首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The existence of neurotransmitter receptor heteromers is becoming broadly accepted and their functional significance is being revealed. Heteromerization of neurotransmitter receptors produces functional entities that possess different biochemical characteristics with respect to the individual components of the heteromer. Neurotransmitter receptor heteromers can function as processors of computations that modulate cell signaling. Thus, the quantitative or qualitative aspects of the signaling generated by stimulation of any of the individual receptor units in the heteromer are different from those obtained during coactivation. Furthermore, recent studies demonstrate that some neurotransmitter receptor heteromers can exert an effect as processors of computations that directly modulate both pre- and postsynaptic neurotransmission. This is illustrated by the analysis of striatal receptor heteromers that control striatal glutamatergic neurotransmission.  相似文献   

2.
Attention deficit hyperactivity disorder(ADHD)is a common childhood neuropsychiatric disorder that has been linked to the dopaminergic system. This study aimed to investigate the effects of regulation of the dopamine D4 receptor(DRD4) on functional brain activity during the resting state in ADHD children using the methods of regional homogeneity(Re Ho) and functional connectivity(FC). Resting-state functional magnetic resonance imaging data were analyzed in 49 children with ADHD. All participants were classified as either carriers of the DRD44-repeat/4-repeat(4 R/4 R) allele(n = 30) or the DRD42-repeat(2 R) allele(n = 19). The results showed that participants with the DRD4 2 R allele had decreased Re Ho bilaterally in the posterior lobes of the cerebellum, while Re Ho was increased in the left angular gyrus. Compared with participants carrying the DRD4 4 R/4 R allele, those with the DRD4 2 R allele showed decreased FC to the left angular gyrus in the left striatum, right inferior frontal gyrus, and bilateral lobes of the cerebellum. The increased FC regions included the left superior frontal gyrus, medial frontal gyrus, and rectus gyrus. These data suggest that the DRD4 polymorphisms are associated with localized brain activity and specific functional connections, including abnormality in the frontal-striatal-cerebellar loop. Our study not only enhances the understanding of the correlation between the cerebellar lobes and ADHD, but also provides an imaging basis for explaining the neural mechanisms underlying ADHD in children.  相似文献   

3.
Dopamine shapes a wide variety of psychomotor functions. This is mainly accomplished by modulating cortical and thalamic glutamatergic signals impinging upon principal medium spiny neurons (MSNs) of the striatum. Several lines of evidence suggest that dopamine D1 receptor signaling enhances dendritic excitability and glutamatergic signaling in striatonigral MSNs, whereas D2 receptor signaling exerts the opposite effect in striatopallidal MSNs. The functional antagonism between these two major striatal dopamine receptors extends to the regulation of synaptic plasticity. Recent studies, using transgenic mice in which cells express D1 and D2 receptors, have uncovered unappreciated differences between MSNs that shape glutamatergic signaling and the influence of DA on synaptic plasticity. These studies have also shown that long-term alterations in dopamine signaling produce profound and cell-type-specific reshaping of corticostriatal connectivity and function.  相似文献   

4.
CONTEXT: Attention-deficit/hyperactivity disorder (ADHD) is one of the most heritable neuropsychiatric disorders, and a polymorphism within the dopamine D4 receptor (DRD4) gene has been frequently implicated in its pathogenesis. OBJECTIVE: To examine the effects of the 7-repeat microsatellite in the DRD4 gene on clinical outcome and cortical development in ADHD. We drew comparisons with a single nucleotide polymorphism in the dopamine D1 receptor (DRD1) gene, which was associated with ADHD within our cohort, and a polymorphism within the dopamine transporter (DAT1) gene, reported to have additive effects with the DRD4 7-repeat allele. DESIGN: Longitudinal cohort study. SETTING: National Institutes of Health, Bethesda, Maryland. PARTICIPANTS: One hundred five children (with 222 neuroanatomical magnetic resonance images) with ADHD (mean age at entry, 10.1 years) and 103 healthy controls (total of 220 magnetic resonance images). Sixty-seven subjects with ADHD (64%) had follow-up clinical evaluations (mean follow-up, 6 years). MAIN OUTCOME MEASURES: Cortical thickness across the cerebrum and presence of DSM-IV-defined ADHD at follow-up. RESULTS: Possession of the DRD4 7-repeat allele was associated with a thinner right orbitofrontal/inferior prefrontal and posterior parietal cortex. This overlapped with regions that were generally thinner in subjects with ADHD compared with controls. Participants with ADHD carrying the DRD4 7-repeat allele had a better clinical outcome and a distinct trajectory of cortical development. This group showed normalization of the right parietal cortical region, a pattern that we have previously linked with better clinical outcome. By contrast, there were no significant effects of the DRD1 or DAT1 polymorphisms on clinical outcome or cortical development. CONCLUSIONS: The DRD4 7-repeat allele, which is widely associated with a diagnosis of ADHD, and in our cohort with better clinical outcome, is associated with cortical thinning in regions important in attentional control. This regional thinning is most apparent in childhood and largely resolves during adolescence.  相似文献   

5.
OBJECTIVE: There is considerable evidence supporting a genetic component in the etiology of attention-deficit/hyperactivity disorder (ADHD). Because stimulant medications act primarily on the dopaminergic system, dopamine system genes are prime candidates for genetic susceptibility factors for ADHD. Previous studies by several groups have observed a significant association of ADHD and an allele with 7 copies of the 48 base pair repeat in the third exon of the dopamine D4 receptor. METHOD: The authors sought to replicate these previous findings by collecting an independent sample of families from Toronto, Ontario, Canada, and confirming this finding in an expanded sample of ADHD families collected from Irvine, California. Using the transmission disequilibrium test (TDT), the authors tested for biased transmission of the 7-repeat allele at the exon III polymorphism of the dopamine D4 receptor locus in these samples of ADHD subjects. RESULTS: Biased transmission of the 7-repeat allele from parents to ADHD probands and their affected siblings was observed in the 2 new samples of families collected in Toronto and Irvine (TDT chi2 = 2.711, 1 df, one-sided p value = .050) and for these samples combined with the 52 families previously reported from Irvine (TDT chi2 = 6.426, 1 df, one-sided p value = .006). CONCLUSIONS: The results of this study further support the possibility of a role of the dopamine D4 receptor locus in ADHD.  相似文献   

6.
OBJECTIVE: Association between attention deficit hyperactivity disorder (ADHD) and the 7-repeat allele of a variant (a 48 bp variable number of tandem repeats) in the dopamine D4 receptor gene (DRD4) has been widely documented. A meta-analysis of 21 studies revealed evidence of significant association. In this article the authors examine whether the DRD4 7-repeat allele is associated with performance on a variety of neuropsychological tasks in children with ADHD. METHOD: The presence or absence of the 7-repeat allele was determined in 133 drug-naive children 6 to 13 years of age who fulfilled diagnostic criteria for ADHD. These children were then assessed on several neuropsychological tests known to be associated with attention, impulse control, and response inhibition (the Continuous Performance Test, Matching Familiar Figures Test, Go/No Go Task, and Stop Task). Activity levels were assessed with an actigraph. Children with and without at least one 7-repeat allele were compared with each other and with children in a previous population-based study. RESULTS: Children who had the 7-repeat allele had significantly more incorrect responses on the Matching Familiar Figures Test (16.1 versus 14.3) than children who did not have the allele. Children with the allele also had shorter mean reaction times for incorrect responses on the Matching Familiar Figures Test (846.1 versus 1103.7 msec) and on the Stop Task (116.6 versus 134.1 msec) than children without the allele. Children with the allele also displayed higher activity levels. The children with and without the allele did not differ significantly in number of ADHD symptoms when the symptoms were split into the areas of inattention and hyperactivity/impulsivity. Both groups of children with ADHD were more neuropsychologically impaired than the nonpatient comparison group. CONCLUSIONS: In children with ADHD, possession of the DRD4 7-repeat allele appears to be associated with an inaccurate, impulsive response style on neuropsychological tasks that is not explained by ADHD symptom severity.  相似文献   

7.
Emerging evidence shows that G protein-coupled receptors can form homo- and heteromers. These include adenosine A(2A) receptor-dopamine D(2) receptor heteromers, which are most probably localized in the dendritic spines of the striatopallidal GABAergic neurons, where they are in a position to modulate glutamatergic neurotransmission. The discovery of A(2A) receptor-dopamine D(2) receptor heteromers gives a frame for the well-known antagonistic interaction between both receptors, which is the bases for a new therapeutic approach for neuro-psychiatric disorders, such as Parkinson's disease and schizoprenia. The present review deals mainly with the biochemical and molecular aspects of A(2A) receptor-dopamine D(2) receptor interactions. Recent results at the molecular level show that A(2A) receptor-dopamine D(2) receptor heteromers represent the first example of epitope-epitope electrostatic interaction underlying receptor heteromerization. Most probably A(2A) receptor-D(2) receptor heteromerization is not static, but subject to a dynamic regulation, related to the phosphorylation dependence of the A(2A) receptor epitope and to the ability of the D(2) receptor epitope to bind different partners. Finding out the mechanisms involved in this dynamic regulation can have important implications for the treatment of basal ganglia disorders, schizophrenia and drug addiction.  相似文献   

8.
‘Local module’ is a fundamental functional unit of the central nervous system that can be defined as the minimal portion of one or more neurons and/or one or more glial cells that operates as an independent integrative unit. This review focuses on the importance of neurotransmitter receptor heteromers for the operation of local modules. To illustrate this, we use the striatal spine module (SSM), comprised of the dendritic spine of the medium spiny neuron (MSN), its glutamatergic and dopaminergic terminals and astroglial processes. The SSM is found in the striatum, and although aspects such as neurotransmitters and receptors will be specific to the SSM, some general principles should apply to any local module in the brain. The analysis of some of the receptor heteromers in the SSM shows that receptor heteromerization is associated with particular elaborated functions in this local module. Adenosine A2A receptor–dopamine D2 receptor–glutamate metabotropic mGlu5 receptor heteromers are located adjacent to the glutamatergic synapse of the dendritic spine of the enkephalin MSN, and their cross-talk within the receptor heteromers helps to modulate postsynaptic plastic changes at the glutamatergic synapse. A1 receptor–A2A receptor heteromers are found in the glutamatergic terminals and the molecular cross-talk between the two receptors in the heteromer helps to modulate glutamate release. Finally, dopamine D2 receptor–non-α7 nicotinic acetylcholine receptor heteromers, which are located in dopaminergic terminals, introduce the new concept of autoreceptor heteromer.  相似文献   

9.
Intra- and extracellular recordings were performed to investigate the influence of local disinhibition of neocortical circuits on corticostriatal synaptic transmission. In rat brain slices with preserved corticostriatal connections, electrical stimulation of the neocortex elicited composed postsynaptic responses in neostriatal neurons consisting of glutamatergic excitatory postsynaptic potentials (EPSPs) and weakly expressed GABAA receptor-mediated inhibitory postsynaptic potentials (IPSPs). Following local application of the GABAA receptor antagonist bicuculline to the neocortex, neocortical neurons responded to intracortical stimulation with transient paroxysmal depolarizations. Simultaneously, the amplitude of neocortically evoked EPSPs recorded from neostriatal neurons was found to be enhanced without changes in duration. Similarly, the amplitude of IPSPs increased following disinhibition of neocortical circuits. In addition and in contrast to EPSPs, the duration of the IPSPs was found to be markedly prolonged. The results demonstrate that local disinhibition of neocortical neuronal circuits potentiates both excitatory and inhibitory synaptic transmission in striatal neurons. However, compared to AMPA receptor-mediated excitation, GABAA receptor-mediated inhibition becomes more efficient due to a marked prolongation of IPSPs. The pronounced augmentation of inhibition can be attributed to a strong activation of inhibitory interneurons within the striatum.  相似文献   

10.
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder, where family data support substantial heritability.(1) To date, association studies focussed mainly on genes regulating dopaminergic neurotransmission.(2)Interleukin-1 (IL-1) activity in the brain has been implicated with differentiation of dopaminergic neurons(3,4) and modulation of central monoaminergic reactivity.(5) We investigated the role of interleukin-1 receptor antagonist (IL-1Ra) gene variable number tandem repeat (VNTR) polymorphism,(6) in a sample of 86 children with DSM-IV ADHD and their parents. Transmission disequilibrium analysis showed increased transmission of the IL-1Ra 4-repeat allele (chi(2) = 4.07, P = 0.04) and decreased transmission of the 2-repeat allele (chi(2) = 4.59, P = 0.03) to affected children. The 4-repeat allele was associated with a significantly increased risk for ADHD (chi(2) = 4.46, df 1, P = 0.035, RR = 1.292, 95% CI 1.01-1.66). The IL-1Ra 2-repeat allele was associated with a significantly decreased risk for ADHD (chi(2) = 4.65, df 1, P = 0.03, RR = 0.763, 95% CI 0.59-0.98). If replicated, this finding may point to a role for brain cytokine activity in the etiopathogenesis of ADHD.  相似文献   

11.
Several experimental data indicate that tissue plasminogen activator (tPA) is involved in memory formation and synaptic plasticity in different brain areas. In the attempt to highlight the role of this serine protease in striatal neuron activity, mice lacking tPA have been used for electrophysiological, immunohistochemical and Western blot experiments. Disruption of tPA gene prevented corticostriatal long-term potentiation, an NMDA-dependent form of synaptic plasticity requiring the stimulation of both dopamine and acetylcholine receptors. Spontaneous and evoked glutamatergic transmission was intact in the striatum of tPA-deficient mice, as was the nigrostriatal dopamine innervation and the expression of dopamine D1 receptors. Conversely, the sensitivity of striatal cholinergic interneurons to dopamine D1 receptor stimulation was lost in these mutants, suggesting that tPA facilitates long-term potentiation (LTP) induction in the striatum by favouring the D1 receptor-mediated excitation of acetylcholine-producing interneurons. The demonstration that tPA ablation interferes with the induction of corticostriatal LTP and with the dopamine receptor-mediated control of cholinergic interneurons might help to explain the altered striatum-dependent learning deficits observed in tPA-deficient mice and provides new insights into the molecular mechanisms underlying synaptic plasticity in the striatum.  相似文献   

12.
Abstract

Objectives. Evidence suggests the involvement of the dopamine D4 receptor gene (DRD4) in the pathogenesis of ADHD, but the exact mechanism is not well understood. Earlier reports on the effects of DRD4 polymorphisms on neurocognitive and neuroimaging measures are inconsistent. This study investigated the functional consequences of the 7-repeat allele of DRD4 on neurocognitive endophenotypes of ADHD in the Dutch subsample of the International Multicenter ADHD Genetics study. Methods. Participants were 350 children (5–11.5 years) and adolescents (11.6–19 years) with ADHD and their 195 non-affected siblings. An overall measure of neuropsychological functioning was derived by principal component analysis from five neurocognitive and five motor tasks. The effects of DRD4 and age were examined using Linear Mixed Model analyses. Results. The analyses were stratified for affected and non-affected participants after finding a significant three-way interaction between ADHD status, age and the 7-repeat allele. Apart from a main effect of age, a significant interaction effect of age and DRD4 was found in non-affected but not in affected participants, with non-affected adolescent carriers of the 7-repeat allele showing worse neuropsychological performance. In addition, carrying the 7-repeat allele of DRD4 was related to a significantly worse performance on verbal working memory in non-affected siblings, independent of age. Conclusions. These results might indicate that the effect of the DRD4 7-repeat allele on neuropsychological functioning is dependent on age and ADHD status.  相似文献   

13.
Corticostriatal and thalamostriatal projection systems have been shown to utilize glutamate as a neurotransmitter in mammals and birds. Although corticostriatal and thalamostriatal projection systems have been demonstrated in turtles, it is uncertain whether they too use glutamate as their neurotransmitter. Immunohistochemical localization of glutamate and of NMDA- and AMPA-type ionotropic glutamate receptor subunits (NMDAR2A/B, GluR1, GluR2/3, and GluR4) were used to address this issue. Numerous medium-sized neurons that were rich in NMDAR2A/B and GluR2/3 were observed in the striatal part of the basal ganglia of red-eared turtles. Smaller numbers of medium-sized neurons and some large neurons rich in the GluR1 and GluR4 subunits were also observed in the striatum. The striatal neuropil was notably rich in GluR1, GluR2/3 and NMDAR2A/B subunits. The pallidal region was specifically rich in large neurons possessing GluR4 subunits. Consistent with the glutamate receptors on striatal and pallidal neurons, sources of input to the striatum and pallidum in turtle such as the dorsomedial and dorsolateral thalamic nuclei (which appear to correspond to intralaminar thalamic nuclei), telencephalic pallial cell groups, and the apparent subthalamic nucleus homologue were rich in glutamatergic neurons. The results show that the thalamostriatal, corticostriatal and subthalamo-pallidal projection systems of turtles are glutamatergic and that similar basal ganglia cell types in turtles and mammals have largely similar glutamate receptor characteristics. Copyright (R) 2000 S.Karger AG, Basel  相似文献   

14.
BACKGROUND: The adoption of neuropsychological tests as endophenotypic measures can provide an increased sensitivity to specific dimensions of attention-deficit/hyperactivity disorder (ADHD). METHODS: The association between a variable number of tandem repeats polymorphism at the dopamine D4 receptor gene (DRD4) and the performance of children and adolescents with ADHD in a continuous performance test (CPT) was evaluated. The sample comprised 90 clinically referred children and adolescents with ADHD. Errors of omission and commission in the CPT were computed and the number of 48-base pairs tandem repeats in the exon III of DRD4 was assessed. RESULTS: The presence of a 7-repeat allele was associated with more errors of commission and the homozygosity of the 4-repeat allele was related to fewer errors of commission and omission even after adjusting for age. CONCLUSIONS: These findings bring further evidence on the role of DRD4 polymorphisms on the performance in sustained attention tasks among children and adolescents with ADHD diagnosis.  相似文献   

15.

Objective

The aim of this study was to evaluate the association between a variable number of tandem repeats polymorphism at the dopamine D4 receptor gene (DRD4) and the performance of children with attention deficit hyperactivity disorder (ADHD) in a continuous performance test (CPT).

Methods

This study included 72 ADHD children (mean age=9.39±2.05 years) who were recruited from one child psychiatric clinic. The omission errors, commission errors, reaction time and reaction standardization in the CPT were computed. The number of 48-base pairs tandem repeats in the exon III of DRD4 was analyzed in a blind manner.

Results

The homozygosity of the 4-repeat allele at DRD4 was significantly associated with fewer commission errors (t=2.364, df=28.685, p=0.025) and standard deviation of reaction time (t=2.351, df=24.648, p=0.027) even after adjusting for age. The results of analyses of CPT measured values among three groups showed that the group with higher frequency of the 4-repeat allele showed a lower mean score of commission errors (F=4.268, df=2, p=0.018).

Conclusion

These results suggest a protective role of 4-repeat allele of the DRD4 polymorphisms on commission errors in the CPT in children with ADHD.  相似文献   

16.
Localization of dopamine (D(1)-, D(2)-like, and D(4)) and ionotropic glutamate (NMDA, AMPA, and KA) receptor subtypes within the striatolimbic forebrain remains incomplete, but basic to understanding the functional organization of this important brain region. We found that frontal cortical ablation supported colocalization of D(4) and NMDA receptors on corticostriatal afferents to caudate-putamen and nucleus accumbens in rat forebrain. Local injection of kainic acid into caudate-putamen, nucleus accumbens, or hippocampus produced massive local postsynaptic losses of D(1)- and D(2)-like, as well as NMDA, AMPA, and KA receptors, and kainic acid ablation of hippocampal-striatal projections indicated the selective expression of presynaptic NMDA and KA autoreceptors. Degeneration of nigrostriatal dopamine projections with 6-hydroxydopamine showed that all three glutamatergic subtypes exist as heteroceptors on nigrostriatal dopaminergic terminals. Our findings suggest common interactions between excitatory glutamatergic and inhibitory dopaminergic receptors in rat forebrain. Further localization of these receptor subtypes in striatolimbic forebrain should help to clarify their contributions to the pathophysiology of neuropsychiatric disorders and their treatment.  相似文献   

17.
Recent studies report association and linkage between attention deficit hyperactivity disorder (ADHD) and the 7-repeat allele of a 48 base-pair repeat in the dopamine D4 receptor gene (DRD4). We examined the frequency of this allele in a sample of probands with DSM-IV ADHD using a case-control design, as well as the transmission disequilibrium test (TDT) and haplotype-based haplotype relative risk (HHRR) in the subset of probands with DNA available from both parents. One hundred and thirty-two ADHD probands were compared with 189 controls (chi(2) = 6.17, 1 df, P = 0.01, OR = 1.73, 95% CI = 1.11--2.71). A total of 85 complete trios were available for within-family tests of association and linkage. Fifty-two heterozygous parents carrying one copy of the 7-repeat were informative for the TDT (29 transmitted vs 23 non-transmitted, chi(2) = 0.69). Analysis of the entire sample of 132 probands using TRANSMIT provided no additional evidence for excess transmission of the 7-repeat allele (58 transmitted vs 54 non-transmitted). HHRR gave similar results. We conclude that the case-control findings are likely to be falsely positive, resulting from genetic stratification. However we can not rule out alternative explanations of low statistical power and gene-environment correlation.  相似文献   

18.
BACKGROUND: Dopaminergic neurotransmission is implicated in externalizing behavior problems, such as aggression and hyperactivity. Externalizing behavior is known to be negatively associated with cognitive ability. Activation of dopamine D4 receptors appears to inhibit the functioning of the prefrontal cortex, a brain region implicated in cognitive ability. The 7-repeat allele of the dopamine D4 receptor gene produces less efficient receptors, relative to other alleles, and this may alter the effects of dopamine on cognitive function. OBJECTIVE: To examine the influence of a polymorphism in the third exon of the dopamine D4 receptor gene on the association between externalizing behavior and IQ. DESIGN: In 1 community sample and 2 clinical samples, the presence or absence of the 7-repeat allele was examined as a moderator of the association between externalizing behavior and IQ; the strength of this effect across samples was estimated meta-analytically. PATIENTS: Eighty-seven boys from a longitudinal community study, 48 boys referred clinically for aggression, and 42 adult males diagnosed with attention-deficit/hyperactivity disorder. MAIN OUTCOME MEASURES: IQ scores and observer ratings of externalizing behavior were taken from existing data sets. RESULTS: Among individuals lacking the 7-repeat allele, externalizing behavior was negatively correlated with IQ (mean r = -0.43; P<.001). Among individuals having at least 1 copy of the 7-repeat allele, externalizing behavior and IQ were uncorrelated (mean r = 0.02; P = .45). The difference between these correlations was significant (z = -2.99; P<.01). CONCLUSIONS: Allelic variation of the dopamine D4 receptor gene appears to be a genetic factor moderating the association between externalizing behavior and cognitive ability. This finding may help to elucidate the adaptive value of the 7-repeat allele.  相似文献   

19.
Adenosine A1 receptors antagonistically and specifically modulate the binding and functional characteristics of dopamine D1 receptors. In the striatum this interaction seems to take place in the GABAergic strionigro-strioentopeduncular neurons, where both receptors are colocalized. D1 receptors in the strionigro-strioentopeduncular neurons are involved in the increased striatal expression of immediate-early genes induced by the systemic administration of psychostimulants and D1 receptor agonists. Previous results suggest that a basal expression of the immediate-early gene c-fos tonically facilitates the functioning of strionigro-strioentopeduncular neurons and facilitates D1 receptor-mediated motor activation. The role of A1 receptors in the modulation of the expression of striatal D1 receptor-regulated immediate-early genes and the D1 receptor-mediated motor activation was investigated in rats with a unilateral lesion of the ascending dopaminergic pathways. The systemic administration of the A1 agonist N6-cyclopentyladenosine (CPA, 0.1 mg/kg) significantly decreased the number of contralateral turns induced by the D1 agonist SKF 38393 (3 mg/kg). Higher doses of CPA (0.5 mg/kg) were necessary to inhibit the turning behaviour induced by the D2 agonist quinpirole (0.1 mg/kg). By using in situ hybridization it was found that CPA (0.1 mg/kg) significantly inhibited the SKF 38393-induced increase in the expression of NGFI-A and c-fos mRNA levels in the dopamine-denervated striatum. The increase in jun-B mRNA expression could only be inhibited with the high dose of CPA (0.5 mg/kg). A stronger effect of the A1 agonist was found in the ventral striatum (nucleus accumbens) compared with the dorsal striatum (dorsolateral caudate-putamen). The results indicate the existence of antagonistic A1-D1 receptor-receptor interactions in the dopamine-denervated striatum controlling D1 receptor transduction at supersensitive D1 receptors.  相似文献   

20.
Intraindividual variability (IIV) reflects lawful but transient within-person changes in performance. Increased IIV in cognition shares systematic associations with numerous conditions characterized by alterations in dopamine (DA) neuromodulation (e.g., old age, ADHD, schizophrenia, and Parkinson's disease). In a group of normal middle-aged adults, we examined links between PET-derived measures of D2 receptor binding in striatum, orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and hippocampus (HC) and IIV for tasks assessing recognition memory and executive functioning. An index of IIV, the intraindividual standard deviation (ISD), was computed across successful response latency trials for each cognitive outcome. Lower D2 binding in OC, ACC, and HC, but not striatum, was associated with increasing ISDs for the memory and executive measures. Consistent with neurocomputational models, the present findings suggest a role for extrastriatal DA neurotransmission in modulating variability in cognitive functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号