首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
PurposeThis study reports clinical experience using a linear accelerator-based MV-kV imaging system for intrafraction motion management during prostate stereotactic body radiation therapy (SBRT).Methods and MaterialsFrom June 2016 to August 2018, 193 prostate SBRT patients were treated using MV-kV motion management (median dose 40 Gy in 5 fractions). Patients had 3 fiducials implanted then simulated and treated with a full bladder and empty rectum. Pretreatment orthogonal kVs and cone beam computed tomography were used to position patients and evaluate internal anatomy. Motion was tracked during volumetric modulated arc therapy delivery using simultaneously acquired kV and MV images from standard on-board systems. Treatment was interrupted to reposition patients when motion >1.5-2 mm was detected. Motion traces were analyzed and compared with Calypso traces from a previously treated similar patient cohort. To evaluate “natural motion” (ie, if we had not interrupted treatment and repositioned), intrafraction couch corrections were removed from all traces. Clinical effectiveness of the MV-kV system was explored by evaluating toxicity (Common Terminology Criteria for Adverse Events v3.0) and biochemical recurrence rates (nadir + 2 ng/mL).ResultsMedian number of interruptions for patient repositioning was 1 per fraction (range, 0-9). Median overall treatment time was 8.2 minutes (range, 4.2-44.8 minutes). Predominant motion was inferior and posterior, and probability of motion increased with time. Natural motion >3 mm and >5 mm in any direction was observed in 32.3% and 10.2% of fractions, respectively. Calypso monitoring (n = 50) demonstrated similar motion results. In the 151 MV-kV patients with ≥3-month follow-up (median, 9.5 months; range, 3-26.5 months), grade ≥2 acute genitourinary/gastrointestinal and late genitourinary/gastrointestinal toxicity was observed in 9.9%/2.0% and 11.9%/2.7%, respectively. Biochemical control was 99.3% with a single failure in a high-risk patient.ConclusionsThe MV-kV system is an effective method to manage intrafraction prostate motion during SBRT, offering the opportunity to correct for prostate clinical target volume displacements that would have otherwise extended beyond typical planning target volume margins.  相似文献   

2.
The development of sophisticated conformal radiation therapy techniques for prostate cancer, such as intensity-modulated radiotherapy, implies precise and accurate targeting. Inter- and intrafraction prostate motion can be significant and should be characterized, unless the target volume may occasionally be missed. Indeed, bony landmark-based portal imaging does not provide the positional information for soft-tissue targets (prostate and seminal vesicles) or critical organs (rectum and bladder). In this article, we describe various prostate localization systems used before or during the fraction: rectal balloon, intraprostatic fiducials, ultrasound-based localization, integrated CT/linear accelerator system, megavoltage or kilovoltage cone-beam CT, Calypso 4D localization system tomotherapy, Cyberknife and Exactrac X-Ray 6D. The clinical benefit in using such prostate localization tools is not proven by randomized studies and the feasibility has just been established for some of these techniques. Nevertheless, these systems should improve local control by a more accurate delivery of an increased prescribed dose in a reduced planning target volume.  相似文献   

3.
Purpose: The objective of the study was to access toxicities of delivering a hypofractionated intensity-modulated radiotherapy (IMRT) boost with individualized intrafraction planning target volume (PTV) margins and daily online correction for prostate position. Methods and materials: Phase I involved delivering 42 Gy in 21 fractions using three-dimensional conformal radiotherapy, followed by a Phase II IMRT boost of 30 Gy in 10 fractions. Digital fluoroscopy was used to measure respiratory-induced motion of implanted fiducial markers within the prostate. Electronic portal images were taken of fiducial marker positions before and after each fraction of radiotherapy during the first 9 days of treatment to calculate intrafraction motion. A uniform 10-mm PTV margin was used for the first phase of treatment. PTV margins for Phase II were patient-specific and were calculated from the respiratory and intrafraction motion data obtained from Phase I. The IMRT boost was delivered with daily online correction of fiducial marker position. Acute toxicity was measured using National Cancer Institute Common Toxicity Criteria, version 2.0. Results: In 33 patients who had completed treatment, the average PTV margin used during the hypofractionated IMRT boost was 3 mm in the lateral direction, 3 mm in the superior-inferior direction, and 4 mm in the anteroposterior direction. No patients developed acute Grade 3 rectal toxicity. Three patients developed acute Grade 3 urinary frequency and urgency. Conclusions: PTV margins can be reduced significantly with daily online correction of prostate position. Delivering a hypofractionated boost with this high-precision IMRT technique resulted in acceptable acute toxicity.  相似文献   

4.
PURPOSE: To evaluate an online image-guidance strategy for conformal treatment of prostate cancer and to estimate margin-reduction benefits. METHODS AND MATERIALS: Twenty-eight patients with at least 16 helical computed tomography scans were each used in this study. Two prostate soft-tissue registration methods, including sagittal rotation, were evaluated. Setup errors and rigid organ motion were corrected online; non-rigid and intrafraction motion were included in offline analysis. Various clinical target volume-planning target volume (CTV-PTV) margins were applied. Geometrical evaluations included analyses of isocenter shifts and rotations and overlap index. Dosimetric evaluations included minimum dose and equivalent uniform dose (EUD) for prostate and gEUD for rectum. RESULTS: Average isocenter shift and rotation were (dX,dY,dZ,theta) = (0.0 +/- 0.7,-1.1 +/- 4.0,-0.1 +/- 2.5,0.7 degrees +/- 2.0 degrees ) mm. Prostate motion in anterior-posterior (AP) direction was significantly higher than superior-inferior and left-right (LR) directions. This observation was confirmed by isocenter shift in perspectives AP (1.8 +/- 1.8 mm) and RL (3.7 +/- 3.0 mm). Organ motion degrades target coverage and reduces doses to rectum. If 2% dose reduction on prostate D(99) is allowed for 90% patients, then minimum 3 mm margins are necessary with ideal image registration. CONCLUSIONS: Significant margin reduction can be achieved through online image guidance. Certain margins are still required for nonrigid and intrafraction motion. To further reduce margin, a strategy that combines online geometric intervention and offline dose replanning is necessary.  相似文献   

5.
BACKGROUND AND PURPOSE: To quantify inter- and intrafraction prostate motion in a standard VacLok (VL) immobilization device or in the BodyFix (BF) system incorporating a compression element which may reduce abdominal movement. MATERIALS AND METHODS: Thirty-two patients were randomly assigned to VL or BF. Interfraction prostate motion >3 mm was corrected pre-treatment. EPIs were taken daily at the start and end of the first and last treatment beams. Interfraction and intrafraction prostate motion were measured for centre of mass (COM) and individual markers. RESULTS: There were no significant differences in interfraction (p0.002) or intrafraction (p0.16) prostate motion with or without abdominal compression. Median intrafraction motion was slightly smaller than interfraction motion in the AP (7.0 mm vs. 7.6 mm) and SI direction (3.2 mm vs. 4.7 mm). The final image captured the maximal intrafraction displacement in only 40% of fractions. Our PTV incorporated >95% of total prostate motion. CONCLUSIONS: Intrafraction motion became the major source of error during radiotherapy after online correction of interfraction prostate motion. The addition of 120 mbar abdominal compression to custom pelvic immobilization influenced neither interfraction nor intrafraction prostate motion.  相似文献   

6.
PURPOSE: Here we study the magnitude of prostate motion during the delivery of a radiotherapy fraction. These motions have clinical consequences for on-line position verification and the choice of margins around the target volume. METHODS AND MATERIALS: We studied the motion of the prostate for 10 patients during 251 radiotherapy treatment fractions by assessing the position of implanted gold markers. Gold markers of 1 mm diameter and 5 mm length were implanted in the prostate before the start of the radiotherapy. We obtained movies during each fraction using an a-Si flat-panel imager. The markers could be detected in separate frames using a marker extraction kernel. RESULTS: Marker displacements as large as 9.5 mm were detected in one fraction. The motion of the prostate is greatest in the caudal-cranial and the anterior-posterior directions. Within a time window of 2 to 3 min, deviations from the initial marker position, averaged over all patients, are 0.3 +/- 0.5 mm and -0.4 +/- 0.7 mm in the anterior-posterior and caudal-cranial directions, respectively. CONCLUSIONS: It appeared that on average, the intrafraction prostate motions did not result in margins larger than 1 mm, provided that the position verification is performed at time intervals of 2 to 3 min. Only for some patients performing more frequent position verification or adding extra margins of 2 to 3 mm is required to account for intrafraction prostate motions.  相似文献   

7.
PURPOSE: To analyze the intrafraction motion of the prostate during external-beam radiation therapy of patients with prostate cancer. METHODS AND MATERIALS: Between August 2001-December 2005, 427 patients with Stage T3Nx/0Mx/0 prostate carcinoma received intensity-modulated radiation therapy treatment combined with position verification with fiducial gold markers. For a total of 11,426 treatment fractions (average, 27 per patient), portal images were taken of the first segment of all five beams. The irradiation time of the technique varied between 5-7 min. From these data, the location of gold markers could be established within every treatment beam under the assumption of minimal marker movement. RESULTS: In 66% of treatment fractions, a motion outside a range of 2 mm was observed, with 28% outside a range of 3 mm. The intrafraction marker movements showed that motion directions were often reversed. However, the effect was small. Even with perfect online position-correction at the start of irradiation, intrafraction motion caused position uncertainty, but systematic errors (Sigma) were limited to <0.6 mm, and random errors (sigma) to <0.9 mm. This would result in a lower limit of 2 mm for margins, in the absence of any other uncertainties. CONCLUSIONS: Intrafraction motion of the prostate occurs frequently during external-beam irradiation on a time scale of 5-7 min. Margins of 2 mm account for these intrafraction motions. However, larger margins are required in practice to accommodate other uncertainties in the treatment.  相似文献   

8.
BACKGROUND AND PURPOSE: To derive planning organ at risk volume (PRV) margins for the rectum and to analyse the impact of such margins on rectum dose volume histograms (DVHs). PATIENTS AND METHODS: Weekly repeat computer tomography (CT) scans of 19 bladder cancer patients acquired during a conformal radiotherapy course were registered with the corresponding planning CT scans. From these scans, the internal rectal motion was quantified, and the margins that had to be added to the rectum contour in the planning scan to encompass the observed span of rectum motion were determined. These margins were compared to the margins derived using a recent PRV margin recipe. To illustrate the impact of margins on rectum DVHs, the margins were applied in treatment plans of six prostate cancer patients. RESULTS: Altogether 141 CT scans were analysed. On average 24% of the repeat scan rectum volume was displaced outside the planning scan contours, and wall movements of up to 30 mm were observed. Margins of 16 mm anterior and 11 mm posterior encompassed all rectal motion except for the two most displaced rectum walls in each of these directions, in 89% of the patients. Using a recently published statistics-based recipe, margins of 6 mm anterior and 5 mm posterior accounted for the systematic rectum variation, i.e. the average wall position, in 90% of the patients. Adding anterior margin only caused consistent increases (up to 20%) in the fraction of the volume inside the high-dose region (40-70 Gy) compared to the DVH of rectum only. When using both anterior and posterior margins only small shifts (<5%) in the volume fractions were observed. CONCLUSIONS: Rectum PRV margins of 5-6 mm will encompass the systematic component of rectum motion, while margins up to 16 mm are required to also account for most of the random variation. Use of anterior margins only caused large shifts in the DVHs in the clinically significant dose range, while only minor shifts were seen when using both anterior and posterior margins.  相似文献   

9.
PURPOSE: To report the clinical experience with an electromagnetic treatment target positioning and continuous monitoring system in patients with localized prostate cancer receiving external beam radiotherapy. METHODS AND MATERIALS: The Calypso System is a target positioning device that continuously monitors the location of three implanted electromagnetic transponders at a rate of 10 Hz. The system was used at five centers to position 41 patients over a full course of therapy. Electromagnetic positioning was compared to setup using skin marks and to stereoscopic X-ray localization of the transponders. Continuous monitoring was performed in 35 patients. RESULTS: The difference between skin mark vs. the Calypso System alignment was found to be >5 mm in vector length in more than 75% of fractions. Comparisons between the Calypso System and X-ray localization showed good agreement. Qualitatively, the continuous motion was unpredictable and varied from persistent drift to transient rapid movements. Displacements > or =3 and > or =5 mm for cumulative durations of at least 30 s were observed during 41% and 15% of sessions. In individual patients, the number of fractions with displacements > or =3 mm ranged from 3% to 87%; whereas the number of fractions with displacements > or =5 mm ranged from 0% to 56%. CONCLUSION: The Calypso System is a clinically efficient and objective localization method for positioning prostate patients undergoing radiotherapy. Initial treatment setup can be performed rapidly, accurately, and objectively before radiation delivery. The extent and frequency of prostate motion during radiotherapy delivery can be easily monitored and used for motion management.  相似文献   

10.
For radiation delivery tracking systems that monitor intrafraction prostate motion, generalized departmental threshold protocols may be used. The purpose of this study is to determine whether predefined action thresholds can be generally applied or if patient-specific action thresholds may be required. Software algorithms were developed in the MatLab (The Mathworks Inc., Natick, MA) software environment to simulate shifts of the patient structure set consisting of prostate, bladder, and rectum. These structures were shifted by 1/2 10 mm in each direction in 1 mm increments to simulate displacements during treatment, without taking into consideration organ deformity. Dose-volume data at each shift were plotted and analyzed. A linear relationship was observed between planning dose-volume parameters and shifted dose-volume parameters. For a 5 mm anterior shift, it was observed that individual rectal V70 values increased by absolute magnitudes of 6-15%, dependent on the planning rectal V70 of each patient. Likewise, for a 5 mm inferior shift, individual bladder V70 values increased by 1-14%, dependent on planning bladder V70. This linear relationship was observed for all levels of shifts up to 10 mm. Since rectum and bladder dose-volume changes due to patient shifts are dependent on dose-volume parameters, this study suggests that patient-specific action thresholds may be necessary.  相似文献   

11.
PURPOSE: To assess the impact of intrafraction intervention on margins for prostate radiotherapy. METHODS AND MATERIALS: Eleven supine prostate patients with three implanted transponders were studied. The relative transponder positions were monitored for 8 min and combined with previously measured data on prostate position relative to skin marks. Margins were determined for situations of (1) skin-based positioning, and (2) pretreatment transponder positioning. Intratreatment intervention was simulated assuming conditions of (1) continuous tracking, and (2) a 3-mm threshold for position correction. RESULTS: For skin-based setup without and with inclusion of intrafraction motion, prostate treatments would have required average margins of 8.0, 7.3, and 10.0 mm and 8.2, 10.2, and 12.5 mm, about the left-right, anterior-posterior, and cranial-caudal directions, respectively. Positioning by prostate markers at the start of the treatment fraction reduced these values to 1.8, 5.8, and 7.1 mm, respectively. Interbeam adjustment further reduced margins to an average of 1.4, 2.3, and 1.8 mm. Intrabeam adjustment yielded margins of 1.3, 1.5, and 1.5 mm, respectively. CONCLUSION: Significant reductions in margins might be achieved by repositioning the patient before each beam, either radiographically or electromagnetically. However, 2 of the 11 patients would have benefited from continuous target tracking and threshold-based intervention.  相似文献   

12.
Organ motion and its management   总被引:16,自引:0,他引:16  
PURPOSE: To compile and review data on the topic of organ motion and its management. METHODS AND MATERIALS: Data were classified into three categories: (a) patient position-related organ motion, (b) interfraction organ motion, and (c) intrafraction organ motion. Data on interfraction motion of gynecological tumors, the prostate, bladder, and rectum are reviewed. Literature pertaining to the intrafraction movement of the liver, diaphragm, kidneys, pancreas, lung tumors, and prostate is compiled. Methods for managing interfraction and intrafraction organ motion in radiation therapy are also reviewed.  相似文献   

13.
ABSTRACT: BACKGROUND: To analyze interfraction motion of seminal vesicles (SV), and its motion relative to rectal and bladder filling.Methods and MaterialsSV and prostate were contoured on 771 daily computed tomography "on rails" scans from 24 prostate cancer patients undergoing radiotherapy. Random and systematic errors for SV centroid displacement were measured relative to the prostate centroid. Margins required for complete geometric coverage of SV were determined using isotropic expansion of reference contours. SV motion relative to rectum and bladder was determined. RESULTS: Systematic error for the SV was 1.9 mm left-right (LR), 2.9 mm anterior-posterior (AP) and 3.6 mm superior-inferior (SI). Random error was 1.4 mm (LR), 2.7 mm (AP) and 2.1 mm (SI). 10 mm margins covered the entire left SV and right SV on at least 90% of fractions in 50% and 33% of patients and 15 mm margins covered 88% and 79% respectively. SV AP movement correlated with movement of the most posterior point of the bladder (mean R2 = 0.46, SD = 0.24) and rectal area (mean R2 = 0.38, SD = 0.21). CONCLUSIONS: Considerable interfraction displacement of SV was observed in this cohort of patients. Bladder and rectal parameters correlated with SV movement.  相似文献   

14.
PURPOSE: The aim of this work was to study the variations in delivered doses to the prostate, rectum, and bladder during a full course of image-guided external beam radiotherapy. METHODS AND MATERIALS: Ten patients with localized prostate cancer were treated with helical tomotherapy to 78 Gy at 2 Gy per fraction in 39 fractions. Daily target localization was performed using intraprostatic fiducials and daily megavoltage pelvic computed tomography (CT) scans, resulting in a total of 390 CT scans. The prostate, rectum, and bladder were manually contoured on each CT by a single physician. Daily dosimetric analysis was performed with dose recalculation. The study endpoints were D95 (dose to 95% of the prostate), rV2 (absolute rectal volume receiving 2 Gy), and bV2 (absolute bladder volume receiving 2 Gy). RESULTS: For the entire cohort, the average D95 (+/-SD) was 2.02 +/- 0.04 Gy (range, 1.79-2.20 Gy). The average rV2 (+/-SD) was 7.0 +/- 8.1 cc (range, 0.1-67.3 cc). The average bV2 (+/-SD) was 8.7 +/- 6.8 cc (range, 0.3-36.8 cc). Unlike doses for the prostate, there was significant daily variation in rectal and bladder doses, mostly because of variations in volume and shape of these organs. CONCLUSION: Large variations in delivered doses to the rectum and bladder can be documented with daily megavoltage CT scans. Image guidance for the targeting of the prostate, even with intraprostatic fiducials, does not take into account the variation in actual rectal and bladder doses. The clinical impact of techniques that take into account such dosimetric parameters in daily patient set-ups should be investigated.  相似文献   

15.
PURPOSE: To measure the interfraction and intrafraction motion of the prostate during the course of external beam radiotherapy using a video electronic portal imaging device and three-dimensional analysis. METHODS AND MATERIALS: Eighteen patients underwent implantation with two or three gold markers in the prostate before five-angle/11-field conformal radiotherapy. Using CT data as the positional reference, multiple daily sets of portal images, and a three-dimensional reconstruction algorithm, intrafraction translations, as well as interfraction and intrafraction rotations, were analyzed along the three principal axes (left-right [LR], superoinferior [SI], and AP). The overall mean values and standard deviations (SDs), along with random and systematic SDs, were computed for these translations and rotations. RESULTS: For 282 intrafraction translational displacements, the random SD was 0.8 mm (systematic SD, 0.2) in the LR, 1.0 mm (systematic SD, 0.4) in the SI, and 1.4 mm (systematic SD, 0.7) in the AP axes. The analysis of 348 interfraction rotations revealed random SDs of 6.1 degrees (systematic SD, 5.6 degrees ) around the LR axis, 2.8 degrees (systematic SD, 2.4 degrees ) around the SI axis, and 2.0 degrees (systematic SD, 2.2 degrees ) around the AP axis. The intrafraction rotational motion observed during 44 fractions had a random SD of 1.8 degrees (systematic SD, 1.0 degrees ) around the LR, 1.1 degrees (systematic SD, 0.8 degrees ) around the SI, and 0.6 degrees (systematic SD, 0.3 degrees ) around the AP axis. CONCLUSION: The interfraction rotations observed were more important than those reported in previous studies. Intrafraction motion was generally smaller in magnitude than interfraction motion. However, the intrafraction rotations and translations of the prostate should be taken into account when designing planning target volume margins because their magnitudes are not negligible.  相似文献   

16.
PURPOSE: To determine the impact of filling volume changes of the urinary bladder and rectum on organ motion and dose distribution of the bladder and rectum during radical radiotherapy for bladder cancer and to calculate the internal margins to secure target coverage. METHODS AND MATERIALS: In 15 patients with muscle-invasive bladder cancer, a planning CT scan was performed with a bladder and rectal catheter, followed by three immediate CT scans with various filling of the urinary bladder and rectum. After 20 fractions, a fifth CT scan, without catherization, was performed. In each CT study, the bladder and rectum volumes were delineated and matched to the planning CT scan to measure the organ motion and calculate internal margins. These margins were compared with an isotropic standard margin of 2 cm. Dose-volume histograms were analyzed to describe the dose distribution in the bladder and rectum corresponding to various filling volumes. RESULTS: Bladder movement was most pronounced in the anterior and cranial directions. The internal margins required to cover the bladder movements due to filling of the bladder and rectum in 87% of the patients were 2.4 cm in the anterior, 1.1 cm in the posterior, 3.5 cm in the cranial, 0.5 cm in the caudal, and 1.3 cm in the lateral direction. CONCLUSION: The filling volumes of the bladder and rectum have a large impact on bladder movements, especially in the anterior and cranial directions. This should be included in the internal target volume with the introduction of anisotropic margins in conformal radiotherapy for bladder cancer.  相似文献   

17.
BACKGROUND AND PURPOSE: A major challenge in conformal radiotherapy of bladder cancer is to determine adequate treatment margins. For this purpose, we therefore quantified the internal motion of the urinary bladder as well as the external patient set-up variation during a course of fractionated radiotherapy. In the light of the recently introduced ICRU-62 concept, the planning organ at risk volume, we also studied the internal motion of nearby organs at risk, the rectum and intestine. MATERIAL AND METHODS: Weekly CT scans and electronic portal images (EPIs) were sampled from 20 patients during radical, conformal bladder irradiation (60-64 Gy/2 Gy in five fractions weekly). The planning scans were acquired with 70 ml of bladder contrast instilled, and patients were instructed to void before the treatment/repeat scanning sessions. Internal motion of the bladder, rectum and intestine was measured by 3-D image matching of the repeat scans to the patients' planning scans. Internal margins (CTV-to-ITV) were determined using both a direct empirical approach and an analytically derived margin recipe. The external patient set-up variability was determined by 2-D matching of front and lateral EPIs to corresponding digitally reconstructed radiographs. RESULTS: A total of 149 CT scans (20 for planning, 129 during the treatment course) and 133 sets of EPIs were analysed. Bladder volumes were smaller during treatment than in the planning situation in 85% of the repeat scans. Nevertheless, we found the repeat scan bladder volumes to extend outside the planning scan bladder contours in 89% of the scans, on average with 9% of the volume (range: 0-47%). Eight patients (40%) had at least one repeat scan (25 scans in total) where displacements >15 mm were observed at one or more sides of the bladder. CTV-to-ITV margins of 10 mm inferior, 20 mm superior, 11 mm left, 8 mm right, 20 mm anterior and 14 mm posterior were required to simultaneously encompass all bladder deflections except for the largest outward deflection in all directions in 84% of the patients. Including patient set-up variation (CTV-to-PTV), we found that an additional safety margin of 2-6 mm had to be added in the various directions. The rectum expanded outside the planning contours in all repeat scans, on average with 24% of the volume (range: 2-69%). The volume of intestine found close to the bladder were significantly and negatively correlated to the bladder volume in almost half of the patients. CONCLUSION: This study documented both a large internal motion of the bladder and a substantial patient set-up variation. Our current treatment margins have been adjusted according to the findings of this study. Considerable variation in position and volume of the rectum and intestine was also documented.  相似文献   

18.
PURPOSE: To quantify and describe the real-time movement of the prostate gland in a large data set of patients treated with radiotherapy. METHODS AND MATERIALS: The Calypso four-dimensional localization system was used for target localization in 17 patients, with electromagnetic markers implanted in the prostate of each patient. We analyzed a total of 550 continuous tracking sessions. The fraction of time that the prostate was displaced by >3, >5, >7, and >10 mm was calculated for each session and patient. The frequencies of displacements after initial patient positioning were analyzed over time. RESULTS: Averaged over all patients, the prostate was displaced >3 and >5 mm for 13.6% and 3.3% of the total treatment time, respectively. For individual patients, the corresponding maximal values were 36.2% and 10.9%. For individual fractions, the corresponding maximal values were 98.7% and 98.6%. Displacements >3 mm were observed at 5 min after initial alignment in about one-eighth of the observations, and increased to one-quarter by 10 min. For individual patients, the maximal value of the displacements >3 mm at 5 and 10 min after initial positioning was 43% and 75%, respectively. CONCLUSION: On average, the prostate was displaced by >3 mm and >5 mm approximately 14% and 3% of the time, respectively. For individual patients, these values were up to three times greater. After the initial positioning, the likelihood of displacement of the prostate gland increased with elapsed time. This highlights the importance of initiating treatment shortly after initially positioning the patient.  相似文献   

19.

Purpose

The aim of this study was to quantify the impact of rectal stool/gas volumes on intrafraction prostate motion for patients undergoing prostate radiotherapy with daily endorectal balloon (ERB).

Methods

Total and anterior stool/gas rectal volumes were quantified in 30 patients treated with daily ERB. Real-time intrafraction prostate motion from 494 treatment sessions, at most 6 min in length, was evaluated using Calypso® tracking system.

Results

The deviation of prostate intrafraction motion distribution was a function of stool/gas volume, especially when stool/gas is located in the anterior part of the rectum. Compared to patients with small anterior stool/gas volumes (<10 cm3), those with large volume (10–60 cm3) had a twofold increase in 3D prostate motion and interquartile data range within the 6th minute of treatment time. The 10% of the overall CBCT session where large anterior rectal volumes were observed demonstrated larger percentage of time at displacement greater than our proposed internal margin 3 mm.

Conclusion

Volume and location of stool/gas can directly impact the ERB’s intrafraction immobilization ability. Although our patient preparation protocol and the 100 cm3 daily ERB effectively stabilized prostate motion for 90% of the fractions, a larger-sized ERB may improve prostate fixation for patients with greater and/or variable daily rectal volume.  相似文献   

20.
目的 探讨前列腺癌调强放疗(IMRT)中直肠充盈状态对靶区及危及器官(OAR)的影响。方法 选取15例局限期前列腺癌IMRT患者,在直肠充盈和排空状态下采集2次盆腔定位CT图像,由同一高年资放疗医师勾画靶区及OAR(如直肠、膀胱、股骨头)后,由同一高年资放疗物理师在相同处方剂量下行调强放疗计划设计。将2种直肠充盈状态下的靶区和OAR剂量学参数进行分析和配对t检验。结果 当定位和实际治疗时直肠体积一致(排空或充盈状态),直肠不同体积状态对靶区、膀胱及股骨头剂量学参数无统计学差异(P>0.05)。当出现本试验假设的CT定位时为直肠排空状态而实际治疗时为直肠充盈状态,放疗靶区的平均剂量、均匀指数、适形指数差异具有统计学意义(P<0.05);直肠受照射剂量增加,直肠平均剂量、V50和V70增加56%、58%和288%(P<0.05);膀胱及股骨头剂量学参数则不受直肠状态的影响(P>0.05)。结论 前列腺癌IMRT治疗期间直肠保持充盈状态一致能保证放疗计划得到很好的执行,反之当定位与放疗期间直肠充盈状态不一致时,放疗靶区及直肠剂量学将出现明显差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号