首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zn(2+) plays essential roles in biology, and cells have adopted exquisite mechanisms for regulating steady-state Zn(2+) levels. Although much is known about total Zn(2+) in cells, very little is known about its subcellular distribution. Yet defining the location of Zn(2+) and how it changes with signaling events is essential for elucidating how cells regulate this essential ion. Here we create fluorescent sensors genetically targeted to the endoplasmic reticulum (ER) and Golgi to monitor steady-state Zn(2+) levels as well as flux of Zn(2+) into and out of these organelles. These studies reveal that ER and Golgi contain a concentration of free Zn(2+) that is 100 times lower than the cytosol. Both organelles take up Zn(2+) when cytosolic levels are elevated, suggesting that the ER and Golgi can sequester elevated cytosolic Zn(2+) and thus have the potential to play a role in influencing Zn(2+) toxicity. ER Zn(2+) homeostasis is perturbed by small molecule antagonists of Ca(2+) homeostasis and ER Zn(2+) is released upon elevation of cytosolic Ca(2+) pointing to potential exchange of these two ions across the ER. This study provides direct evidence that Ca(2+) signaling can influence Zn(2+) homeostasis and vice versa, that Zn(2+) dynamics may modulate Ca(2+) signaling.  相似文献   

2.
Ca(2+) signaling plays a key role in normal and abnormal platelet functions. Understanding platelet Ca(2+) signaling requires the knowledge of proteins involved in this process. Among these proteins are Ca(2+)ATPases or Ca(2+) pumps that deplete the cytosol of Ca(2+) ions. Here, we will particularly focus on two Ca(2+) pump families: the plasma membrane Ca(2+)ATPases (PMCAs) that extrude cytosolic Ca(2+) towards the extracellular medium and the sarco/endoplasmic reticulum Ca(2+)ATPases (SERCAs) that pump Ca(2+) into the endoplasmic reticulum (ER). In the present review, we will summarize data on platelet Ca(2+)ATPases including their identification and biogenesis. First of all, we will present the Ca(2+)ATPase genes and their isoforms expressed in platelets. We will especially focus on a member of the SERCA family, SERCA3, recently found to give rise to a number of species-specific isoforms. Next, we will describe the differences in Ca(2+)ATPase patterns observed in human and rat platelets. Last, we will analyze how the expression of Ca(2+)ATPase isoforms changes during megakaryocytic maturation and show that megakaryocytopoiesis is associated with a profound reorganization of the expression and/or activity of Ca(2+)ATPases. Taken together, these data provide new aspects of investigations to better understand normal and abnormal platelet Ca(2+) signaling.  相似文献   

3.
A family of peptide signaling molecules (AtPeps) and their plasma membrane receptor AtPepR1 are known to act in pathogen-defense signaling cascades in plants. Little is currently known about the molecular mechanisms that link these signaling peptides and their receptor, a leucine-rich repeat receptor-like kinase, to downstream pathogen-defense responses. We identify some cellular activities of these molecules that provide the context for a model for their action in signaling cascades. AtPeps activate plasma membrane inwardly conducting Ca(2+) permeable channels in mesophyll cells, resulting in cytosolic Ca(2+) elevation. This activity is dependent on their receptor as well as a cyclic nucleotide-gated channel (CNGC2). We also show that the leucine-rich repeat receptor-like kinase receptor AtPepR1 has guanylyl cyclase activity, generating cGMP from GTP, and that cGMP can activate CNGC2-dependent cytosolic Ca(2+) elevation. AtPep-dependent expression of pathogen-defense genes (PDF1.2, MPK3, and WRKY33) is mediated by the Ca(2+) signaling pathway associated with AtPep peptides and their receptor. The work presented here indicates that extracellular AtPeps, which can act as danger-associated molecular patterns, signal by interaction with their receptor, AtPepR1, a plasma membrane protein that can generate cGMP. Downstream from AtPep and AtPepR1 in a signaling cascade, the cGMP-activated channel CNGC2 is involved in AtPep- and AtPepR1-dependent inward Ca(2+) conductance and resulting cytosolic Ca(2+) elevation. The signaling cascade initiated by AtPeps leads to expression of pathogen-defense genes in a Ca(2+)-dependent manner.  相似文献   

4.
Accumulating evidence indicates that plasma membrane (PM) microdomains and the subjacent "junctional" sarcoplasmic/endoplasmic reticulum (jS/ER) constitute specialized Ca(2+) signaling complexes in many cell types. We examined the possibility that some Ca(2+) signals arising in the junctional space between the PM and jS/ER may represent cross-talk between the PM and jS/ER. The Ca(2+) sensor protein, GCaMP2, was targeted to different PM domains by constructing genes for fusion proteins with either the alpha1 or alpha2 isoform of the Na(+) pump catalytic (alpha) subunit. These fusion proteins were expressed in primary cultured mouse brain astrocytes and arterial smooth muscle cells. Immunocytochemistry demonstrated that alpha2(f)GCaMP2, like native Na(+) pumps with alpha2-subunits, sorted to PM domains that colocalized with subjacent S/ER; alpha1(f)GCaMP2, like Na(+) pumps with alpha1-subunits, was more uniformly distributed. The GCaMP2 moieties in both constructs were tethered just beneath the PM. Both constructs detected global Ca(2+) signals evoked by serotonin (in arterial smooth muscle cells) and ATP, and by store-operated Ca(2+) channel-mediated Ca(2+) entry after S/ER unloading with cyclopiazonic acid (in Ca(2+)-free medium). When cytosolic Ca(2+) diffusion was markedly restricted with EGTA, however, only alpha2(f)GCaMP2 detected the local, store-operated Ca(2+) channel-mediated Ca(2+) entry signal. Thus, alpha1 Na(+) pumps are apparently excluded from the PM microdomains occupied by alpha2 Na(2+) pumps. The jS/ER and adjacent PM may communicate by Ca(2+) signals that are confined to the tiny junctional space between the two membranes. Similar methods may be useful for studying localized Ca(2+) signals in other subPM microdomains and signals associated with other organelles.  相似文献   

5.
Specialized proteins in the plasma membrane, endoplasmic reticulum (ER), and mitochondria tightly regulate intracellular calcium. A unique mechanism called store-operated calcium entry is activated when ER calcium is depleted, serving to restore intra-ER calcium levels. An ER calcium sensor, stromal interaction molecule 1 (STIM1), translocates within the ER membrane upon store depletion to the juxtaplasma membrane domain, where it interacts with intracellular domains of a highly calcium-selective plasma membrane ion channel, Orai1. STIM1 gates Orai1, allowing calcium to enter the cytoplasm, where it repletes the ER store via calcium-ATPases pumps. Here, we performed affinity purification of Orai1 from Jurkat cells to identify partner of STIM1 (POST), a 10-transmembrane-spanning segment protein of unknown function. The protein is located in the plasma membrane and ER. POST-Orai1 binding is store depletion-independent. On store depletion, the protein binds STIM1 and moves within the ER to localize near the cell membrane. This protein, TMEM20 (POST), does not affect store-operated calcium entry but does reduce plasma membrane Ca(2+) pump activity. Store depletion promotes STIM1-POST complex binding to smooth ER and plasma membrane Ca(2+) ATPases (SERCAs and PMCAs, respectively), Na/K-ATPase, as well as to the nuclear transporters, importins-β and exportins.  相似文献   

6.
The junctional membrane complex between the plasma membrane (PM) and endoplasmic/sarcoplasmic reticulum (ER/SR) is an important structural foundation for functional crosstalk between ionic channels. In cardiac myocytes, functional coupling between cell-surface and intracellular Ca(2+) channels produces Ca(2+) transients for contraction. Junctophilins, a novel family of junctional membrane complex proteins, contribute to the stabilization of the junctional membrane complex by anchoring the ER/SR and interacting with the PM. Mutant mice lacking the cardiac-type junctophilin exhibited embryonic lethality due to heart failure, and the mutant cardiac myocytes showed deficiency of the junctional membrane complexes and abnormal Ca(2+) signaling.  相似文献   

7.
8.
Recent studies by our group and others demonstrated a required and conserved role of Stim in store-operated Ca(2+) influx and Ca(2+) release-activated Ca(2+) (CRAC) channel activity. By using an unbiased genome-wide RNA interference screen in Drosophila S2 cells, we now identify 75 hits that strongly inhibited Ca(2+) influx upon store emptying by thapsigargin. Among these hits are 11 predicted transmembrane proteins, including Stim, and one, olf186-F, that upon RNA interference-mediated knockdown exhibited a profound reduction of thapsigargin-evoked Ca(2+) entry and CRAC current, and upon overexpression a 3-fold augmentation of CRAC current. CRAC currents were further increased to 8-fold higher than control and developed more rapidly when olf186-F was cotransfected with Stim. olf186-F is a member of a highly conserved family of four-transmembrane spanning proteins with homologs from Caenorhabditis elegans to human. The endoplasmic reticulum (ER) Ca(2+) pump sarco-/ER calcium ATPase (SERCA) and the single transmembrane-soluble N-ethylmaleimide-sensitive (NSF) attachment receptor (SNARE) protein Syntaxin5 also were required for CRAC channel activity, consistent with a signaling pathway in which Stim senses Ca(2+) depletion within the ER, translocates to the plasma membrane, and interacts with olf186-F to trigger CRAC channel activity.  相似文献   

9.
Astroglia possess excitability based on movements of Ca(2+) ions between intracellular compartments and plasmalemmal Ca(2+) fluxes. This "Ca(2+) excitability" is controlled by several families of proteins located in the plasma membrane, within the cytosol and in the intracellular organelles, most notably in the endoplasmic reticulum (ER) and mitochondria. Accumulation of cytosolic Ca(2+) can be caused by the entry of Ca(2+) from the extracellular space through ionotropic receptors and store-operated channels expressed in astrocytes. Plasmalemmal Ca(2+) ATP-ase and sodium-calcium exchanger extrude cytosolic Ca(2+) to the extracellular space; the exchanger can also operate in reverse, depending of the intercellular Na(+) concentration, to deliver Ca(2+) to the cytosol. The ER internal store possesses inositol 1,4,5-trisphosphate receptors which can be activated upon stimulation of astrocytes through a multiple plasma membrane metabotropic G-protein coupled receptors. This leads to release of Ca(2+) from the ER and its elevation in the cytosol, the level of which can be modulated by mitochondria. The mitochondrial uniporter takes up Ca(2+) into the matrix, while free Ca(2+) exits the matrix through the mitochondrial Na(+)/Ca(2+) exchanger as well as via transient openings of the mitochondrial permeability transition pore. One of the prominent consequences of astroglial Ca(2+) excitability is gliotransmission, a release of transmitters from astroglia which can lead to signalling to adjacent neurones.  相似文献   

10.
Stromal interaction molecule 1 (STIM1) has recently been identified by our group and others as an endoplasmic reticulum (ER) Ca(2+) sensor that responds to ER Ca(2+) store depletion and activates Ca(2+) channels in the plasma membrane (PM). The molecular mechanism by which STIM1 transduces signals from the ER lumen to the PM is not yet understood. Here we developed a live-cell FRET approach and show that STIM1 forms oligomers within 5 s after Ca(2+) store depletion. These oligomers rapidly dissociated when ER Ca(2+) stores were refilled. We further show that STIM1 formed oligomers before its translocation within the ER network to ER-PM junctions. A mutant STIM1 lacking the C-terminal polybasic PM-targeting motif oligomerized after Ca(2+) store depletion but failed to form puncta at ER-PM junctions. Using fluorescence recovery after photobleaching measurements to monitor STIM1 mobility, we show that STIM1 oligomers translocate on average only 2 mum to reach ER-PM junctions, arguing that STIM1 ER-to-PM signaling is a local process that is suitable for generating cytosolic Ca(2+) gradients. Together, our live-cell measurements dissect the STIM1 ER-to-PM signaling relay into four sequential steps: (i) dissociation of Ca(2+), (ii) rapid oligomerization, (iii) spatially restricted translocation to nearby ER-PM junctions, and (iv) activation of PM Ca(2+) channels.  相似文献   

11.
Quantitative analysis of Ca(2+) fluctuations in the endoplasmic/sarcoplasmic reticulum (ER/SR) is essential to defining the mechanisms of Ca(2+)-dependent signaling under physiological and pathological conditions. Here, we developed a unique class of genetically encoded indicators by designing a Ca(2+) binding site in the EGFP. One of them, calcium sensor for detecting high concentration in the ER, exhibits unprecedented Ca(2+) release kinetics with an off-rate estimated at around 700 s(-1) and appropriate Ca(2+) binding affinity, likely attributable to local Ca(2+)-induced conformational changes around the designed Ca(2+) binding site and reduced chemical exchange between two chromophore states. Calcium sensor for detecting high concentration in the ER reported considerable differences in ER Ca(2+) dynamics and concentration among human epithelial carcinoma cells (HeLa), human embryonic kidney 293 cells (HEK-293), and mouse myoblast cells (C2C12), enabling us to monitor SR luminal Ca(2+) in flexor digitorum brevis muscle fibers to determine the mechanism of diminished SR Ca(2+) release in aging mice. This sensor will be invaluable in examining pathogenesis characterized by alterations in Ca(2+) homeostasis.  相似文献   

12.
The endoplasmic reticulum (ER) is a multifunctional intracellular organelle supporting many processes required by virtually every mammalian cell, including cardiomyocytes. It performs diverse functions, including protein synthesis, translocation across the membrane, integration into the membrane, folding, posttranslational modification including N-linked glycosylation, and synthesis of phospholipids and steroids on the cytoplasmic side of the ER membrane, and regulation of Ca(2+) homeostasis. Perturbation of ER-associated functions results in ER stress via the activation of complex cytoplasmic and nuclear signaling pathways, collectively termed the unfolded protein response (UPR) (also known as misfolded protein response), leading to upregulation of expression of ER resident chaperones, inhibition of protein synthesis and activation of protein degradation. The UPR has been associated with numerous human pathologies, and it may play an important role in the pathophysiology of the heart. ER stress responses, ER Ca(2+) buffering, and protein and lipid turnover impact many cardiac functions, including energy metabolism, cardiogenesis, ischemic/reperfusion, cardiomyopathies, and heart failure. ER proteins and ER stress-associated pathways may play a role in the development of novel UPR-targeted therapies for cardiovascular diseases.  相似文献   

13.
The molting cycle of the freshwater crayfish, Procambarus clarkii, has been used as a model to study the cellular physiology and molecular biology of Ca "supply" proteins that effect transcellular vectorial Ca(2+) movement to achieve organismal Ca homeostasis. Specifically, periods of net Ca(2+) influx (postmolt) have been compared with periods of net Ca(2+) balance (intermolt). The broader goal is to understand the paradox facing epithelial cells of maintaining low cytosolic Ca(2+)in the face of mass Ca(2+)transit across epithelial cells. This mini-review compares mRNA and protein expression profiles for a series of proteins that are of strategic importance in effecting transcellular Ca(2+) flux in a selected epithelium, the antennal gland (kidney analog) specifically during apical to basolateral Ca(2+) conveyance. Target proteins were selected as representative of key "stages" in the transcellular transfer of Ca(2+): import (epithelial Ca(2+) channel, ECaC); storage (sarco/endoplasmic reticulum Ca(2+) ATPase, SERCA); buffering (sarcoplasmic Ca(2+) binding protein, SCP); and export (plasma membrane Ca(2+) ATPase, PMCA and Na(+)/Ca(2+) exchanger, NCX). The purpose of this review is to assess coordination of expression of these target proteins at times of high Ca(2+) demand (premolt and postmolt) compared to low Ca demand (intermolt) as a function of cellular location (apical vs. basolateral; endomembranes vs. plasma membranes) and relative abundance within different regions of the antennal gland. Understanding the spatiotemporal regulation of Ca(2+) handling proteins involved in transcellular transport is fundamental to investigating their endocrine regulation.  相似文献   

14.
BCL-2 is a 26-kDa integral membrane protein that represses apoptosis by an unknown mechanism. Recent findings indicate that Ca2+ release from the endoplasmic reticulum (ER) mediates apoptosis in mouse lymphoma cells. In view of growing evidence that BCL-2 localizes to the ER, as well as mitochondria and the perinuclear membrane, we investigated the possibility that BCL-2 represses apoptosis by regulating Ca2+ fluxes through the ER membrane. A cDNA encoding BCL-2 was introduced into WEHI7.2 cells and two subclones, W.Hb12 and W.Hb13, which express high and low levels of BCL-2 mRNA and protein, respectively, were isolated. WEHI7.2 cells underwent apoptosis in response to treatment with the glucocorticoid hormone dexamethasone, whereas W.Hb12 and W.Hb13 cells were protected from apoptosis, revealing a direct relationship between the level of BCL-2 expression and the degree of protection. Significantly, BCL-2 also blocked induction of apoptosis by thapsigargin (TG), a highly specific inhibitor of the ER-associated Ca2+ pump. TG completely inhibited ER Ca2+ pumping in both WEHI7.2 and W.Hb12 cells, but the release of Ca2+ into the cytosol after inhibition of ER Ca2+ pumping was significantly less in W.Hb12 cells than in WEHI7.2 cells, indicating that BCL-2 reduces Ca2+ efflux through the ER membrane. By reducing ER Ca2+ efflux, BCL-2 interfered with a signal for "capacitative" entry of extracellular Ca2+, preventing a sustained increase of cytosolic Ca2+ in TG-treated cells. These findings suggest that BCL-2 either directly or indirectly regulates the flux of Ca2+ across the ER membrane, thereby abrogating Ca2+ signaling of apoptosis.  相似文献   

15.
Ca(2+) in neurons is vital to processes such as neurotransmission, neurotoxicity, synaptic development, and gene expression. Disruption of Ca(2+) homeostasis occurs in brain aging and in neurodegenerative disorders. Membrane transporters, among them the calmodulin (CaM)-activated plasma membrane Ca(2+) ATPases (PMCAs) that extrude Ca(2+) from the cell, play a key role in neuronal Ca(2+) homeostasis. Using X-exome sequencing we have identified a missense mutation (G1107D) in the CaM-binding domain of isoform 3 of the PMCAs in a family with X-linked congenital cerebellar ataxia. PMCA3 is highly expressed in the cerebellum, particularly in the presynaptic terminals of parallel fibers-Purkinje neurons. To study the effects of the mutation on Ca(2+) extrusion by the pump, model cells (HeLa) were cotransfected with expression plasmids encoding its mutant or wild-type (wt) variants and with the Ca(2+)-sensing probe aequorin. The mutation reduced the ability of the PMCA3 pump to control the cellular homeostasis of Ca(2+). It significantly slowed the return to baseline of the Ca(2+) transient induced by an inositol-trisphosphate (InsP(3))-linked plasma membrane agonist. It also compromised the ability of the pump to oppose the influx of Ca(2+) through the plasma membrane capacitative channels.  相似文献   

16.
17.
Receptor-induced Ca(2+) signals are key to the function of all cells and involve release of Ca(2+) from endoplasmic reticulum (ER) stores, triggering Ca(2+) entry through plasma membrane (PM) "store-operated channels" (SOCs). The identity of SOCs and their coupling to store depletion remain molecular and mechanistic mysteries. The single transmembrane-spanning Ca(2+)-binding protein, STIM1, is necessary in this coupling process and is proposed to function as an ER Ca(2+) sensor to provide the trigger for SOC activation. Here we reveal that, in addition to being an ER Ca(2+) sensor, STIM1 functions within the PM to control operation of the Ca(2+) entry channel itself. Increased expression levels of STIM1 correlate with a gain in function of Ca(2+) release-activated Ca(2+) (CRAC) channel activity. Point mutation of the N-terminal EF hand transforms the CRAC channel current (I(CRAC)) into a constitutively active, Ca(2+) store-independent mode. Mutants in the EF hand and cytoplasmic C terminus of STIM1 alter operational parameters of CRAC channels, including pharmacological profile and inactivation properties. Last, Ab externally applied to the STIM1 N-terminal EF hand blocks both I(CRAC) in hematopoietic cells and SOC-mediated Ca(2+) entry in HEK293 cells, revealing that STIM1 has an important functional presence within the PM. The results reveal that, in addition to being an ER Ca(2+) sensor, STIM1 functions within the PM to exert control over the operation of SOCs. As a cell surface signaling protein, STIM1 represents a key pharmacological target to control fundamental Ca(2+)-regulated processes including secretion, contraction, metabolism, cell division, and apoptosis.  相似文献   

18.
Leaf stomata close in response to high carbon dioxide levels and open at low CO(2). CO(2) concentrations in leaves are altered by daily dark/light cycles, as well as the continuing rise in atmospheric CO(2). Relative to abscisic acid and blue light signaling, little is known about the molecular, cellular, and genetic mechanisms of CO(2) signaling in guard cells. Interestingly, we report that repetitive Ca(2+) transients were observed during the stomatal opening stimulus, low [CO(2)]. Furthermore, low/high [CO(2)] transitions modulated the cytosolic Ca(2+) transient pattern in Arabidopsis guard cells (Landsberg erecta). Inhibition of cytosolic Ca(2+) transients, achieved by loading guard cells with the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid and not adding external Ca(2+), attenuated both high CO(2)-induced stomatal closing and low CO(2)-induced stomatal opening, and also revealed a Ca(2+)-independent phase of the CO(2) response. Furthermore, the mutant, growth controlled by abscisic acid (gca2) shows impairment in [CO(2)] modulation of the cytosolic Ca(2+) transient rate and strong impairment in high CO(2)-induced stomatal closing. Our findings provide insights into guard cell CO(2) signaling mechanisms, reveal Ca(2+)-independent events, and demonstrate that calcium elevations can participate in opposed signaling events during stomatal opening and closing. A model is proposed in which CO(2) concentrations prime Ca(2+) sensors, which could mediate specificity in Ca(2+) signaling.  相似文献   

19.
To investigate the involvement of cytosolic proteins in exocytosis, a system with high temporal and spatial resolution has been developed that allows us to detect the interaction of Ca(2+)- and membrane-binding proteins with the plasma membrane during stimulation of intact chromaffin and PC12 (rat pheochromocytoma) cells. We used 5-iodonaphthalene-1-azide (INA), a hydrophobic label that rapidly partitions into the lipid bilayer of biological membranes. Upon photolysis the label covalently attaches to membrane-embedded domains of proteins. Cells, preincubated with INA in the dark, were stimulated by either 300 microM carbamoylcholine or 60 mM K+ and irradiated (20 s) at various time intervals after stimulation. Subsequently, the cytosolic Ca(2+)- and membrane-binding proteins were isolated in the presence of EGTA (EGTA extract). Of the approximately 40 proteins in the EGTA extract, 15 (15-100 kDa) are labeled in both cell types. Upon stimulation, labeling is increased up to 3-fold in some of the proteins compared to cells labeled under basal conditions. In the absence of external Ca2+, no increase is observed. The rate of label incorporation is similar to the rate of exocytosis in several of these proteins. These results indicate that in the event of triggered exocytosis some of the Ca(2+)-binding proteins interact with the plasma membrane and temporarily embed in the lipid bilayer. Our findings support the hypothesis according to which stimulus-induced alterations in the structure of the Ca(2+)-binding proteins lead to their transient insertion into the membrane and thereby to membrane fusion.  相似文献   

20.
A large fraction of the proteome is synthesized and folded in the endoplasmic reticulum (ER), a multifunctional compartment also playing pivotal roles in Ca(2+) storage, redox homeostasis and signalling. From the ER, secretory proteins begin their journey towards their final destinations, the organelles of the exocytic and endocytic compartments, the plasma membrane or the extracellular space. Fidelity of protein-based intracellular communication is guaranteed by quality control (QC) mechanisms located at the ER-Golgi interface, which restrict forward transport to native proteins. QC is used also to time or shape the secretome. Furthermore, professional secretory cells face a problem of quantity, as well as quality of their protein products. This essay summarizes recent findings that identify ERp44 as a key regulator of protein secretion, Ca(2+) signalling and redox regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号