首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Staphylococcus aureus and Escherichia coli are among the most prevalent species of gram-positive and gram-negative bacteria, respectively, that induce clinical mastitis. The innate immune system comprises the immediate host defense mechanisms to protect against infection and contributes to the initial detection of and proinflammatory response to infectious pathogens. The objective of the present study was to characterize the different innate immune responses to experimental intramammary infection with E. coli and S. aureus during clinical mastitis. The cytokine response and changes in the levels of soluble CD14 (sCD14) and lipopolysaccharide-binding protein (LBP), two proteins that contribute to host recognition of bacterial cell wall products, were studied. Intramammary infection with either E. coli or S. aureus elicited systemic changes, including decreased milk output, a febrile response, and induction of the acute-phase synthesis of LBP. Infection with either bacterium resulted in increased levels of interleukin 1β (IL-1β), gamma interferon, IL-12, sCD14, and LBP in milk. High levels of the complement cleavage product C5a and the anti-inflammatory cytokine IL-10 were detected at several time points following E. coli infection, whereas S. aureus infection elicited a slight but detectable increase in these mediators at a single time point. Increases in IL-8 and tumor necrosis factor alpha were observed only in quarters infected with E. coli. Together, these data demonstrate the variability of the host innate immune response to E. coli and S. aureus and suggest that the limited cytokine response to S. aureus may contribute to the well-known ability of the bacterium to establish chronic intramammary infection.  相似文献   

2.
The prompt recruitment of neutrophils to the site of infection is essential for the defense of the bovine mammary gland against invading pathogens and is determinant for the outcome of the infection. Escherichia coli is known to induce clinical mastitis, characterized by an intense neutrophil recruitment leading to the eradication of the bacteria, whereas Staphylococcus aureus induces subclinical mastitis accompanied by a moderate neutrophil recruitment and the establishment of chronic mastitis. To elicit the neutrophil recruitment into the udder, inflammatory mediators must be produced after recognition of the invading pathogen. To our knowledge, those mediators have never been studied during S. aureus mastitis, although understanding of the neutrophil recruitment mechanisms could allow a better understanding of the differences in the pathogeneses elicited by E. coli and S. aureus. Therefore, we studied, at several time points, the accumulation of neutrophils and the presence of the chemoattractant complement fragment C5a and of the cytokines interleukin-1beta (IL-1beta), tumor necrosis factor alpha, and IL-8 in milk after inoculation of E. coli or S. aureus in lactating bovine udders. The low levels of C5a and the absence of cytokines in milk from S. aureus-infected cows, compared to the high levels found in milk from E. coli-infected animals, mirror the differences in the severities of the two inflammatory reactions. The cytokine deficit in milk after S. aureus inoculation in the lactating bovine mammary gland could contribute to the establishment of chronic mastitis. This result could help in the design of preventive or curative strategies against chronic mastitis.  相似文献   

3.
The interaction among gram-negative bacteria, the innate immune system, and soluble CD14 (sCD14) has not been well documented. The effect of recombinant bovine sCD14 (rbosCD14) on milk somatic cell count (SCC), bacterial clearance, and cytokine production was investigated by using a bovine intramammary Escherichia coli infection model. We first determined whether rbosCD14 would increase the SCC during a lipopolysaccharide (LPS) challenge. Three quarters of each of six healthy lactating cows were injected with either 0.3 microg of LPS, 0.3 microg of LPS plus 100 micro g of rbosCD14, or saline. In comparison with quarters injected with LPS alone, the SCC was twofold higher (P < 0.05) in quarters injected with LPS plus rbosCD14 after the challenge. We therefore hypothesized that when E. coli bacteria invade the mammary gland, sCD14 in milk would interact with LPS and rapidly recruit neutrophils from the blood to eliminate the bacteria before establishment of infection. To test this hypothesis, two quarters of each of nine healthy cows were challenged with either 50 CFU of E. coli plus saline or 50 CFU of E. coli plus 100 microg of rbosCD14. Quarters challenged with E. coli plus rbosCD14 had a more rapid recruitment of neutrophils, which was accompanied by a faster clearance of bacteria, lower concentrations of tumor necrosis factor alpha and interleukin-8 in milk, and milder clinical symptoms, than challenged quarters injected with saline. Results indicate that increasing the concentration of sCD14 in milk may be a potential strategy with which to prevent or reduce the severity of infection by coliform bacteria.  相似文献   

4.
Phagocytosis of bacteria by bovine polymorphonuclear neutrophils (PMN) has long been regarded as essential for host defense against mastitis infection. Complement-mediated opsonisation by complement component 3 (C3) binding is an important component of the innate immune system. We investigated the role of milk complement as an opsonin and its involvement in the phagocytosis and killing of Staphylococcus aureus isolates from cases of bovine mastitis by bovine blood PMN. We show that deposition of milk C3 component occurred on six different isolates of S. aureus and that the alternative pathway was the sole complement pathway operating in milk of uninflamed mammary gland. This deposition was shown to occur at the same location as the capsule, but not on capsular antigen. Milk complement enhanced the chemiluminescence response of PMN induced by S. aureus. Nevertheless, the association of S. aureus to cells and the overall killing of bacteria by bovine PMN were not affected by the presence of milk complement. Therefore, as all milk samples contained antibodies to capsular polysaccharide type 5 and to other surface antigens, it is likely that milk antibodies were responsible for these two phagocytic events. Results of this study suggest that the deposition of milk complement components on the surface of S. aureus does not contribute to the defence of the mammary gland against S. aureus.  相似文献   

5.
6.
7.
Systemic Staphylococcus aureus infection is associated with significant morbidity and mortality arising from both bacterial and host immune factors. IL-18 is a pro-inflammatory cytokine of the IL-1 superfamily that exhibits broad functional effects in innate and acquired immune responses and which has been found in high levels in several chronic inflammatory and autoimmune diseases. Over-expression of IL-18 may promote early resolution of infection or could promote a detrimental exaggerated immune response. This was explored in a model of S. aureus infection. We report increased mortality in Swiss mice that were given recombinant IL-18 prior to inoculation with S. aureus LS-1. IL-18 administration prior to infection induced preferentially enhanced IFN-gamma mRNA expression in peripheral blood leukocytes and spleen, especially splenic NK cells. This correlated with increased IFN-gamma protein detection in serum, and leukocyte and spleen cultures at subsequent discrete time points. These data suggest that increased mortality following gram-positive infection in autoimmune diseases could in part reflect the impact of high levels of pleiotropic pro-inflammatory cytokines such as IL-18 present prior to the onset of infection.  相似文献   

8.
Staphylococcus aureus, but not E. coli pathogens frequently cause subclinical, chronic infections of the mammary gland. We examined here, if inadequate activation of the bovine TLR2 and TLR4 pathogen receptors by ligands derived from S. aureus pathogens might contribute to molecular mechanisms underpinning the escape strategies from mammary immune defence of this pathogen. We show that infections with live E. coli, but not S. aureus pathogens induce strongly IL-8 and TNFalpha gene expression in the udders. Yet, preparations of heat-killed bacteria from both pathogens activate equally well bovine TLR2 and TLR4 receptors to induce NF-kappaB activation, as shown in the HEK293 reconstitution system of TLR-signal transduction. LTA prepared from the S. aureus strain used to infect the cows activates the bovine TLR2 as strongly as the entire, heat-killed pathogen. Both pathogens induce in primary bovine mammary epithelial cells (pbMEC) IL-8 and TNFalpha gene expression, but S. aureus to less than 5% of the degree caused by E. coli. This impaired proinflammatory activation is paralleled by a complete lack of NF-kappaB activation in pbMEC by S. aureus or LTA. In contrast, E. coli and LPS activate strongly NF-kappaB in these cells. A large proportion of this activation is attributable to TLR-mediated signalling, since a dual transdominant negative DN-MyD88-DN-TRIF factor blocks >80% of the pathogen-related NF-kappaB activation in pbMEC. Our results prove that impaired binding of TLR-ligands from the pathogenic S. aureus strain are not the cause for the inadequate mammary immune response elicited by this pathogen. Rather, the pathogen causing subclinical mastitis impairs NF-kappaB activation in MEC thereby severely weakening the immune response in the udder.  相似文献   

9.
10.
Lipopolysaccharide (LPS) binding protein (LBP) is an acute-phase protein that enhances the responsiveness of immune cells to LPS by virtue of its capacity to transfer LPS to CD14. To determine the role of LBP in the innate immune response to peritonitis, LBP gene-deficient (LBP(-/-)) and normal wild-type mice were intraperitoneally infected with Escherichia coli, the most common causative pathogen of this disease. LBP was detected at low concentrations in peritoneal fluid of healthy wild-type mice, and the local LBP levels increased rapidly upon induction of peritonitis. LBP(-/-) mice were highly susceptible to E. coli peritonitis, as indicated by accelerated mortality, earlier bacterial dissemination to the blood, impaired bacterial clearance in the peritoneal cavity, and more severe remote organ damage. LBP(-/-) mice displayed diminished early tumor necrosis factor alpha, interleukin-6, cytokine-induced neutrophil chemoattractant, and macrophage inflammatory protein 2 production and attenuated recruitment of polymorphonuclear leukocytes to the site of infection, indicating that acute inflammation was promoted by LBP. Locally produced LBP is an essential component of an effective innate immune response to E. coli peritonitis.  相似文献   

11.
ABSTRACT: BACKGROUND: Staphylococcus aureus is the major cause of hospital-acquired and community-acquired pneumonia. Host defense to S.aureus infection is largely mediated by the innate immune system. gammadelta T cells play an important role in innate immunity to many infectious diseases. However, less is known about the role of these cells during S.aureus-induced pneumonia. In this study, we examined the response and the role of gammadelta T cells to pulmonary S.aureus infection. RESULTS: Mice infected with S. aureus intranasally showed rapid gammadelta T cells accumulation in the lung. Deficiency of gammadelta T cells led to attenuated bacterial clearance and less tissue damage in lung compared with WT mice. Moreover, TCR-delta/mice exhibited impaired neutrophil recruitment and reduced cytokine production at the site of infection. The gammadelta T cells in response to pulmonary S. aureus infection mainly secreted IL-17 and gammadelta T cells deficiency reduced IL-17 production, which might regulate the production of neutrophil-inducing cytokine/chemokine in the S. aureus-infected lungs CONCLUSIONS: Accumulation of gammadelta T cells in the lungs to S. aureus infection is beneficial for bacteria clearance and also contributes to the tissue damage. These cells were the primary source of IL-17, which might influence the recruitment of neutrophils at the early stage of infection.  相似文献   

12.
Chlamydiaceae are small obligate intracellular parasites and classified as Gram-negative bacteria. Among Chlamydiaceae-derived components, LPS is known as an immunomodulator and possesses a unique lipid A structure with longer but fewer acyl chains. In this study, to elucidate the Chlamydiaceae-induced immune responses, we evaluated the actions of Chlamydophila psittaci LPS as a Chlamydiaceae LPS on human PBMCs and compared with those of Escherichia coli LPS. Similar to E. coli LPS, C. psittaci LPS bound to monocytes and induced the pro-inflammatory cytokine production in an LPS-binding protein (LBP)-dependent manner. However, C. psittaci LPS was much less potent than E. coli LPS in both the LPS binding and cytokine production. Interestingly, although the binding of C. psittaci LPS was mediated by CD14, Toll-like receptor 4 (TLR4) and CD11b, CD14 and TLR4 but not CD11b were involved in the cytokine production. Of note, ELISA-based binding assays revealed that C. psittaci LPS directly bound to LBP and CD14; however, the affinities were much less than those of E. coli LPS. Together, these observations possibly suggest that Chlamydiaceae LPS has low binding affinities for LPS recognition molecules such as CD14 and LBP and exhibit weak biological activities against host immune cells including monocytes, thereby contributing to the chronic (persistent) inflammatory reactions during infection.  相似文献   

13.
C Schütt 《Pathobiology》1999,67(5-6):227-229
An invading pathogen must be held in check by the innate immune system until a specific immune response is mounted. Nonclonal pattern recognition receptors like CD14 or lipopolysaccharide (LPS) binding protein (LBP) recognize ubiquitous pathogen-associated molecular patterns, e.g. LPS. LBP mediates the binding of minute amounts of LPS to membrane-bound CD14 (mCD14) triggering a proinflammatory response of macrophages, which is crucial for keeping an infection under control. Moreover, in vitro mCD14 and LBP are involved in recognition and phagocytosis of heat-killed bacteria. Living Salmonella typhimurium or Escherichia coli depend on the presence of LBP to induce the generation of reactive oxygen species in human or murine macrophages. Using LBP-deficient mice it could be demonstrated that LBP is essential to control low dose (100 CFU S. typhimurium) infection. Therefore, LPS binding proteins play a pivotal role in physiology as well as pathophysiology of Gram-negative infection.  相似文献   

14.
Phagocytes are well-known effectors of the innate immune system to produce proinflammatory cytokines and chemokines such as tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1beta, and IL-8 during infections. Here, we show that infection of monocytes with wild-type Escherichia coli K1, which causes meningitis in neonates, suppresses the production of cytokines and chemokines (TNF-alpha, regulated on activation, normal T expressed and secreted, macrophage-inflammatory protein-1beta, IL-1beta, and IL-8). In contrast, infection of monocytes with a mutant E. coli, which lacks outer membrane protein A (OmpA- E. coli) resulted in robust production of cytokines and chemokines. Wild-type E. coli K1 (OmpA+ E. coli) prevented the phosphorylation and its degradation of inhibitor of kappaB, thereby blocking the translocation of nuclear factor (NF)-kappaB to the nucleus. OmpA+ E. coli-infected cells, subsequently subjected to lipopolysaccharide challenge, were crippled severely in their ability to activate NF-kappaB to induce cytokine/chemokine production. Selective inhibitors of the extracellular signal-regulated kinase (ERK) 1/2 pathway and p38 mitogen-activated protein kinase (MAPK), but not Jun N-terminal kinase, significantly reduced the activation of NF-kappaB and the production of cytokines and chemokines induced by OmpA- E. coli, indicating a role for these kinases in the NF-kappaB/cytokine pathway. It is interesting that the phosphorylation of ERK 1/2 and p38 MAPK was notably reduced in monocytes infected with OmpA+ E. coli when compared with monocytes infected with OmpA- E. coli, suggesting that the modulation of upstream events common for NF-kappaB and MAPKs by the bacterium is possible. The ability of OmpA+ E. coli K1 to inhibit the macrophage response temporarily may enable bacterial survival and growth within the host for the onset of meningitis by E. coli K1.  相似文献   

15.
Investigating the innate immune response mediators released in milk has manifold implications, spanning from elucidation of the role played by mammary epithelial cells (MECs) in fighting microbial infections to the discovery of novel diagnostic markers for monitoring udder health in dairy animals. Here, we investigated the mammary gland response following a two-step experimental infection of lactating sheep with the mastitis-associated bacterium Streptococcus uberis. The establishment of infection was confirmed both clinically and by molecular methods, including PCR and fluorescent in situ hybridization of mammary tissues. Proteomic investigation of the milk fat globule (MFG), a complex vesicle released by lactating MECs, enabled detection of enrichment of several proteins involved in inflammation, chemotaxis of immune cells, and antimicrobial defense, including cathelicidins and calprotectin (S100A8/S100A9), in infected animals, suggesting the consistent involvement of MECs in the innate immune response to pathogens. The ability of MECs to produce and release antimicrobial and immune defense proteins was then demonstrated by immunohistochemistry and confocal immunomicroscopy of cathelicidin and the calprotectin subunit S100A9 on mammary tissues. The time course of their release in milk was also assessed by Western immunoblotting along the course of the experimental infection, revealing the rapid increase of these proteins in the MFG fraction in response to the presence of bacteria. Our results support an active role of MECs in the innate immune response of the mammary gland and provide new potential for the development of novel and more sensitive tools for monitoring mastitis in dairy animals.  相似文献   

16.
Uropathogenic Escherichia coli (UPEC), the most frequent cause of urinary tract infection (UTI), is associated with an inflammatory response which includes the induction of cytokine/chemokine secretion by urothelial cells and neutrophil recruitment to the bladder. Recent studies indicate, however, that UPEC can evade the early activation of urothelial innate immune response in vitro. In this study, we report that infection with the prototypic UPEC strain NU14 suppresses tumor necrosis factor alpha (TNF-alpha)-mediated interleukin-8 (CXCL-8) and interleukin-6 (CXCL-6) secretion from urothelial cell cultures compared to infection with a type 1 piliated E. coli K-12 strain. Furthermore, examination of a panel of clinical E. coli isolates revealed that 15 of 17 strains also possessed the ability to suppress cytokine secretion. In a murine model of UTI, NU14 infection resulted in diminished levels of mRNAs encoding keratinocyte-derived chemokine, macrophage inflammatory peptide 2, and CXCL-6 in the bladder relative to infection with an E. coli K-12 strain. Furthermore, reduced stimulation of inflammatory chemokine production during NU14 infection correlated with decreased levels of bladder and urine myeloperoxidase and increased bacterial colonization. These data indicate that a broad phylogenetic range of clinical E. coli isolates, including UPEC, may evade the activation of innate immune response in the urinary tract, thereby providing a pathogenic advantage.  相似文献   

17.
This is the first study describing an experimental mastitis model using transgenic cows expressing recombinant human lactoferrin (rhLf) in their milk. The aim of the study was to investigate the concentrations in milk and protective effects of bovine and recombinant human lactoferrin in experimental Escherichia coli mastitis. Experimental intramammary infection was induced in one udder quarter of seven first-lactating rhLf-transgenic cows and six normal cows, using an E. coli strain isolated from cows with clinical mastitis and known to be susceptible to Lf in vitro. Clinical signs were recorded during the experimental period, concentrations of human and bovine Lf and indicators of inflammation and bacterial counts were determined for milk, and concentrations of acute-phase proteins and tumor necrosis factor alpha were determined for sera and milk. Serum cortisol and blood hematological and biochemical parameters were also determined. Expression levels of rhLf in the milk of transgenic cows remained constant throughout the experiment (mean, 2.9 mg/ml). The high Lf concentrations in the milk of transgenic cows did not protect them from intramammary infection. All cows became infected and developed clinical mastitis. The rhLf-transgenic cows showed milder systemic signs and lower serum cortisol and haptoglobin concentrations than did controls. This may be explained by lipopolysaccharide-neutralizing and immunomodulatory effects of the high Lf concentrations in their milk. However, Lf does not seem to be a very efficient protein for genetic engineering to enhance the mastitis resistance of dairy cows.  相似文献   

18.
Toll-like receptors are essential pattern-recognition receptors of the innate immune system. They recognize a range of conserved molecules of invading microorganisms. The innate immune system is developed to protect the host, but can be deleterious if activated uncontrolled or inappropriate, such as in sepsis with Gram-negative bacteria. New approaches for treatment, like inhibition of innate immune responses, may be beneficial for the outcome of such conditions. Toll-like receptor 4 associated with CD14 and MD-2, is the lipopolysaccharide (LPS)-receptor and one of the candidates for such intervention. We investigated the newly described cyanobacterial LPS analogue CyP as a potential inhibitor of Escherichia coli (E. coli) LPS-induced inflammatory response in porcine whole blood. Pro-inflammatory cytokines and soluble terminal complement complex, sC5b-9, were used as read-outs. CyP, in contrast to E. coli LPS, did not induce cytokine production using doses up to 1mug/mL whole blood, indicating a lack of agonistic effect of CyP. In contrast, CyP was an efficient LPS antagonist, dose-dependently and completely inhibiting E. coli LPS-induced TNF-alpha, IL-1beta and IL-8 production. CyP was a modest activator of porcine complement compared to LPS from other Gram-negative bacteria. When CyP was pre-incubated in porcine whole blood before adding whole E. coli bacteria, a modest, variable and non-significant inhibition of cytokines were seen, reaching an average inhibition of 44% for IL-1beta. We have demonstrated for the first time that the cyanobacterial LPS analogue, CyP, is an efficient inhibitor of E. coli LPS-induced cytokines in whole blood and may be a candidate for therapeutic LPS-inhibition.  相似文献   

19.
The prompt recruitment of neutrophils to the site of infection is essential for the defense of the bovine mammary gland against invading pathogens and is determinant for the outcome of the infection. Escherichia coli is known to induce clinical mastitis, characterized by an intense neutrophil recruitment leading to the eradication of the bacteria, whereas Staphylococcus aureus induces subclinical mastitis accompanied by a moderate neutrophil recruitment and the establishment of chronic mastitis. To elicit the neutrophil recruitment into the udder, inflammatory mediators must be produced after recognition of the invading pathogen. To our knowledge, those mediators have never been studied during S. aureus mastitis, although understanding of the neutrophil recruitment mechanisms could allow a better understanding of the differences in the pathogeneses elicited by E. coli and S. aureus. Therefore, we studied, at several time points, the accumulation of neutrophils and the presence of the chemoattractant complement fragment C5a and of the cytokines interleukin-1β (IL-1β), tumor necrosis factor alpha, and IL-8 in milk after inoculation of E. coli or S. aureus in lactating bovine udders. The low levels of C5a and the absence of cytokines in milk from S. aureus-infected cows, compared to the high levels found in milk from E. coli-infected animals, mirror the differences in the severities of the two inflammatory reactions. The cytokine deficit in milk after S. aureus inoculation in the lactating bovine mammary gland could contribute to the establishment of chronic mastitis. This result could help in the design of preventive or curative strategies against chronic mastitis.  相似文献   

20.
We have recently shown that highly purified lipoteichoic acid (LTA) represents a major immunostimulatory principle of Staphylococcus aureus. In order to test whether this translates to other bacterial species, we extracted and purified LTA from 12 laboratory-grown species. All LTA induced the release of TNF-alpha, IL-1beta, IL-6 and IL-10 in human whole blood. Soluble CD14 (sCD14) inhibited monokine induction by LTA but failed to confer LTA responsiveness for IL-6 and IL-8 release of human umbilical vein endothelial cells (HUVEC). In a competitive LPS-binding protein (LBP) binding assay, the IC(50) of the tested LTA preparations was up to 3,230-fold higher than for LPS. LBP enhanced TNF-alpha release of human peripheral blood mononuclear cells (PBMC) upon LPS but not LTA stimulation. These data demonstrate a differential role for the serum proteins LBP and sCD14 in the recognition of LPS and LTA. Different efficacies of various anti-CD14 antibodies against LPS vs. LTA-induced cytokine release suggest that the recognition sites of CD14 for LPS and LTA are distinct with a partial overlap. While the maximal achievable monokine release in response to LTA was comparable to LPS, all LTA induced significantly less IL-12 and IFN-gamma. IL-12 substitution increased LTA-inducible IFN-gamma release up to 180-fold, suggesting a critical role of poor LTA-inducible IL-12 for IFN-gamma formation. Pretreatment with IFN-gamma rendered galactosamine-sensitized mice sensitive to challenge with LTA. In conclusion, LTA compared to LPS, are weak inducers of IL-12 and subsequent IFN-gamma formation which might explain their lower toxicity in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号