首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms of neuronal injury after hypoxia–ischemia (HI) are different in the immature and the adult brain, but microglia activation has not been compared. The purpose of this study was to phenotype resident microglia and blood‐derived macrophages in the hippocampus after HI in neonatal (postnatal day 9, P9) or adult (3 months of age, 3mo) mice. Unilateral brain injury after HI was induced in Cx3cr1GFP/+Ccr2RFP/+ male mice on P9 (n = 34) or at 3mo (n = 53) using the Vannucci model. Resident microglia (Cx3cr1‐GFP+) proliferated and were activated earlier after HI in the P9 (1–3 days) than that in the 3mo hippocampus, but remained longer in the adult brain (3–7 days). Blood‐derived macrophages (Ccr2‐RFP+) peaked 3 days after HI in both immature (P9) and adult (3mo) hippocampi but were twice as frequent in adult brains, 41% vs. 21% of all microglia/macrophages. CCL2 expression was three times higher in the P9 hippocampi, indicating that the proinflammatory response was more pronounced in the immature brain after HI. This corresponded well with the higher numbers of galectin‐3‐positive resident microglia in the P9 hippocampi, but did not correlate with CD16/32‐ or CD206‐positive resident microglia or blood‐derived macrophages. In conclusion, resident microglia, rather than infiltrating blood‐derived macrophages, proliferate and are activated earlier in the immature than in the adult brain, but remain increased longer in the adult brain. The inflammatory response is more pronounced in the immature brain, and this correlate well with galectin‐3 expression in resident microglia. GLIA 2015;63:2220–2230  相似文献   

2.
3.
Microglia are resident immune cells of the central nervous system (CNS). The exact role of microglia in CNS disorders is not clear due to lack of tools to discriminate between microglia and infiltrating myeloid cells. Here, we present a novel reporter mouse model targeting a microglia-specific marker, TMEM119, for studying microglia in health and disease. By placing a reporter cassette (GSG-3xFlag-P2A-tdTomato) between the coding sequence of exon 2 and 3′UTR of the Tmem119 gene using CRISPR/Cas9 technology, we generated a Tmem119-tdTomato knock-in mouse strain. Gene expression assay showed no difference of endogenous Tmem119 in the CNS of Tmem119tdTomato/+ relative to wild-type mice. The cells expressing tdTomato were recognized by immunofluorescence staining using commercially available anti-TMEM119 antibodies. Additionally, immunofluorescence and flow cytometry techniques revealed that tdTomato+ cells are detected throughout the CNS, but not in peripheral tissues of Tmem119tdTomato/+ mice. Aging does not influence TMEM119 expression as tdTomato+ cells were detectable in the CNS of older mice (300 and 540 days old). Further immunofluorescence characterization shows that tdTomato+ cells colocalize with Iba1+ cells in the brain, but not with neurons, astrocytes or oligodendrocytes. Moreover, flow cytometry analysis of brain tissues of adult mice demonstrates that the majority of microglia CD45loCD11b+ cells (96.3%) are tdTomato-positive; and a minority of infiltrating CD45hiCD11b+ myeloid cells (5.3%) are also tdTomato-positive, which we further characterized and found that tdTomato expression is in part of choroid plexus macrophages but not in meningeal and perivascular macrophages. Functionally, using an acute injury model, we measured time-lapse activation of tdTomato-labeled microglia by transcranial two-photon microscopy in live Tmem119tdTomato/+ mice. Taken together, the Tmem119-tdTomato reporter mouse model is a valuable tool to specifically study the role of microglia in health and disease.  相似文献   

4.
5.
Shi XQ  Zekki H  Zhang J 《Glia》2011,59(2):231-241
Activation of macrophages/microglia via toll-like receptors (TLRs) plays an important role in inflammation and host defense against pathogens. Pathogen-associated molecular patterns bind TLRs, thereby triggering NF-κB signaling and production of proinflammatory cytokines. Recent data suggest that nonpathogenic molecules resulting from trauma can also trigger inflammation via TLRs. We sought to determine whether peripheral nerve injury could induce the expression of TLR2 on the site of injury-damaged nerves and/or in the central nervous system and to investigate whether TLR2 is necessary for the development of nerve injury-induced neuropathic pain. We observed a significant increase in TLR2, IκB-α, and TNF-α mRNAs in damaged nerves. Increased inflammation-related molecules were found essentially on ED1(+) macrophages. Expression of both IκB-α and TNF-α in peripheral injured nerves was reduced in TLR2 deficient mice where the recruitment of ED1(+) cells is significantly impaired. Although after peripheral nerve injury, spinal microglia became highly activated showing an increase in Iba-1 immunoreactivity and an enlargement of their cell bodies, neither TLR2 mRNA nor IκB-α mRNA was detected in activated microglia. Nerve injury-evoked spinal microglial activation was not significantly altered in TLR2 KO mice. Paw withdrawal threshold and latency in response to mechanical and heat stimuli, respectively, decreased shortly after nerve lesion in wild type mice. In TLR2 KO mice, nerve injury-induced thermal hyperalgesia was completely abolished contrary to that seen in wild-type mice, whereas mechanical allodynia was partially reduced. We suggest that TLR2 is necessary for the development of neuropathic pain and its contribution is more important in thermal hypersensitivity than that of mechanical allodynia.  相似文献   

6.
Perinatal brain injury can cause death in the neonatal period and lifelong neurodevelopmental deficits. Stem cell transplantation had been proved to be effective approach to ameliorate neurological deficits after brain damage. In this study we examine the effect of human umbilical cord blood CD34+ cells on model of neonatal rat hypoxic–ischemic brain damage and compared the neuroprotection of transplantation of CD34+ cells to mononuclear cells from which CD34+ cells isolated on neonatal hypoxic-ischemia rat model. Seven-day-old Sprague-Dawley rats were subjected to hypoxic-ischemic (HI) injury, CD34+ cells (1.5?×?104?cells) or mononuclear cells (1.0?×?106?cells) were transplanted into mice by tail vein on the 7?day after HI. The transplantation of CD34+ cells significantly improved motor function of rat, and reduced cerebral atrophy, inhibited the expression of glial fibrillary acidic protein (GFAP) and apoptosis-related genes: TNF-α, TNFR1, TNFR2, CD40, Fas, and decreased the activation of Nuclear factor kappa B (NF-κB) in damaged brain. CD34+ cells treatment increased the expression of DCX and lectin in ipsilateral brain. Moreover, the transplantation of CD34+ cells and MNCs which were obtained from the same amount of human umbilical cord blood had similar effects on HI. Our data demonstrated that transplantation of human umbilical cord blood CD34+ cells can ameliorate the neural functional defect and reduce apoptosis and promote nerve and vascular regeneration in rat brain after HI injury and the effects of transplantation of CD34+ cells were comparable to that of MNCs in neonatal hypoxic-ischemia rat model.  相似文献   

7.
Progressive myoclonus epilepsy of Unverricht–Lundborg type (EPM1) is an autosomal‐recessively inherited neurodegenerative disorder characterized by severely incapacitating myoclonus, seizures, and ataxia, and caused by loss‐of‐function mutations in the cystatin B gene (CSTB). A central neuropathological finding in the Cstb?/? mouse, an animal model for EPM1, is early microglial activation, which precedes astroglial activation, neuronal loss, and onset of myoclonus, thus implying a critical role for microglia in EPM1 pathogenesis. Here, we characterized phenotypic and functional properties of microglia from Cstb?/? mice utilizing brain tissue, microglia directly isolated from the brain, and primary microglial cultures. Our results show significantly higher Cstb mRNA expression in microglia than in neurons and astrocytes. In Cstb?/? mouse brain, expression of the inflammatory marker p‐p38 MAPK and the proportion of both pro‐inflammatory M1 and anti‐inflammatory M2 microglia is higher than in control mice. Moreover, M1/M2 polarization of microglia in presymptomatic Cstb?/? mice is, compared to control mice, skewed towards M2 type at postnatal day 14 (P14), but towards M1 type at P30, a time point associated with onset of myoclonus. At this age, the high expression of both pro‐inflammatory inducible nitric oxide synthase (iNOS) and anti‐inflammatory arginase 1 (ARG1) in Cstb?/? mouse cortex is accompanied by the presence of peripheral immune cells. Consistently, activated Cstb?/? microglia show elevated chemokine release and chemotaxis. However, their MHCII surface expression is suppressed. Taken together, our results link CSTB deficiency to neuroinflammation with early activation and dysfunction of microglia and will open new avenues for therapeutic interventions for EPM1. GLIA 2015;63:400–411  相似文献   

8.
The immature brain is susceptible to inflammatory injury induced by hypoxia-ischemia (HI) or infection, which causes serious neurodevelopmental disabilities in the survivors of preterm births. Recently, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptors (death receptor DR4/5 and decoy receptor DcR1/2) were reported to mediate various neuroinflammatory responses. However, little information is available regarding the role of TRAIL and its receptors in the immature brain after HI. The purpose of this study was to evaluate the expression of TRAIL and its receptors in the immature brain after HI and relate this expression to neurological function. We performed right common carotid artery ligation followed by hypoxia (6% O(2), 37°C) for 2.5 h to induce HI in postnatal day 3 rats. The distribution of TRAIL and its receptors, caspase-3 and CD68-labeled microglia/macrophages was evaluated 24 h after HI by immunostaining. The protein and mRNA expression of TRAIL and DR5 was measured by Western blot and real-time PCR, respectively. Delayed neuronal loss was evaluated by NeuN and Nissl staining 7 days after HI. Furthermore, neurological deficits were evaluated by a righting reflex test, time of eye opening and T-maze test. The expression of TRAIL, DR5 and DcR1/2 receptors and caspase-3 was more pronounced in the ipsilateral hemisphere compared with the contralateral part and the control group 24 h after HI. DR5/active caspase-3 double-positive cells were observed at 24 h after HI in the ipsilateral hemisphere but not in the contralateral hemisphere. The TRAIL and CD68 double-labeled cells were more pronounced in the ipsilateral cortical regions compared with the corresponding regions of the contralateral part. HI also resulted in a significant increase in TRAIL and DR5 protein and mRNA expression at 24 h, which corresponded to neuronal cell loss 7 days after HI. Furthermore, the HI group displayed impaired neurobehavioral development compared with the control group (p < 0.05). Altogether our results show that the TNF-α superfamily ligand TRAIL is induced on CD68+ microglia/macrophages after perinatal HI and that one of its receptors, DR5, is induced on neocortical neurons and glial cells. That many DR5+ cells were also caspase-3+ strongly supports the conclusion that these signaling molecules are involved in the delayed loss of neurons in the neocortex and in the neurobehavioral deficits that are often seen after perinatal HI.  相似文献   

9.
Redox‐signaling is implicated in deleterious microglial activation underlying CNS disease, but how ROS program aberrant microglial function is unknown. Here, the oxidation of NF‐κB p50 to a free radical intermediate is identified as a marker of dysfunctional M1 (pro‐inflammatory) polarization in microglia. Microglia exposed to steady fluxes of H2O2 showed altered NF‐κB p50 protein–protein interactions, decreased NF‐κB p50 DNA binding, and augmented late‐stage TNFα expression, indicating that H2O2 impairs NF‐κB p50 function and prolongs amplified M1 activation. NF‐κB p50?/? mice and cultures exhibited a disrupted M2 (alternative) response and impaired resolution of the M1 response. Persistent neuroinflammation continued 1 week after LPS (1 mg/kg, IP) administration in the NF‐κB p50?/? mice. However, peripheral inflammation had already resolved in both strains of mice. Treatment with the spin‐trap DMPO mildly reduced LPS‐induced 22 h TNFα in the brain in NF‐κB p50+/+ mice. Interestingly, DMPO failed to reduce and strongly augmented brain TNFα production in NF‐κB p50?/? mice, implicating a fundamental role for NF‐κB p50 in the regulation of chronic neuroinflammation by free radicals. These data identify NF‐κB p50 as a key redox‐signaling mechanism regulating the M1/M2 balance in microglia, where loss of function leads to a CNS‐specific vulnerability to chronic inflammation. GLIA 2015;63:423–440  相似文献   

10.
We examined the neuroprotective efficacy of a post-treatment with idazoxan (Idaz): an alpha2-adrenoceptor antagonist with activity at the I1- and I2-subtypes of the imidazoline receptor (I-receptor), in an experimental model of perinatal hypoxic-ischemic (HI) brain damage. Seventy-two, 7-day-old Wistar rats were subjected to permanent unilateral ligation of the common carotid artery and transient (2 hr) hypoxia (8% O(2)). The surviving animals were sub-divided into 3 groups: one "control" group received intraperitoneal (i.p.) injection of saline (Sigma; n = 21) and two "treated" groups received, 10 min post-HI, i.p. treatments with Idaz (I3: 3 mg/kg; n = 19) or (I8: 8 mg/kg; n = 20). Idaz effects were assessed by TTC-staining 72 hr post-HI for Sigma (n = 13), I3 (n = 11), and I8 (n = 12) groups and by MRI-examination 5 weeks post-HI for Sigma (n = 8), I3 (n = 8), and I8 (n = 6) groups. Total ratio of brain infarct areas were significantly (P < 0.01) different between Sigma and Idaz-treated rats: 20.9 +/- 4.0%, 35.6 +/- 5.9 % and 36.8 +/- 5.8% for Sigma, I3 and I8, respectively, when determined with TTC-staining and; 23.3 +/- 3.7%, 39.8 +/- 4.2%, and 43.2 +/- 10.1%, for Sigma, I3, and I8, respectively, when assessed by MRI. Our results suggest that Idaz, given as a post-HI treatment, does not exert neuroprotective effects but enhances the brain injury induced by focal neonatal cerebral HI. The deleterious mechanism may result from an overactivity of sympathetic tone and/or the immaturity of central I-receptors in newborn rats.  相似文献   

11.
Macrophage can adopt several phenotypes, process call polarization, which is crucial for shaping inflammatory responses to injury. It is not known if microglia, a resident brain macrophage population, polarizes in a similar way, and whether specific microglial phenotypes modulate cell death in response to brain injury. In this study, we show that both BV2‐microglia and mouse bone marrow derived macrophages (BMDMs) were able to adopt different phenotypes after LPS (M1) or IL‐4 (M2) treatment in vitro, but regulated cell death differently when added to mouse organotypic hippocampal brain slices. BMDMs induced cell death when added to control slices and exacerbated damage when combined with oxygen–glucose deprivation (OGD), independently of their phenotype. In contrast, vehicle‐ and M2‐BV2‐microglia were protective against OGD‐induced death. Direct treatment of brain slices with IL‐4 (without cell addition) was protective against OGD and induced an M2 phenotype in the slice. In vivo, intracerebral injection of LPS or IL‐4 in mice induced microglial phenotypes similar to the phenotypes observed in brain slices and in cultured cells. After injury induced by middle cerebral artery occlusion, microglial cells did not adopt classical M1/M2 phenotypes, suggesting that another subtype of regulatory phenotype was induced. This study highlights functional differences between macrophages and microglia, in response to brain injury with fundamentally different outcomes, even if both populations were able to adopt M1 or M2 phenotypes. These data suggest that macrophages infiltrating the brain from the periphery after an injury may be cytotoxic, independently of their phenotype, while microglia may be protective.  相似文献   

12.
Traumatic brain injury (TBI) is a major cause of death and disability. The underlying pathophysiology is characterized by secondary processes including neuronal death and gliosis. To elucidate the role of the NG2 proteoglycan we investigated the response of NG2‐knockout mice (NG2‐KO) to TBI. Seven days after TBI behavioral analysis, brain damage volumetry and assessment of blood brain barrier integrity demonstrated an exacerbated response of NG2‐KO compared to wild‐type (WT) mice. Reactive astrocytes and expression of the reactive astrocyte and neurotoxicity marker Lcn2 (Lipocalin‐2) were increased in the perilesional brain tissue of NG2‐KO mice. In addition, microglia/macrophages with activated morphology were increased in number and mRNA expression of the M2 marker Arg1 (Arginase 1) was enhanced in NG2‐KO mice. While TBI‐induced expression of pro‐inflammatory cytokine genes was unchanged between genotypes, PCR array screening revealed a marked TBI‐induced up‐regulation of the C‐X‐C motif chemokine 13 gene Cxcl13 in NG2‐KO mice. CXCL13, known to attract immune cells to the inflamed brain, was expressed by activated perilesional microglia/macrophages seven days after TBI. Thirty days after TBI, NG2‐KO mice still exhibited more pronounced neurological deficits than WT mice, up‐regulation of Cxcl13, enhanced CD45+ leukocyte infiltration and a relative increase of activated Iba‐1+/CD45+ microglia/macrophages. Our study demonstrates that lack of NG2 exacerbates the neurological outcome after TBI and associates with abnormal activation of astrocytes, microglia/macrophages and increased leukocyte recruitment to the injured brain. These findings suggest that NG2 may counteract neurological deficits and adverse glial responses in TBI. GLIA 2016;64:507–523  相似文献   

13.
Background

Therapeutic hypothermia protects neurons after severe brain injury. Activated microglia produce several neurotoxic factors, such as pro-inflammatory cytokines and nitric oxide (NO), during neuron destruction. Hence, suppression of microglial release of these factors is thought to contribute partly to the neuroprotective effects of hypothermia. After brain insults, adenosine triphosphate (ATP) is released from injured cells and activates microglia. Here, we examined the acute effects of temperature on ATP-activated microglial production of inflammatory factors, and the possible involvement of p38 mitogen-activated protein kinase (p38) underlying such effects.

Methods

Microglia were cultured with ATP at 33, 37, and 39°C, or with ATP in the presence of a p38 inhibitor, SB203580, at 37°C. Cytokine and NO levels, and p38 activation were measured.

Results

Compared to 37°C, TNF-α was reduced at 33°C and augmented at 39°C for 1.5 h. IL-6 was reduced at 33°C for 6 h. NO was reduced at 33°C, but augmented at 39°C for 6 h. p38 was reduced at 33°C for 1 min. SB203580 inhibited ATP-induced TNF-α, IL-6, and NO production.

Conclusion

Lowering temperature rapidly reduced p38 activation and the subsequent p38-regulated production of pro-inflammatory cytokines and NO in ATP-activated microglia, suggesting that attenuation of early phase inflammatory responses via suppression of p38 in microglia is one possible neuroprotective mechanism of therapeutic hypothermia. Temperature elevation increased TNF-α and NO production in these cells. These temperature-dependent changes imply that monitoring of TNF-α and NO in the cerebrospinal fluid during the early phase might be useful as biomarkers for responses to therapeutic hypothermia and hyperthermia.

  相似文献   

14.
Growing evidence suggests that early-life interactions among genetic, immune, and environment factors may modulate neurodevelopment and cause psycho-cognitive deficits. Maternal immune activation (MIA) induces autism-like behaviors in offspring, but how it interplays with perinatal brain injury (especially birth asphyxia or hypoxia ischemia [HI]) is unclear. Herein we compared the effects of MIA (injection of poly[I:C] to dam at gestational day 12.5), HI at postnatal day 10, and the combined MIA/HI insult in murine offspring of both sexes. We found that MIA induced autistic-like behaviors without microglial activation but amplified post-HI NFκB signaling, pro-inflammatory responses, and brain injury in offspring. Conversely, HI neither provoked autistic-like behaviors nor concealed them in the MIA offspring. Instead, the dual MIA/HI insult added autistic-like behaviors with diminished synaptic density and reduction of autism-related PSD-95 and Homer-1 in the hippocampus, which were missing in the singular MIA or HI insult. Further, the dual MIA/HI insult enhanced the brain influx of Otx2-positive monocytes that are associated with an increase of perineuronal net-enwrapped parvalbumin neurons. Using CCR2-CreER mice to distinguish monocytes from the resident microglia, we found that the monocytic infiltrates gradually adopted a ramified morphology and expressed the microglial signature genes (Tmem119, P2RY12, and Sall1) in post-MIA/HI brains, with some continuing to express the proinflammatory cytokine TNFα. Finally, genetic or pharmacological obstruction of monocytic influx significantly reduced perineuronal net-enwrapped parvalbumin neurons and autistic-like behaviors in MIA/HI offspring. Together, these results suggest a pathologic role of monocytes in the two-hit (immune plus neonatal HI) model of neurodevelopmental defects.SIGNIFICANCE STATEMENT In autism spectrum disorders (ASDs), prenatal infection or maternal immune activation (MIA) may act as a primer for multiple genetic and environmental factors to impair neurodevelopment. This study examined whether MIA cooperates with neonatal cerebral hypoxia ischemia to promote ASD-like aberrations in mice using a novel two-hit model. It was shown that the combination of MIA and neonatal hypoxia ischemia produces autistic-like behaviors in the offspring, and has synergistic effects in inducing neuroinflammation, monocytic infiltrates, synaptic defects, and perineuronal nets. Furthermore, genetic or pharmacological intervention of the MCP1-CCR2 chemoattractant pathway markedly reduced monocytic infiltrates, perineuronal nets, and autistic-like behaviors. These results suggest reciprocal escalation of immune and neonatal brain injury in a subset of ASD that may benefit from monocyte-targeted treatments.  相似文献   

15.
The contribution of heme oxygenase (HO)-linked pathways to neurodegeneration following cerebral hypoxia-ischemia (HI) remains unclear. We investigated whether HO modulators affected HI-induced brain damage and explored potential mechanisms involved. HI was induced in 26-day-old male Wistar rats by left common carotid artery ligation, followed by exposure to a humidified atmosphere of 8% oxygen for 1 hr. Tin protoporphyrin (SnPP; an HO inhibitor), ferriprotoporphyrin (FePP; an HO inducer), or saline was administered intraperitoneally once daily from 1 day prior to HI until sacrifice at 3 days post-HI. SnPP reduced (P < 0.05) infarct volume compared with saline-treated animals, but FePP had no effect on brain injury. SnPP did not significantly inhibit HO activity at 3 days post-HI, but SnPP increased (P < 0.001) total nitric oxide synthase (NOS) activity compared with HI + saline. Both inducible NOS and cyclooxygenase activities were attenuated (P < 0.05) by SnPP, whereas mitochondrial complex I and V activities were augmented (P < 0.05) by SnPP. SnPP had no effect on NMDA receptor currents. Overall, like other HO inhibitors, SnPP produced many nonselective effects, such as attenuation of inflammatory enzymes and increased mitochondrial respiratory function, which were associated with a protective response 3 days post-HI.  相似文献   

16.
Interleukin-1 (IL-1) converting enzyme (ICE) is a cysteine protease that cleaves inactive pro-IL-1beta to active IL-1beta. The pro-inflammatory cytokine IL-1beta is implicated as a mediator of hypoxic-ischemic (HI) brain injury, both in experimental models and in humans. ICE is a member of a family of ICE-like proteases (caspases) that mediate apoptotic cell death in diverse tissues. The authors hypothesized that in neonatal mice with a homozygous deletion of ICE (ICE-KO) the severity of brain injury elicited by a focal cerebral HI insult would be reduced, relative to wild-type mice. Paired litters of 9- to 10-day-old ICE-KO and wild-type mice underwent right carotid ligation, followed by 70 or 120 minutes of exposure to 10% O2. In this neonatal model of transient focal cerebral ischemia followed by reperfusion, the duration of hypoxia exposure determines the duration of cerebral ischemia and the severity of tissue damage. Outcome was evaluated 5 or 21 days after lesioning; severity of injury was quantified by morphometric estimation of bilateral cortical, striatal, and dorsal hippocampal volumes. In animals that underwent the moderate HI insult (70-minute hypoxia), damage was attenuated in ICE-KO mice, when evaluated at 5 or 21 days post-lesioning. In contrast, in mice that underwent the more severe HI insult (120-minute hypoxia), injury severity was the same in both groups. Reductions in intra-HI CBF, measured by laser Doppler flow-metry, and intra- and post-HI temperatures did not differ between groups. These results show that ICE activity contributes to the progression of neonatal HI brain injury in this model. Whether these deleterious effects are mediated by pro-inflammatory actions of IL-1beta and/or by pro-apoptotic mechanisms is an important question for future studies.  相似文献   

17.
The activation of resident microglia and infiltrated monocytes are known potent mediators of chronic neuroinflammation following traumatic brain injury (TBI). In this study, we use a mouse model of blast-induced TBI (bTBI) to investigate whether microglia and monocytes contribute to the neuroinflammatory and behavioral consequences of bTBI. Eight-ten week old mice were subject to moderate TBI (180 kPa) in a shock tube. Using double transgenic CCR2RFP/+: CX3CR1GFP/+ mice, we were able to note that in addition to resident Cx3CR1+ microglia, infiltrating CCR2+ monocytes also contributed to the expanding macrophage population that was observed after bTBI. The microglia activation and monocyte infiltration occurred as early as 4 h and lasted up to 30d after blast exposure, suggesting chronic inflammation. The infiltration of monocytes may be partly mediated by chemokine CCL2-CCR2 signaling axis and compromised blood brain barrier permeability. Hence, bTBI-induced infiltration of monocytes and production of IL-1β were prevented in mice lacking CCR2 (CCR2 KO). Finally, this study showed that interference of monocyte infiltration using CCR2 KO, ameliorated the chronic effects of bTBI such as anxiety-like behavior and short-term memory decline. Taken together, these data suggest that bTBI leads to activation of both resident microglia and infiltrated monocytes. The infiltration of monocytes was partly mediated by CCL2-CCR2 signaling, which in turn contributes to increased production of IL-1β leading to behavioral deficits after bTBI. Furthermore, bTBI induced behavioral outcomes were reduced by targeting CCL2-CCR2 signaling, highlighting the significance of this signaling axis in bTBI pathology.  相似文献   

18.
The exact roles of activated microglia and fractalkine (CX3CL1)/fractalkine receptor (CX3CR1) signaling are not fully understood in brain ischemic injury and the findings reported are controversial. Here, we investigated the effects of CX3CR1 siRNA on the expression of CX3CR1, p38 mitogen-activated protein kinase (p38MAPK), Protein Kinase C (PKC) and inflammatory cytokines, microglia activation, white matter lesions, and cognitive function in mice treated with bilateral common carotid artery stenosis (BCAS) in vivo as well as effects of exogenous CX3CL1, CX3CR1 siRNA, and SB2035080 on expression of inflammatory cytokines in BV2 microglia treated with oxygen–glucose deprivation (OGD) in vitro. We showed that CX3CR1 siRNA significantly inhibited the increased expression of CX3CR1, p38MAPK, PKC as well as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6, and also attenuated microglia activation, white matter lesions, and cognitive deficits induced by BCAS in mice brain. We also showed that exogenous CX3CL1 could induce a further enhancement in TNF-α and IL-1β expression, which could be suppressed by CX3CR1 siRNA or by the p38MAPK inhibitor in OGD-treated BV2 microglial cells in vitro. Our findings indicated that CX3CL1/CX3CR1-mediated microglial activation plays a detrimental role in ischemic brain via p38MAPK/PKC signaling and also suggested that CX3CL1/CX3CR1 axis might be a putative therapeutic target to disrupt the cascade of deleterious events that lead to brain ischemic injury.  相似文献   

19.
IntroductionIntracerebral hemorrhage (ICH) causes devastating morbidity and mortality, and studies have shown that the toxic components of hematomas play key roles in brain damage after ICH. Recent studies have found that TLR9 participates in regulating the phagocytosis of peripheral macrophages. The current study examined the role of TLR9 in macrophage/microglial (M/M) function after ICH.MethodsRAW264.7 (macrophage), BV2 (microglia), and HT22# (neurons) cell lines were transfected with lentivirus for TLR9 overexpression. Whole blood from C57BL/6 or EGFPTg/+ mice was infused for phagocytosis and injury experiments, and brusatol was used for the experiments. Intraperitoneal injection of the TLR9 agonist ODN1826 or control ODN2138 was performed on days 1, 3, 5, 7, and 28 after ICH to study the effects of TLR9 in mice. In addition, clodronate was coinjected in M/M elimination experiments. The brains were collected for histological and protein experiments at different time points after ICH induction. Cellular and histological methods were used to measure hematoma/iron residual, M/Ms variation, neural injury, and brain tissue loss. Behavioral tests were performed premodeling and on days 1, 3, 7, and 28 post‐ICH.ResultsOverexpression of TLR9 facilitated M/M phagocytosis and protected neurons from blood‐derived hazards in vitro. Furthermore, ODN1826 boosted M/M activation and phagocytic function, facilitated hematoma/iron resolution, reduced brain injury, and improved neurological function recovery in ICH mice, which were abolished by clodronate injection. The experimental results indicated that the Nrf2/CD204 pathway participated in TLR9‐induced M/M phagocytosis after ICH.ConclusionOur study suggests a protective role for TLR9‐enhanced M/M phagocytosis via the Nrf2/CD204 pathway after ICH. Our findings may serve as potential targets for ICH treatment.  相似文献   

20.
Corticosteroids have been used in the treatment of human traumatic brain injury (TBI), which is a leading cause of death and disability, but their efficiency is still a matter of debate. Dexamethasone was considered to delay post-traumatic inflammation and retard neuronal degeneration, resulting in attenuation of secondary injury following experimental TBI. In a rat TBI model, we have investigated the effects of dexamethasone on expression patterns of markers of inflammatory activation of microglia/macrophages by immunohistochemistry. Endothelial-monocyte activating polypeptide II (EMAP-II), P2X4 receptor (P2X4R) and allograft-inflammatory factor-1 (AIF-1) were reported to be associated with the activation of microglia/macrophages post central nervous system (CNS) injury and may play roles in inflammatory cascades of secondary brain damage. Dexamethasone significantly suppressed the accumulation of EMAP-II+, P2X4R+ or AIF+ cells at Day-1 and 2 post-brain-trauma but not on Days 4 and 6, which is in accordance with the reported short- but not long-term protective effects of dexamethasone in TBI. These findings indicate a rather rapid but transient anti-inflammatory effect of dexamethasone in TBI. Zhiyuan Zhang and Zhiren Zhang have equally contributed to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号