首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elevation of [K+]o for 30 s from 4 to 120 mM produced a fast and reversible depolarization and transient increase in [Ca2+]i in fura-2 loaded Retzius cells of the leech. The protein phosphatase inhibitor, okadaic acid, significantly slowed the return of [Ca2+]i toward baseline without affecting the amplitude of depolarization or rate of repolarization. Furthermore, okadaic acid and another phosphatase inhibitor, calyculin A, prolonged Ba2+-dependent action potentials. These results suggest that the kinetics of Ca2+ influx may be regulated by the activity of phosphatases PP-1 and/or PP-2A.  相似文献   

2.
Septal neutons from embryonic rats were grown in tissue culture. Microfluorimetric and electrophysiological techniques were used to study Ca2+ homeostasis in these neurons. The estimated basal intracellular free ionized calcium concentration ([Ca2+]i) in the neurons was low (50–100 nM). Depolarization of the neurons with 50 mM K+ resulted in rapid elevation of [Ca2+]i to 500–1,000 nM showing recovery to baseline [Ca2+]i over several minutes. The increases in [Ca2+]i caused by K+ depolarization were completely abolished by the removal of extracellular [Ca2+], and were reduced by 80% by the ‘L-type’ Ca2+ channel blocker, nimodipine (1 μM). [Ca2+]i was also increased by the excitatory amino andl-glutamate, quisqualate, AMPA and kainate. Responses to AMPA and kainate were blocked by CNOX and DNOX. In the absence of extracellular Mg2+, large fluctuations in [Ca2+]i were observed that were blocked by removal of extracellular Ca2+, by tetrodotoxin (TTX), or by antagonists ofN-methyld-aspartate (NMDA) such as 2-amino 5-phosphonovalerate (APV). In zero Mg2+ and TTX, NMDA caused dose-dependent increases in [Ca2+]i that were blocked by APV. Caffeine (10 mM) caused transient increases in [Ca2+]i in the absence of extracellular Ca2+, which were prevented by thapsigargin, suggesting the existence of caffeine-sensitive ATP-dependent intracellular Ca2+ stores. Thapsigargin (2 μM) had little effect on [Ca2+]i, or on the recovery from K+ depolarization. Removal of extracellular Na+ had little effect on basal [Ca2+]i or on responses to high K+, suggesting that Na+/Ca2+ exchange mechanisms do not play a significant role in the short-term control of [Ca2+]i in septal neurons. The mitochondrial uncoupler, CCCP, caused a slowly developing increase in basal [Ca2+]i; however, [Ca2+]i recovered as normal from high K+ stimulation in the presence of CCCP, which suggests that the mitochondria are not involved in the rapid buffering of moderate increases in [Ca2+]i. In simultaneous electrophysiological and microfluorimetric recordings, the increase in [Ca2+]i associated with action potential activity was measured. The amplitude of the [Ca2+]i increase induced by a train of action potentials increased with the duration of the train, and with the frequency of firing, over a range of frequencies between 5 and 200 Hz. Recovery of [Ca2+]i from the modest Ca2+ loads imposed on the neuron by action potential trains follows a simple exponential decay (τ = 3–5s).  相似文献   

3.
Lactate production (Jlac), oxygen consumption rate (QO2), plasma membrane potentials (Em) and cytosolic free calcium levels [Ca2+]i were studied on symaptosomes isolated from rat brains, incubated in presence of high doses of nicardipine (90 μM), diltiazem (0.5 mM) and verapamil (0.25 mM), and submitted to depolarizing stimulation or inhibition of mitochondrial respiration. Nicardipine was able to completely prevent the veratridine-induced stimulation ofJlac, QO2andEm depolarization, whereas diltiazem and verapamil were less effective, although the concentrations used were 5 and 3 times higher, respectively, than nicardipine. Diltiazem, verapamil and nicardipine (9 μM) also prevented the veratridine-induced increase in [Ca2+]i, this effect being much less pronounced if the drugs were added after veratridine. Monensin (20 μM) was also able to increase [Ca2+]i but this effect was not affected by verapamil. Synaptosomes were also submitted to an inhibition of respiration of intrasynaptic mitochondria by incubation with rotenone (5 μM); in this condition of mimicked hypoxiaEm was more positive of about 11 mV; none of the drugs utilized modified this situation. The rotenone-induced 3-fold increase inJlac was barely modified by diltiazem and verapamil but it was completely abolished by nicardipine. The possible mechanism of the counteracting action of the drugs towards veratridine stimulation and rotenone inhibition and the involvement of Na+/Ca2+ exchanger in affecting [Ca2+]i are discussed.  相似文献   

4.
1. 1. The authors investigated the signal transduction in T-lymphocytes as a peripheral model for central neurons.
2. 2. Intracellular free calcium concentration [Ca2+]i was measured using fura 2 in T-lymphocytes from 6 patients with major depression during and after depression and from 6 healthy controls Patients were treated with interpersonal therapy (IPT) but not with psychotropic medication.
3. 3 Phytohemagglutinin (PHA) triggers an oscillatory [Ca2+]i signal in human T-lymphocytes. This implies two mechanisms for [Ca2+]i regulation: inositol phophate (IP) mediated release from intracellular stores and [Ca2+]i influx from the extracellular medium.
4. 4. PHA stimulates 49% of T cells from controls but only 17% of T cells from depressed patients. This finding explains previous results from cells in suspension indicating that [Ca2+]i signals after PHA-stimulation are reduced in cells from depressed patients.
5. 5 Cells from depressed patients show less [Ca2+]i oscillations. Normal oscillation pattems are restored after clinical recovery from depression.
6. 6. Thus altered [Ca2+]i oscillations in T-lymphocytes are a state phenomenon and may give us clues where to search for altered cellular mechanisms during depression.
  相似文献   

5.
The thrombin receptor on human platelets is activated by thrombin to stimulate platelet aggregation through the tethered ligand SFLLRN. This study examined the effects of thrombin and SFLLRN on aggregation and calcium mobilization ([Ca2+]i) in rat, guinea pig, rabbit, dog, monkey, and human platelets, and the role of protein kinases in regulating these functions. Thrombin induced platelet aggregation and [Ca2+]i in all species studied; however, only guinea pig, monkey and human platelets were responsive to SFLLRN. Similar species specific effects were obtained with [Ca2+]i studies. The kinetic profile for [Ca2+]i differed among species, suggesting that regulatory mechanisms for calcium differed between agonists and among species. Staurosporine, a non-selective inhibitor of protein kinases, inhibited platelet aggregation induced by thrombin or SFLLRN in all species. Staurosporine inhibited thrombin-induced [Ca2+]i in guinea pigs, had no effect in rat, and increased [Ca2+]i in all other species. Staurosporine inhibited SFLLRN-induced [Ca2+]i in guinea pig, yet had no effect in monkey or human. Tyrphostin 23, a specific inhibitor of tyrosine protein kinases, inhibited thrombin-induced aggregation of rabbit, monkey, dog and human platelets. SFLLRN-induced aggregation was also inhibited by tyrphostin 23. Tyrphostin 23 inhibited [Ca2+]i induced by either thrombin or SFLLRN in all species. Based on the differential response to agonist stimulation, we propose that thrombin can activate platelets via SFLLRN-dependent and independent mechanisms, which could involve yet unrecognized subtypes of the thrombin receptor or distinct cellular activating mechanisms. Furthermore, differential regulation of calcium mobilization and aggregation was observed in those platelets responding to either thrombin or SFLLRN.  相似文献   

6.
Binding of [3H]cyclohexyladenosine (CHA) to the cellular fractions and P2 subfractions of the goldfish brain was studied. The A1 receptor density was predominantly in synaptosomal membranes. In goldfish brain synaptosomes (P2), 30 mM K+ stimulated glutamate, taurine and GABA release in a Ca2+-dependent fashion, whereas the aspartate release was Ca2+-independent. Adenosine, R-phenylisopropyladenosine (R-PIA) and CHA (100 μM) inhibited K+-stimulated glutamate release (31%, 34% and 45%, respectively). All of these effects were reversed by the selective adenosine A1 receptor antagonist, 8-cyclopentyltheophylline (CPT). In the same synaptosomal preparation, K+ (30 mM) stimulated Ca2+ influx (46.8±6.8%) and this increase was completely abolished by pretreatment with 100 nM ω-conotoxin. Pretreatment with 100 μM R-PIA or 100 μM CHA, reduced the evoked increase of intra-synaptosomal Ca2+ concentration, respectively by 37.7±4.3% and 39.7±9.0%. A possible correlation between presynaptic A1 receptor inhibition of glutamate release and inhibition of calcium influx is discussed.  相似文献   

7.
The hippocampus is especially vulnerable to excitotoxicity and delayed neuronal cell death. Chronic elevations in free intracellular calcium concentration ([Ca2+]i) following glutamate-induced excitotoxicity have been implicated in contributing to delayed neuronal cell death. However, no direct correlation between delayed cell death and prolonged increases in [Ca2+]i has been determined in mature hippocampal neurons in culture. This investigation was initiated to determine the statistical relationship between delayed neuronal cell death and prolonged increases in [Ca2+]i in mature hippocampal neurons in culture. Using indo-1 confocal fluorescence microscopy, we observed that glutamate induced a rapid increase in [Ca2+]i that persisted after the removal of glutamate. Following excitotoxic glutamate exposure, neurons exhibited prolonged increases in [Ca2+]i, and significant delayed neuronal cell death was observed. The N-methyl-D-aspartate (NMDA) channel antagonist MK-801 blocked the prolonged increases in [Ca2+]i and cell death. Depolarization of neurons with potassium chloride (KCl) resulted in increases in [Ca2+]i, but these increases were buffered immediately upon removal of the KCl, and no cell death occurred. Linear regression analysis revealed a strong correlation (R = 0.973) between glutamate-induced prolonged increases in [Ca2+]i and delayed cell death. These data suggest that excitotoxic glutamate exposure results in an NMDA-induced inability to restore resting [Ca2+]i (IRRC) that is a statistically significant indicator of delayed neuronal cell death.  相似文献   

8.
Deborah M. White 《Brain research》1997,750(1-2):141-146
In normal animals, spinal administration of neuropeptide Y induces analgesia to thermal stimuli, but has no effect on mechanical thresholds. Recent anatomical studies, however, have shown that following nerve injury there is an altered expression of neuropeptide Y and its receptors. The aim of this behavioural study, therefore, is to examine the effect of intrathecal administration of neuropeptide Y, its agonists and an antagonist on mechanical nociceptive thresholds in rats with partial injury to the sciatic nerve. Test agents were administered for 14 days via osmotic pumps (0.5 μl/day) attached to intrathecal catheters and the nociceptive flexion reflex was quantified using an Ugo Basile Analgesymeter. Partial injury to the sciatic nerve, in animals treated intrathecally with saline, induces a significant decrease in mechanical threshold as compared to the sham operated, contralateral paw. The nerve injury-induced hyperalgesia is exacerbated by 2 μM neuropeptide Y and by 2 μM [Leu31,Pro34]-neuropeptide Y, a Y1 receptor agonist. The Y2 receptor agonist, N-acetyl-[Leu28,Leu31]-neuropeptide Y24–36 (2 μM), had no effect on the nerve injury-induced hyperalgesia. The putative neuropeptide Y antagonist, -trinositol (10 μM), significantly attenuated the nerve injury-induced hyperalgesia. This study suggests that neuropeptide Y may contribute to nerve injury-induced mechanical hyperalgesia via the Y1 receptor and provides further insight into the possible mechanisms underlying nerve injury-induced hyperalgesia to mechanical stimuli.  相似文献   

9.
NT-3 and BDNF protect CNS neurons against metabolic/excitotoxic insults   总被引:28,自引:0,他引:28  
Bin Cheng  Mark P. Mattson   《Brain research》1994,640(1-2):56-67
Neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) were recently shown to have biological activity in central neurons. In the present study, NT-3 and BDNF attenuated glucose deprivation-induced neuronal damage dose-dependently in rat hippocampal, septal and cortical cultures. Direct measurements of intraneuronal free calcium levels ([Ca2+]i) and manipulations of calcium inlux demonstrated that NT-3 and BDNF each prevented the elevation of [Ca2+]i that mediated glucose deprivation-induced injury. Studies in cultures depleted of glia indicateda direct action of NT-3 and BDNF on neurons. Neurons pretreated with NT-3 or BDNF for 24 hr were more resistant to glutamate neurotoxicity, and showed attenuated [Ca2+]i responses to glutamate. TrkB (BDNF receptor) and trkC (NT-3 receptor) proteins were present in hippocampal, cortical and septal cultures where they were localied to neuronal cell bodies and neurites. The data demonstrate that NT-3 and BDNF can protect neurons against metabolic and excitotoxic insults, and suggest that these neurotrophins may serve [Ca2+]i-stabilizing and neuroprotective functions in the brain.  相似文献   

10.
O. Herreras  G.G. Somjen   《Brain research》1993,610(2):283-294
The potential shifts (ΔVo) associated with spreading depression (SD) were analysed with the help of multiple extracellular recording and ion-selective microelectrodes in the CA1 region of the dorsal hippocampus of anesthetized rats. Recurrent waves of SD were induced by perfusing high K+ solution through microdialysis probes. SD-related ΔVo had a composite wave shape, consisting of an early, rapidly shifting part (phase I) followed by a slower shift to a second negative maximum (phase II). ΔVo shifts in stratum radiatum usually started earlier, always lasted longer and had lartger amplitude than those recorded in stratum pyramidale. The ΔVo responses in stratum radiatum had an inverted saddle shape created by a transient relatively positive “hump” interposed between phases I and II. During this “hump”, the potentials in the two layers transiently approached one another. During continuous high K+ dialysis, successive ΔVo waves episodes evolved according to a consistent pattern: while phase I remained unchanged, phase II increased in amplitude and duration with each episode. Eventually, a depressed state developed which lasted for many minutes, termed here prolonged unstable spreading depression. During phase I, ΔVo and extracellular K ([K+]o) changes were correlated. During phase II, [K+]o decreased even as ΔVo continued to increase. During SD, [Ca2+]o decreased to <0.01 mM. During phases I and II, both [Ca2+]o and [Na+]o remained low. the recoverries of [Ca2+]o and [Na+]o had an initial fast and a later much slower phase and took several minutes longer than the recoveries of [K+]o and ΔVo. Depth profiles of ΔVo and Δ[K+]o revealed strikingly steep gradients early and late during a wave; but voltage and ion gradients were not precisely correlated either in time or in space. We conclude that ΔVo of phases I and II are generated by different processes. Membrane ion currents cannot fully explain the ΔVo responses. The possible contributions by ion diffusion and by active ion transport are discussed. The extremely low level to which [Ca2+]o sinks during SD, and its two-phase recovery, indicate intracellular sequestration or binding of substantial amounts of Ca2+ ions. The residual deficit of [Ca2+o following recovery of SP shifts may account for the persistent depression of synaptic transmission after repolarization of neurons.  相似文献   

11.
The uptake of Ca2+ by synaptosomes induced by K+-depolarization andby Na+/Ca2+ exchange was studied in synaptosomes in which the internal Na+ and K+ contents were varied by prolonged incubation at 30 °C or by inhibiting the Na+, K+-ATPase with 1 mM ouabain. Increased Na+ content of the synaptosomes is associated with an increase in Ca2+ uptake when the synaptosomes are placed in depolarizing K+ media. Furthermore, reduction in the [Na+]o, when the [K+]o is increased, in substitution for [Na+]o, to depolarize the membrane, further increases the Ca2+ uptake. Under these conditions, Ca2+ entry probably occurs through voltage-sensitive channels and through the Na+/Ca2+ exchanger. Destruction of the Na+ gradient by monensin, or preloading the synaptosomes with K+, completely inhibits the Ca2+ uptake in a K+-depolarizing medium. It is shown that if the Na+ gradient is maintained constant during K+-depolarization, the Ca2+ uptake is very low and that most of the Ca2+ uptake is correlated with the Na+ gradient. Evidence is presented that K+ may stimulate the Na+/Ca2+ exchange mechanism. Furthermore, divalent cations, Mg2+, Mn2+ and Zn2+, known to block Ca2+ channels, also inhibit Na+/Ca2+ exchange.  相似文献   

12.
The effects of the opioid peptide dynorphin A (DynA) on phagocytosis in peritoneal macrophages was examined by flow cytometry (FCM). DynA enhanced phagocytosis in a dose-dependent manner. Leucine-enkephalin (Leu-Enk), methionine-enkephalin (Met-Enk), β-neo-endorphin (βNeo-End), DynA(9–17) and DynA(13–17) had no such activity, -Neo-endorphin ( Neo-End), dynorphin B (DynB), DynA(l–13) and DynA(6–17) enhanced phagocytosis less effectively than DynA. Naloxone did not inhibit the enhancement of phagocytosis induced by DynA. Unstimulated control phagocytosis was partially suppressed in Ca2+-free EGTA-containing solution and even in this solution DynA enhanced phagocytosis. However, the enhancement by DynA was suppressed in EGTA- and BAPTA-AM-containing Ca2+-free solution. The present study showed that enhancement of phagocytosis by DynA was independent of extracellular Ca2+ ([Ca2+]o) and dependent on intracellular Ca2+ ([Ca2+]i). The present results support DynA being one of the mediators from the nervous system that modulates the immune system.  相似文献   

13.
The impact of chronic ethanol treatment, sufficient to induce tolerance and physical dependence, on GABAA receptor function was studied in acutely isolated neurons from the medial septum/nucleus diagonal band (MS/nDB) of adult rats using whole cell, patch-clamp recordings. In ethanol-naive Controls, GABA (0.3–300 μM) induced concentration-dependent increases in Cl current with a threshold of 0.3–1 μM, a mean maximal current of 7645 ± 2148 pA at 100–300 μM, an EC50 of 11.3 ± 1.3 μM and a slope of 1.53 ±0.07. GABA-activated currents in neurons from animals receiving two weeks of ethanol liquid diet treatment did not differ significantly on any of these measures. The rate of GABAA receptor desensitization (t1/2 = 6.49 ± 1.19 s) estimated as the time required for loss of 50% of peak current during sustained application of 10 μM GABA, as well as the residual steady state current remaining following complete desensitization for controls was unchanged by chronic ethanol. The impact of chronic ethanol treatment on the GABAA receptor modulation by lanthanum and zinc which act as positive and negative allosteric modulators, respectively, was also evaluated. Test pulses of 3 μM GABA in control neurons showed maximal potentiation by 141 ± 30% at ~ 1000 μM lanthanum with an EC50 of 107 ± 34 μM and a slope of ~ 1. Lanthanum potentiation remained the same following chronic ethanol treatment. Initial estimates based on fitted concentration response curves suggested that maximal inhibition of 3 μM GABA responses by zinc at the level of 70.2 ± 8.5% in control cells was significantly increased by chronic ethanol treatment to 95.3 ± 2.5%, although the IC50 of 60.2 ± 25 μM was not changed. However, this difference was not supported by direct tests of maximal 3–10 mM zinc concentrations. These results suggest that chronic ethanol treatment, sufficient to induce tolerance and physical dependence, probably does not lead to readily detectible changes in GABAA receptor function in MS/nDB neurons.  相似文献   

14.
Cytoplasmic [Ca2+] ([Ca2+]i) was measured using Fura-2 in pyramidal neurones isolated from the rat dorsal cochlear nucleus (DCN). The kinetic properties of Ca2+ removal following K+ depolarization-induced Ca2+ transients were characterized by fitting exponential functions to the decay phase. The removal after small transients (<82 nM peak [Ca2+]i) had monophasic time course (time constant of 6.43±0.48 s). In the cases of higher Ca2+ transients biphasic decay was found. The early time constant decreased (from 3.09±0.26 to 1.46±0.11 s) as the peak intracellular [Ca2+] increased. The value of the late time constant was 18.15±1.60 s at the smallest transients, and showed less dependence on [Ca2+]i. Blockers of Ca2+ uptake into intracellular stores (thapsigargin and cyclopiazonic acid) decreased the amplitude of the Ca2+ transients and slowed their decay. La3+ (3 mM) applied extracellularly during the declining phase dramatically changed the time course of the Ca2+ transients as a plateau developed and persisted until the La3+ was present. When the other Ca2+ removal mechanisms were available, reduction of the external [Na+] to inhibit the Na+/Ca2+ exchange resulted in a moderate increase of the time constants. It is concluded that in the isolated pyramidal neurones of the DCN the removal of Ca2+ depends mainly on the activity of Ca2+ pump mechanisms.  相似文献   

15.
We have shown earlier that nicotinic agonists induce the release of noradrenaline from chick sympathetic neurons in culture in two ways: (a) by activating the postsynaptic nicotinic receptors on nerve cell bodies, giving rise to spreading electrical activity and opening of voltage operated calcium channels in neuronal processes; (b) by activating the presynaptic nicotinic receptors on neuronal processes. In the present work, we investigated the contribution of various pathways to the observed Ca2+ influx and subsequent noradrenaline release. Sympathetic neurons in culture were stimulated either by the nicotinic agonist dimethylphenylpiperazinium or electrically, in the presence or absence of tetrodotoxin and of specific blockers of calcium or nicotinic channels, and the effects on [Ca2+]i in the area of neuronal processes and on noradrenaline release were measured. Under control conditions, the N-type channel blocker ω-conotoxin (0.1 μmol/1) diminished the release of noradrenaline and the increase of intraterminal Ca2+ by 48% and 55%, respectively, whereas the L-type channel blocker (+)Bay k 8644 (1 μmol/1) diminished the release of noradrenaline by 25% and the increase of [Ca2+]i by 39%. The P-type channel blocker ω-agatoxin (0.3 μmol/1) had no effect. The effects of the L-type channel ligands were complex and could only be explained on the assumption that, at high concentrations, these drugs also act as nicotinic antagonists. Tetrodotoxin blocked the Ca2+ response evoked by electrical stimulation whereas DMPP applied in the presence of tetrodotoxin still evoked an increase of [Ca2+]i and the release of noradrenaline (27% and 30% of control without tetrodotoxin, respectively). These residual responses were not blocked by any of the calcium channel blockers used or by their combination. Apparently, a substantial part of the influx of Ca2+ induced by the activation of presynaptic nicotinic receptors is not carried by the N-, L- or P-type channels and probably occurs directly via the open channels of nicotinic receptors.  相似文献   

16.
Verapamil (ED50=3×10−6 M) and nicardipine (ED50=10−6 M) inhibited the platelet activating factor (PAF)-induced increase of free cytosolic calcium concentration ([Ca2+]i) in quin2-loaded human platelets. In a Ca-free medium containing 5 mM BaCl2, PAF stimulated the inflow of Ba2+ ions which is completely abolished by verapamil and nicardipine. Simultaneous determination of quin2 fluorescence and 45Ca absorption showed that the action of verapamil is accounted for by blocking of the Ca2+ entry. Nicardipine suppresses also Ca2+ mobilization from intracellular stores. The effects of verapamil and nicardipine are not competitive with respect to PAF.The blockers reduce the [Ca2+]i increase induced by ADP, vasopressin, and PGH2 analogue U46619.  相似文献   

17.
This study was performed to determine whether the intracellular Ca2+ concentration ([Ca2+]i) is increased in hippocampal CA3 neurons of spontaneously epileptic rats (SER) which show both absence-like and convulsive seizures using hippocampal slices loaded with Calcium Green-1 when a weak single stimulation is given to the mossy fiber. [Ca2+]i in the CA3 area was significantly increased after a single stimulus to mossy fibers in SER, while no changes were detected in normal Wistar rats. These findings suggest the existence of an abnormality in the Ca2+ channel in the SER CA3 region and that this is probably responsible for epileptic seizures.  相似文献   

18.
The characteristics of a glial Na+,K+-pump dependent on extracellular K+ within epileptogenic cortex were studied electrophysiologically, biochemically and histochemically in vitro using slices from cobalt-induced epileptogenic cortex of rat. When the extracellular K+ concentration ([K+]o) was varied between 4 and 40 mM, the mean slope of membrane potential plotted against [K+]o was about 57 mV in glia from the normal cortex (tissue A) and about 44 mV in glia from the epileptogenic cortex (tissue B); whereas no significant difference in the resting membrane potential of these tissues was observed. In glia from tissue B, a marked transient hyperpolarization above control level was caused by replacement of elevated [K+]o with the normal medium. Ouabain abolished these phenomena observed in glia from tissue B, but had no effect on the membrane potential during normal [K+]o. Reduction of extracellular Na+, Ca2+ and Cl did not significantly affect the membrane potential of glia from either tissue. In tissue A, the cells marked by intracellular injection of horseradish peroxidase after intracellular recording were protoplasmic astrocytes; in tissue B, fibrous astrocytes with abnormal processes predominated. K+-dependent stimulation of Na+,K+-ATPase activity of the astrocyte-enriched fraction and its membrane preparation from tissue B was much larger than that from tissue A. A certain amount of the reaction product of K+-pNPPase activity was seen on glial plasma membrane within tissue B but not on that from tissue A. The above findings suggest that a glial Na+,K+-pump within actively firing epileptogenic cortex may be modified to increase in its activity.  相似文献   

19.
The effect of prostaglandin E1 (PGE1) on platelets is mediated through the PGE1 receptor and the consequent maintenance of the platelet's discoid shape. The effects of PGE1 and dibutyryl cAMP (dbcAMP) on the deformability of human platelets were studied. Deformability tests based upon the micropipette aspiration on the platelets were performed by using pipettes with radii (Rp) of 0.26-0.36 gm. The time course of the extension length (Dp, in μg) of the platelets in response to aspiration with a negative pressure (ΔP) of 5 cm H2 O (ΔP × Rp = 0.15 dynes/cm) was analyzed. PGE1 treatment (0.1 μM) resulted in a decrease of platelet deformability as compared with results obtained for apparently non-activated, control platelets. The deformation index, i.e., Dp/Rp (PGE1 -treated) / Dp/Rp (control), was significantly reduced to 0.90 ± 0.04. DbcAMP treatment also significantly decreased the deformability of platelets and this decrease was dbcAMP dose dependent. In contrast, colchicine- or cytochalasin D-treated platelets increased deformability. PGE1 -treated platelets had a higher [cAMP]i than controls. Platelets treated with PGE1 or dbcAMP showed a reduced [Ca2+]i increment induced by thrombin as compared to non-treated controls. These results indicate that PGE1 and dbcAMP treatment of platelets is accompanied by an enhancement of platelet resistance to deformation. The increased [cAMP]i and low [Ca2+]i after PGE1 treatment may limit the rearrangement of cytoskeleton and thus enhance platelet resistance to deformation.  相似文献   

20.
Rat brain cortical cells in primary culture were used to investigate long-term effects of opiates on endopeptidases acting on dynorphin peptides. Enzyme activity in the soluble fraction of the cells converted dynorphin B to Leu-enkephalin-Arg6 and to a lesser extent to Leu-enkephalin. Five day treatment with 10 μM morphine increased the conversion to Leu-enkephalin-Arg6 by 370%. This effect was prevented by the presence of naloxone in the culture medium. The opiate-inducible activity was directed to the Arg-Arg bond in dynorphins with preference for dynorphin B>-neoendorphin>>dynorphin A. The Km for the generation of Leu-enkephalin-Arg6 from dynorphin B was 40 μM. Enzyme activity was inhibited by dynorphin fragments, in the following order of potency: dynorphin A(1–13)>A(2–13)>A(1–17)>A(2–17) and by SH-reagents, suggesting the presence of a cysteine-protease. The opiate-stimulated dynorphin-converting enzyme (DCE)-activity affects the balance between dynorphin peptides (selective for κ-opioid receptors) and enkephalin peptides (selective for δ-opioid receptors). Since both types of opioid peptides can influence the development of opiate tolerance, the change in the extent of this transformation may be functionally important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号