首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amino acids are transported across the plasma membrane of plant cells by proton-amino acid symports. We report here the successful cloning of a neutral amino acid carrier by functional complementation. A histidine transport deletion mutant of Saccharomyces cerevisiae was transformed with an Arabidopsis thaliana cDNA library constructed in a yeast expression vector. Forty transformants, out of 10(5), allowed growth on a histidine-limiting medium. The acquired ability to grow on low histidine was shown to be strictly dependent on the protein encoded by the expression plasmid. Histidine and alanine transport activity were 10- to 20-fold greater in the transformants. The transport kinetics, inhibitor sensitivity, and substrate specificity match those of neutral system II, a neutral amino acid carrier we previously described in plasma membrane vesicles isolated from leaf tissue. The cDNA insert is 1.7 kb with an open reading frame that codes for a protein containing 486 amino acids with a calculated molecular mass of 52.9 kDa and three sites of potential N-linked glycosylation. Hydropathy analysis of the deduced amino acid sequence suggests this is an integral membrane protein with 10-12 membrane-spanning alpha-helices. Overall, the sequence of this amino acid carrier is not closely related to any other protein sequences in the GenBank data base. Interestingly, however, there are small regions of sequence that exhibit significant levels of similarity with at least seven other integral membrane proteins.  相似文献   

2.
Selection of functional cDNAs by complementation in yeast.   总被引:21,自引:6,他引:15       下载免费PDF全文
Yeast cDNA was prepared in a yeast expression plasmid to generate a cDNA plasmid pool composed of approximately 40,000 members. Several yeast mutants were transformed with the cDNA plasmid pool, and the cDNAs for ADC1, HIS3, URA3, and ASP5 were isolated by functional complementation. Restriction enzyme analysis confirmed the genetic identity of the ADC1, HIS3, and URA3 cDNAs and demonstrated that the URA3 cDNA contains 5' noncoding sequences. The relative abundance of the various cDNAs in the cDNA plasmid pool paralleled the abundance of the mRNAs in total poly(A)+ RNA, which ranged from approximately 0.01% to 1%. The utility of this approach to isolate rare cDNAs from higher eukaryotes is discussed.  相似文献   

3.
We have cloned the human homolog of the Saccharomyces cerevisiae COX10 gene by functional complementation of a yeast cox10 null mutant. The 2.8-kb cDNA encoding the human heme A:farnesyltransferase codes for a 443-aa protein with high homology to the yeast and bacterial farnesylases. The human COX10 homolog, however, does not complement the mutation as efficiently as the yeast COX10 protein, likely due to the heterologous environment. PCR amplification and Southern analysis confirm the existence of a large mRNA for the human protein, with an unusually long 3' untranslated region. This clone can now be used to screen patients with inherited deficiencies in cytochrome oxidase in which the mutations remain unidentified and are likely to reside in a protein influencing the assembly of the enzyme.  相似文献   

4.
5.
Whereas vertebrates and fungi synthesize sterols from epoxysqualene through the intermediate lanosterol, plants cyclize epoxysqualene to cycloartenol as the initial sterol. We report the cloning and characterization of CAS1, an Arabidopsis thaliana gene encoding cycloartenol synthase [(S)-2,3-epoxysqualene mutase (cyclizing, cycloartenol forming), EC 5.4.99.8]. A yeast mutant lacking lanosterol synthase [(S)-2,3-epoxysqualene mutase (cyclizing, lanosterol forming), EC 5.4.99.7] was transformed with an A. thaliana cDNA yeast expression library, and colonies were assayed for epoxysqualene mutase activity by thin-layer chromatography. One out of approximately 10,000 transformants produced a homogenate that cyclized 2,3-epoxysqualene to the plant sterol cycloartenol. This activity was shown to be plasmid dependent. The plasmid insert contains a 2277-bp open reading frame capable of encoding an 86-kDa protein with significant homology to lanosterol synthase from Candida albicans and squalene-hopene cyclase (EC 5.4.99.-) from Bacillus acidocalcarius. The method used to clone this gene should be generally applicable to genes responsible for secondary metabolite biosynthesis.  相似文献   

6.
The peroxisome biogenesis disorders (PBDs), including Zellweger syndrome (ZS) and neonatal adrenoleukodystrophy (NALD), are autosomal recessive diseases caused by defects in peroxisome assembly, for which at least 10 complementation groups have been reported. We have isolated a human PEX1 cDNA (HsPEX1) by functional complementation of peroxisome deficiency of a mutant Chinese hamster ovary (CHO) cell line, ZP107, transformed with peroxisome targeting signal type 1-tagged “enhanced” green fluorescent protein. This cDNA encodes a hydrophilic protein (Pex1p) comprising 1,283 amino acids, with high homology to the AAA-type ATPase family. A stable transformant of ZP107 with HsPEX1 was morphologically and biochemically restored for peroxisome biogenesis. HsPEX1 expression restored peroxisomal protein import in fibroblasts from three patients with ZS and NALD of complementation group I (CG-I), which is the highest-incidence PBD. A CG-I ZS patient (PBDE-04) possessed compound heterozygous, inactivating mutations: a missense point mutation resulting in Leu-664 → Pro and a deletion of the sequence from Gly-634 to His-690 presumably caused by missplicing (splice site mutation). Both PBDE-04 PEX1 cDNAs were defective in peroxisome-restoring activity when expressed in the patient fibroblasts as well as in ZP107 cells. These results demonstrate that PEX1 is the causative gene for CG-I peroxisomal disorders.  相似文献   

7.
Functional complementation of mutations in the yeast Saccharomyces cerevisiae has been used to clone three multifunctional human genes involved in de novo purine biosynthesis. A HepG2 cDNA library constructed in a yeast expression vector was used to transform yeast strains with mutations in adenine biosynthetic genes. Clones were isolated that complement mutations in the yeast ADE2, ADE3, and ADE8 genes. The cDNA that complemented the ade8 (phosphoribosylglycinamide formyltransferase, GART) mutation, also complemented the ade5 (phosphoribosylglycinamide synthetase) and ade7 [phosphoribosylaminoimidazole synthetase (AIRS; also known as PAIS)] mutations, indicating that it is the human trifunctional GART gene. Supporting data include homology between the AIRS and GART domains of this gene and the published sequence of these domains from other organisms, and localization of the cloned gene to human chromosome 21, where the GART gene has been shown to map. The cDNA that complemented ade2 (phosphoribosylaminoimidazole carboxylase) also complemented ade1 (phosphoribosylaminoimidazole succinocarboxamide synthetase), supporting earlier data suggesting that in some organisms these functions are part of a bifunctional protein. The cDNA that complemented ade3 (formyltetrahydrofolate synthetase) is different from the recently isolated human cDNA encoding this enzyme and instead appears to encode a related mitochondrial enzyme.  相似文献   

8.
cdc28, one of several genes required for cell division in the yeast Saccharomyces cerevisiae, has been isolated on recombinant plasmids. A recombinant plasmid pool containing the entire yeast genome was constructed by partial digestion of yeast DNA with the four-base recognition restriction endonuclease Sau3A to give the equivalent of random fragments, size selection on sucrose gradients, and introduction of the fragments into the yeast vector YRp7 by use of the homology of Sau3A ends with those generated in the vector by cleavage with BamHI. Recombinant plasmids capable of complementing cdc28 mutations were isolated by transformation of a cdc28ts strain and selection for clones capable of growth at the restrictive temperature. Plasmids responsible for complementing the cdc28ts phenotype were shown to recombine specifically with the chromosomal cdc28 locus, confirming the identity of the cloned sequences. In addition, one of the recombinant plasmids was capable of complementing a mutation in tyr1, a gene genetically linked to cdc28. This method of gene isolation and identification should be applicable to all yeast genes for which there are readily scorable mutants.  相似文献   

9.
10.
A hybrid plasmid colony bank was constructed in Escherichia coli using the E. coli-Saccharomyces cerevisiae shuttle vector pLC544 and randomly sheared segments of yeast DNA. By transformation with a hybrid plasmid DNA pool from this collection and complementation of a temperature-sensitive cdc10 mutation in yeast, a plasmid was isolated that carries 8 kilobase pairs of DNA around the chromosome III centromere-linked CDC10 locus. This DNA segment overlaps a larger region of DNA (40 kilobase pairs) previously identified to be around the LEU2 locus on chromosome III [Chinault, A.C. & Carbon, J. (1979) Gene 5, 111-126] and physically establishes the directionality of the cloned DNA sequences with respect to the genetic map and the centromere. In the leu2-cdc10 interval, the relationship between physical distance on the DNA and genetic distance as measured by recombinational frequencies is about 3 kilobase pairs per centimorgan.  相似文献   

11.
Mammalian Cdk5 is a member of the cyclin-dependent kinase family that is activated by a neuron-specific regulator, p35, to regulate neuronal migration and neurite outgrowth. p35/Cdk5 kinase colocalizes with and regulates the activity of the Pak1 kinase in neuronal growth cones and likely impacts on actin cytoskeletal dynamics through Pak1. Here, we describe a functional homologue of Cdk5 in budding yeast, Pho85. Like Cdk5, Pho85 has been implicated in actin cytoskeleton regulation through phosphorylation of an actin-regulatory protein. Overexpression of CDK5 in yeast cells complemented most phenotypes associated with pho85Delta, including defects in the repression of acid phosphatase expression, sensitivity to salt, and a G(1) progression defect. Consistent with the functional complementation, Cdk5 associated with and was activated by the Pho85 cyclins Pho80 and Pcl2 in yeast cells. In a reciprocal series of experiments, we found that Pho85 associated with the Cdk5 activators p35 and p25 to form an active kinase complex in mammalian and insect cells, supporting our hypothesis that Pho85 and Cdk5 are functionally related. Our results suggest the existence of a functionally conserved pathway involving Cdks and actin-regulatory proteins that promotes reorganization of the actin cytoskeleton in response to regulatory signals.  相似文献   

12.
The mating-factor response pathway of Saccharomyces cerevisiae employs a set of protein kinase similar to kinases that function in signal transduction pathways of metazoans. We have purified the yeast protein kinases encoded by STE11, STE7, and FUS3 as fusions to glutathione S-transferase (GST) and reconstituted a kinase cascade in which STE11 phosphorylates and activates STE7, which in turn phosphorylates the mitogen-activated protein kinase FUS3. GST-STE11 is active even when purified from cells that have not been treated with alpha-factor. This observation raises the possibility that STE11 activity is governed by an inhibitor which is regulated by pheromone. We also identify a STE11-dependent phosphorylation site in STE7 which is required for activity of STE7. Conservation of this site in the mammalian STE7 homologue MEK and other STE7 relatives suggests that this may be a regulatory phosphorylation site in all MAP kinase kinases.  相似文献   

13.
14.
A human cDNA encoding a galactokinase (EC 2.7.1.6) was isolated by complementation of a galactokinase-deficient (gal1-) strain of Saccharomyces cerevisiae. This cDNA encodes a predicted protein of 458 amino acids with 29% identity to galactokinase of Saccharomyces carlsbergensis. Previous studies have mapped a human galactokinase gene (GK1) to chromosome 17q23-25, closely linked to thymidine kinase. The galactokinase gene that we have isolated (GK2) is located on chromosome 15. The relationship between the disease locus for galactokinase deficiency galactosemia, which is responsible for cataracts in newborns and possibly presenile cataracts in adults, and the two galactokinase loci is unknown.  相似文献   

15.
A human cDNA library in lambda-yes plasmid was used to transform a strain of Saccharomyces cerevisiae with defects in histidine biosynthesis (his4-401) and histidine permease (hip1-614) and with the general amino acid permease (GAP) repressed by excess ammonium. We investigated three plasmids complementing the transport defect on a medium with a low concentration of histidine. Inserts in these plasmids hybridized with human genomic but not yeast genomic DNA, indicating their human origin. mRNA corresponding to the human DNA insert was produced by each yeast transformant. Complementation of the histidine transport defect was confirmed by direct measurement of histidine uptake, which was increased 15- to 65-fold in the transformants as compared with the parental strain. Competitive inhibition studies, measurement of citrulline uptake, and lack of complementation in gap1- strains indicated that the human cDNA genes code for proteins that prevent GAP repression by ammonium. The amino acid sequence encoded by one of the cDNA clones is related to T-complex proteins, which suggests a "chaperonin"-like function. We suggest that the human chaperonin-like protein stabilizes the NPR1 gene product and prevents inactivation of GAP.  相似文献   

16.
We have cloned two different human cDNAs that can complement cdc28 mutations of budding yeast Saccharomyces cerevisiae. One corresponds to a gene encoding human p34CDC2 kinase, and the other to a gene (CDK2; cell division kinase) that has not been characterized previously. The CDK2 protein is highly homologous to p34CDC2 kinase (65% identical) and more significantly is homologous to Xenopus Eg1 kinase (89% identical), suggesting that CDK2 is the human homolog of Eg1. The human CDC2 and CDK2 genes were both able to complement the inviability of a null allele of S. cerevisiae CDC28. This result indicates that the CDK2 protein has a biological activity closely related to the CDC28 and p34CDC2 kinases. However, CDK2 was unable to complement cdc2 mutants in fission yeast Schizosaccharomyces pombe under the condition where the human CDC2 gene could complement them. CDK2 mRNA appeared late in G1 or in early S phase, slightly before CDC2 mRNA, after growth stimulation in normal human fibroblast cells. These results suggest that in human cells, two different CDC2-like kinases may regulate the cell cycle at distinct stages.  相似文献   

17.
Holocarboxylase synthetase (HCS) catalyzes the biotinylation of the four biotin-dependent carboxylases in human cells. Patients with HCS deficiency lack activity of all four carboxylases, indicating that a single HCS is targeted to the mitochondria and cytoplasm. We isolated 21 human HCS cDNA clones, in four size classes of 2.0-4.0 kb, by complementation of an Escherichia coli birA mutant defective in biotin ligase. Expression of the cDNA clones promoted biotinylation of the bacterial biotinyl carboxyl carrier protein as well as a carboxyl-terminal fragment of the alpha subunit of human propionyl-CoA carboxylase expressed from a plasmid. The open reading frame encodes a predicted protein of 726 aa and M(r) 80,759. Northern blot analysis revealed the presence of a 5.8-kb major species and 4.0-, 4.5-, and 8.5-kb minor species of poly(A)+ RNA in human tissues. Human HCS shows specific regions of homology with the BirA protein of E. coli and the presumptive biotin ligase of Paracoccus denitrificans. Several forms of HCS mRNA are generated by alternative splicing, and as a result, two mRNA molecules bear different putative translation initiation sites. A sequence upstream of the first translation initiation site encodes a peptide structurally similar to mitochondrial presequences, but it lacks an in-frame ATG codon to direct its translation. We anticipate that alternative splicing most likely mediates the mitochondrial versus cytoplasmic expression, although the elements required for directing the enzyme to the mitochondria remain to be confirmed.  相似文献   

18.
Trypanosomatid parasites of the genus Leishmania cause a spectrum of widespread tropical diseases. In the vertebrate host they reside within the macrophage phagolysosome; however, the mechanisms employed in this remarkable survival strategy are not well understood. Recent advances in the molecular genetics of these parasites prompted us to develop methods of functional genetic complementation in Leishmania and apply them to the isolation of genes involved in the biosynthesis of the virulence determinant lipophosphoglycan, an abundant glycosyl-phosphatidylinositol-anchored polysaccharide. LPG1, the gene product identified by complementation of the R2D2 mutant, appears to be a glycosyltransferase responsible for the addition of galactofuranosyl residues to the nascent lipophosphoglycan chain. As galactofuranose is not found in mammalian cells, inhibition of the addition of this sugar could be exploited for chemotherapy. Overall, the success of the functional complementation approach opens the way to the identification of a variety of genes involved in pathogenesis and parasitism.  相似文献   

19.
Disruption of mitotic spindle orientation in a yeast dynein mutant.   总被引:36,自引:3,他引:36       下载免费PDF全文
Dynein motor isoforms have been implicated as potential kinetochore-associated motors that power chromosome-to-pole movements during mitosis. The recent identification and sequence determination of genes encoding dynein isoforms has now permitted the in vivo analysis of dynein function in mitosis. In this report we describe the identification and mutational analysis of the gene, DHC1, encoding a dynein heavy chain isoform in Saccharomyces cerevisiae. Sequence analysis of a 9-kb genomic fragment of the DHC1 gene predicts a polypeptide highly homologous to dynein sequences characterized from sea urchin, Dictyostelium, Drosophila, and rat. Mutations in the yeast dynein gene disrupt the normal movement of the spindle into budding daughter cells but have no apparent effect on spindle assembly, spindle elongation, or chromosome segregation. Our results suggest that, in yeast, a dynein microtubule motor protein has a nonessential role in spindle assembly and chromosome movement but is involved in establishing the proper spindle orientation during cell division.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号