normal or chronically failing hearts. We hypothesized that these effects would attenuate ventricular remodeling early after MI.Methods. Fifty-eight male rats underwent sham operation (n = 19) or had induced MI (n = 39). The day after the operation, the infarcted rats were randomized to receive 3 weeks of treatment with GH, 3 mg/kg body weight per day (n = 19) or placebo (n = 20). Echocardiography, catheterization and isolated whole heart preparations were used to define cardiac structure and function.Results. Growth hormone caused hypertrophy of the noninfarcted myocardium in a concentric pattern, as noted by higher echocardiographic relative wall thickness at 3 weeks and by morphometric histologic examination. Left ventricular dilation was reduced in the GH-treated versus placebo group (echocardiographic LV diastolic diameter to body weight ratio 2.9 ± 0.1 vs. 3.5 ± 0.2 cm/kg; p < 0.05). In vivo and in vitro cardiac function was improved after GH treatment. Despite elevated insulin-like growth factor-1 (IGF-1) serum levels in GH-treated rats, myocardial IGF-1 messenger ribonucleic acid was not different among the three groups, suggesting that an increase in its local expression does not appear necessary to yield the observed effects.Conclusions. These data demonstrate that early treatment of large MI with GH attenuates the early pathologic LV remodeling and improves LV function.(J Am Coll Cardiol 1997;29:1109–16)© 1997 by the American College of Cardiology  相似文献   

11.
The inflammatory cytokines interleukin (IL)-10 and tumor necrosis factor (TNF)-α play an important role in left ventricular (LV) remodeling after myocardial infarction (MI). Phosphatase and tensin homolog deleted on chromosome ten (PTEN) inactivates protein kinase Akt and promotes cell death in the heart. However, it is not known whether PTEN promotes post-MI remodeling by regulating IL-10 and TNF-α. MI was induced in wild-type (WT) mice and Pten heterozygous mutant (HET) mice. Pten adenoviruses (adPten) or empty vectors (adNull) were injected into the peri-infarct area of WT mice. LV dilation was attenuated and fractional shortening was increased in HET mice compared to WT mice. Survival rate and fractional shortening were decreased in adPten mice compared to adNull mice. Leukocyte infiltration into the peri-infarct area was attenuated in HET mice and worsened in adPten mice. PTEN expression was upregulated in the infarcted heart of WT mice. Partial inactivation of PTEN increased the production of IL-10 and decreased the expression of TNF-α and matrix metalloproteinase (MMP)-2 and -9 after MI in HET mice. PTEN overexpression caused opposite effects in the infarcted heart. Moreover in the infarcted heart of HET mice, Akt inhibition decreased Stat3 phosphorylation and IL-10 expression, and blockade of the IL-10 receptor increased TNF-α and MMP-2 expression. Both Akt inhibition and IL-10 receptor blockade abolished the attenuation of post-MI remodeling in HET mice. In conclusion, PTEN is critically involved in post-MI remodeling through the Akt/IL-10 signaling pathway. Therefore, targeting PTEN may be an effective approach to post-MI remodeling.  相似文献   

12.
OBJECTIVE: To investigate the cellular mechanisms underlying global and regional LV dysfunction in the post-infarct (MI) remodeled rat hearts. METHODS: LV remodeling and function were quantified by echocardiography, morphometry, in vivo hemodynamics, and isolated perfused heart studies in 6 weeks post-MI and sham-operated rats. LV myocytes from sham and MI hearts were used for morphometric and functional studies. Myocyte contractile function and intracellular calcium kinetics were measured at different stimulation frequencies (0.2-2 Hz), temperatures (30 and 37 degrees C), and external viscous load (1, 15, 200 and 300 centipoise). Myocyte apoptosis was measured by DNA laddering; BCL-2, BAX, Na(+)-Ca(2+) exchanger, and SERCA-2 proteins by western blot; and brain natriuretic peptide (BNP), SERCA-2 mRNA by RT-PCR. RESULTS: MI hearts were remodeled (Echo LV diameter 7.3+/-0.38 vs. 5.9+/-0.16 mm, P<0.03), and showed global (Echo % fractional shortening 30+/-2.4 vs. 58+/-3, P<0.001), and regional contractile dysfunction of non-infarcted myocardium (Echo % systolic posterior wall thickening 36+/-2 vs. 57+/-1.7, P<0.001). In vivo hemodynamic and isolated heart function studies confirmed depressed LV systolic and diastolic function and increased volumes. Whereas, myocytes isolated from infarcted hearts were remodeled (40% longer and 10% wider), their contractile function and calcium kinetics under basal conditions and at high stimulation frequency, temperature and viscous load were similar to sham myocytes. The mRNA for BNP was increased whereas that for SERCA-2 decreased, but the SERCA-2 protein was normal. Despite myocyte hypertrophy, ventricular septal thickness was reduced in infarcted hearts (2.2+/-0.1 vs. 2. 6+/-0.07 mm, P<0.01), and showed increased apoptosis. CONCLUSIONS: Myocytes from remote non-infarcted myocardium of the remodeled hearts have normal contractile function, despite structural remodeling and altered gene expression. Non-myocyte factors may be more important in genesis of contractile dysfunction in the remodeled heart, for up to 6 weeks after MI.  相似文献   

13.

Background

Myocardial damage after myocardial infarction (MI) was deemed irreversible after late reperfusion. Administration of multipotent stem cell (MSC) into such infarct may regenerate the myocardium and capillary network.

Hypothesis

Transcoronary infusion of bone marrow derived multipotent stem cells into infarcted related artery after acute myocardial infarction is feasible, safe and improve left ventricular function.

Methods

We conducted a pilot study in patients who survived ST‐elevation MI with late reperfusion therapy and remained hemodynamically stable. Bone marrow derived MSC was infused into a patent infarct‐related coronary artery during brief low pressure (2 atm) balloon inflation. A 3‐T gadolinium‐based MRI was performed at baseline and 8 weeks later to evaluate infarct area and LV function.

Results

We enrolled 10 patients, age 63.8 ± 2.8 years 5.2 ± 4.12 × 106 MSC were infused via coronary artery 24.8 ± 16 days after infarction. The procedures were successful in all patients without any in‐hospital event. Infarct size by MRI decreased by 5.84% (P = .018) over 8 weeks. Mean baseline left ventricular ejection fraction (LVEF) was 44.1% ± 9% and was 46.3% ± 9% at 8 weeks (P = .34). A trend of smaller LV end‐systolic volume with 65.02 ± 18.2 ml vs 63.04 ± 21.89 ml (P = .09) with no change of LV end‐diastolic volume observed.

Conclusion

MSC infusion into coronary circulation was feasible and safe after myocardial infarction. Infarct size was reduced with preservation of LV geometry. Copyright © 2010 Wiley Periodicals, Inc.  相似文献   

14.
Periodontal disease (PD) strongly correlates with increased mortality post-myocardial infarction (MI); however, the underlying mechanisms are unknown. Matrix metalloproteinase (MMP)-9 levels directly correlate with dysfunction and remodeling of the left ventricle (LV) post-MI. Post-MI, MMP-9 is produced by leukocytes and modulates inflammation. We have shown that exposure to Porphyromonas gingivalis lipopolysaccharide (PgLPS), an immunomodulatory molecule identified in PD patients, increases LV MMP-9 levels in mice and leads to cardiac inflammation and dysfunction. The aim of the study was to determine if circulating PgLPS exacerbates the LV inflammatory response post-MI through MMP-9 dependent mechanisms. We exposed wild type C57BL/6J and MMP-9−/− mice to PgLPS (ATCC 33277) for a period of 28 days before performing MI, and continued to deliver PgLPS for up to 7 days post-MI. We found systemic levels of PgLPS 1) increased MMP-9 levels in both plasma and infarcted LV resulting in reduced wall thickness and increased incidence of LV rupture post-MI and 2) increased systemic and local macrophage chemotaxis leading to accelerated M1 macrophage infiltration post-MI and decreased LV function. MMP-9 deletion played a protective role by attenuating the inflammation induced by systemic delivery of PgLPS. In conclusion, MMP-9 deletion has a cardioprotective role against PgLPS exposure, by attenuating macrophage mediated inflammation.  相似文献   

15.
16.
Intervention with selective endothelin (ET)A receptor antagonists within 24 h after myocardial infarction (MI) in rats has been reported to aggravate left ventricular (LV) remodeling. In contrast, beneficial effects are reported when initiation of treatment is delayed 7 days or more after MI. However, bosentan, a mixed ETA/ETB receptor antagonist with low affinity for the ET receptors, has been shown to exert beneficial effects independent of the time point of initiation of treatment after MI. The aim of the present study was to investigate to what extent early intervention with a mixed ETA/ETB receptor antagonist with higher affinity at the ET receptors (SB 209670) would also exert beneficial effects on postinfarction LV remodeling. After ligation of the left coronary artery, rats were randomized to treatment with SB 209670 (6.25 mg·kg−1 SC b.i.d., n = 10) or vehicle (n = 12) for 26 days, starting 48 h after MI. Treatment with SB 209670 adversely affected the postinfarction remodeling process causing further dilatation of the LV (LV end-diastolic diameter: 10.4 ± 0.5 vs 9.1 ± 0.2 mm; LV end-systolic diameter: 8.5 ± 0.4 vs 7.2 ± 0.2 mm, P < 0.05). However, SB 209670 did not significantly affect infarct size, compensatory cardiac hypertrophy, nor the myocardial mRNA levels of procollagen type I and III, and prolyl 4-hydroxylase and lysyl oxidase, 2 important enzymes affecting collagen secretion, stability and functionality. In addition, SB 209670 had no significant effects on LV collagen cross-linking or extent of fibrosis. Thus, our data demonstrate that early intervention with a potent, mixed ETA/ETB receptor antagonist after MI may promote dilatation of the LV without significant alterations of infarct size and extracellular matrix composition. Our data support the notion that the timing of initiation of ET receptor antagonism after MI is critical and that potent ET receptor antagonists may be harmful during the first few days after MI. Received: 1 September 2001, Returned for revision: 13 September 2001, Revision received: 6 December 2001, Accepted: 21 December 2001  相似文献   

17.
OBJECTIVES: Endothelin A (ETA) receptor blockade started early after myocardial infarction (MI) promotes adverse left ventricular (LV) dilatation. We tested the hypothesis that inhibition of ETA receptors during the early phase of healing affects collagen synthesis and accumulation, and induces expansion of infarcted myocardium. METHODS: Starting 3 h after coronary ligation, female Wistar rats were treated with the selective ETA receptor antagonist LU 135252 (30 mg/kg body wt/day) or placebo. A period of 7 days after MI, hemodynamic, morphometric and biochemical studies were performed. RESULTS: ET(A) receptor blockade enhanced infarct expansion index and decreased LV systolic function. Infarct scar of LU 135252-treated rats displayed decreased gene expression of fibrillar type I/III collagens and of transforming growth factor-beta(1) (TGF-beta(1)). Collagen content in the infarct scar and border regions was lower after ETA inhibition. In addition, Western blot analysis revealed, after ETA receptor blockade, enhanced matrix metalloproteinases MMP-13, and MMP-2 expression in the infarcted LV myocardium. CONCLUSIONS: These data demonstrate that endothelin stimulates collagen accumulation at the site of infarction. Decreased collagen and TGF-beta(1) gene expression, associated with enhanced infarct expansion and MMP up-regulation likely contributes to ETA receptor blockade-mediated deleterious effects on ventricular remodeling after infarction.  相似文献   

18.
BackgroundExercise training (ET) has been used as a nonpharmacological strategy for treatment of diabetes and myocardial infarction (MI) separately. We evaluated the effects ET on functional and molecular left ventricular (LV) parameters as well as on autonomic function and mortality in diabetics after MI.Methods and ResultsMale Wistar rats were divided into control (C), sedentary-diabetic infarcted (SDI), and trained-diabetic infarcted (TDI) groups. MI was induced after 15 days of streptozotocin-diabetes induction. Seven days after MI, the trained group underwent ET protocol (90 days, 50-70% maximal oxygen consumption-VO2max). LV function was evaluated noninvasively and invasively; baroreflex sensitivity, pulse interval variability, cardiac output, tissue blood flows, VEGF mRNA and protein, HIF1-α mRNA, and Ca2+ handling proteins were measured. MI area was reduced in TDI (21 ± 4%) compared with SDI (38 ± 4%). ET induced improvement in cardiac function, hemodynamics, and tissue blood flows. These changes were probable consequences of a better expression of Ca2+ handling proteins, increased VEGF mRNA and protein expression as well as improvement in autonomic function, that resulted in reduction of mortality in TDI (33%) compared with SDI (68%) animals.ConclusionsET reduced cardiac and peripheral dysfunction and preserved autonomic control in diabetic infarcted rats. Consequently, these changes resulted in improved VO2max and survival after MI.  相似文献   

19.
Pathological remodeling of the left ventricle (LV) after myocardial infarction (MI) is a major cause of heart failure. Although cardiac hypertrophy after increased loading conditions has been recognized as a clinical risk factor for human heart failure, it is unknown whether post-MI hypertrophic remodeling of the myocardium is beneficial for cardiac function over time, nor which regulatory pathways play a crucial role in this process. To address these questions, transgenic (TG) mice engineered to overexpress modulatory calcineurin-interacting protein-1 (MCIP1) in the myocardium were used to achieve cardiac-specific inhibition of calcineurin activation. MCIP1-TG mice and their wild-type (WT) littermates, were subjected to MI and analyzed 4 weeks later. At 4 weeks after MI, calcineurin was activated in the LV of WT mice, which was significantly reduced in MCIP1-TG mice. WT mice displayed a 78% increase in LV mass after MI, which was reduced by 38% in MCIP1-TG mice. Echocardiography indicated marked LV dilation and loss of systolic function in WT-MI mice, whereas TG-MI mice displayed a remarkable preservation of LV geometry and contractility, a pronounced reduction in myofiber hypertrophy, collagen deposition, and beta-MHC expression compared with WT-MI mice. Together, these results reveal a protective role for MCIP1 in the post-MI heart and suggest that calcineurin is a crucial regulator of postinfarction-induced pathological LV remodeling. The improvement in functional, structural, and molecular abnormalities in MCIP1-TG mice challenges the adaptive value of post-MI hypertrophy of the remote myocardium. The full text of this article is available online at http://circres.ahajournals.org.  相似文献   

20.
BACKGROUND. Previous studies have shown that hypertrophy of surviving myocytes after myocardial infarction (MI) is limited. Progressive ventricular dilatation after MI may occur when compensatory hypertrophy cannot restore left ventricular (LV) wall stress to normal. METHODS AND RESULTS. To test whether induction of additional myocyte hypertrophy might prevent pathological LV remodeling after large MI, we administered 2-tetradecylglycidic acid (TDGA) 20 mg/kg/day to sham-operated (n = 12) and MI (n = 10) rats for 10 days, beginning the third day after infarction. We have previously shown that chronic inhibition of long-chain fatty acid oxidation with TDGA in rats results in myocardial hypertrophy without any apparent impairment of LV systolic function. When compared with untreated MI rats (n = 9), we found that TDGA-treated MI rats had increases in LV weight/body wt, myocyte cross-sectional area, and peak developed LV pressure during abrupt aortic occlusion. MI rats treated with TDGA had lower LV end-diastolic pressures and smaller end-diastolic volumes, whereas stroke volume was maintained. The ex vivo passive LV pressure-volume relation was shifted toward the pressure axis compared with untreated infarct rats. In sham-operated rats, TDGA caused increases in LV weight/body wt, myocyte size, peak developed LV pressure, cardiac index, and stroke volume index, and a shift of the passive LV pressure-volume relation toward the pressure axis. CONCLUSIONS. Induction of myocardial hypertrophy with an inhibitor of long-chain fatty acid oxidation retarded the process of LV dilatation and produced beneficial effects on systolic function after large myocardial infarction. These data support the hypothesis that inadequate hypertrophy of residual myocardium after infarction may contribute to LV dilatation and the development of congestive heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号