首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Individuals with schizophrenia display a number of structural and cytoarchitectural alterations in the hippocampus, suggesting that other functions such as synaptic plasticity may also be modified. Altered hippocampal plasticity is likely to affect memory processing, and therefore any such pathology may contribute to the cognitive symptoms of schizophrenia, which includes prominent memory impairment. The current study tested whether prenatal exposure to infection, an environmental risk factor that has previously been associated with schizophrenia produced changes in hippocampal synaptic transmission or plasticity, using the maternal immune activation (MIA) animal model. We also assessed performance in hippocampus‐dependent memory tasks to determine whether altered plasticity is associated with memory dysfunction. MIA did not alter basal synaptic transmission in either the dentate gyrus or CA1 of freely moving adult rats. It did, however, result in increased paired‐pulse facilitation of the dentate gyrus population spike and an enhanced persistence of dentate long‐term potentiation. MIA animals displayed slower learning of a reversed platform location in the water maze, and a similarly slowed learning during reversal in a spatial plus maze task. Together these findings are indicative of reduced behavioral flexibility in response to changes in task requirements. The results are consistent with the hypothesis that hippocampal plasticity is altered in schizophrenia, and that this change in plasticity mechanisms may underlie some aspects of cognitive dysfunction in this disorder. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Schizophrenia is associated with changes in memory and contextual processing. As maternal infection is a risk factor in schizophrenia we tested for these impairments in a maternal immune activation (MIA) animal model. MIA rats displayed impaired object recognition memory, despite intact object discrimination, and a reduced reinstatement of rearing in response to a contextual manipulation. These results link MIA to contextual impairments in schizophrenia, possibly through changes in hippocampal function.  相似文献   

3.
The core symptoms of autism are deficits in social interaction and language, and the presence of repetitive/stereotyped behaviors. We demonstrate that behaviors related to these symptoms are present in a mouse model of an environmental risk factor for autism, maternal infection. We stimulate the maternal immune system by injecting the viral mimic poly(I:C) during pregnancy, and analyze the social and communicative behaviors of the offspring. In one test, young pups respond to a brief separation from the mother with ultrasonic vocalizations (USVs). We find that, compared to pups born to saline-injected mothers, pups born to maternal immune activation (MIA) mothers produce a lower rate of USVs in the isolation test starting at day 8. The quality of the vocalizations is also different; analysis of sound spectrograms of 10 day-old pups shows that male pups from MIA mothers emit significantly fewer harmonic and more complex and short syllables. These communication differences are also apparent in adult offspring. Compared to controls, adult MIA males emit significantly fewer USVs in response to social encounters with females or males, and display reduced scent marking in response to female urine. Regarding a second autism symptom, MIA males display decreased sociability. In a third test of characteristic autism behaviors, MIA offspring exhibit increased repetitive/stereotyped behavior in both marble burying and self-grooming tests. In sum, these results indicate that MIA yields male offspring with deficient social and communicative behavior, as well as high levels of repetitive behaviors, all of which are hallmarks of autism.  相似文献   

4.
Both genetic and environmental factors are thought to contribute to neurodevelopmental and neuropsychiatric disorders with maternal immune activation (MIA) being a risk factor for both autism spectrum disorders and schizophrenia. Although MIA mouse offspring exhibit behavioral impairments, the synaptic alterations in vivo that mediate these behaviors are not known. Here we employed in vivo multiphoton imaging to determine that in the cortex of young MIA offspring there is a reduction in number and turnover rates of dendritic spines, sites of majority of excitatory synaptic inputs. Significantly, spine impairments persisted into adulthood and correlated with increased repetitive behavior, an ASD relevant behavioral phenotype. Structural analysis of synaptic inputs revealed a reorganization of presynaptic inputs with a larger proportion of spines being contacted by both excitatory and inhibitory presynaptic terminals. These structural impairments were accompanied by altered excitatory and inhibitory synaptic transmission. Finally, we report that a postnatal treatment of MIA offspring with the anti-inflammatory drug ibudilast, prevented both synaptic and behavioral impairments. Our results suggest that a possible altered inflammatory state associated with maternal immune activation results in impaired synaptic development that persists into adulthood but which can be prevented with early anti-inflammatory treatment.  相似文献   

5.
Neuronal nitric oxide synthase (nNOS) is a key arginine metabolising enzyme in the brain, and nNOS‐derived nitric oxide (NO) plays an important role in regulating glutamatergic neurotransmission. NO and its related molecules are involved in the pathogenesis of schizophrenia, and human genetic studies have identified schizophrenia risk genes encoding nNOS. This study systematically investigated how maternal immune activation (MIA; a risk factor for schizophrenia) induced by polyinosinic:polycytidylic acid affected nNOS‐immunoreactivity in the brain of the resulting male and female offspring at the age of postnatal day (PND) 2. Immunohistochemistry revealed a markedly increased intensity of nNOS‐positive cells in the CA3 and dentate gyrus subregions of the hippocampus, the somatosensory cortex, and the striatum, but not the frontal cortex and hippocampal CA1 region, in the MIA offspring when compared to control group animals. There were no sex differences in the effect. Given the role of nNOS in glutamatergic neurotransmission and its functional relationship with glutamate NMDA receptors, increased nNOS immunoreactivity may indicate the up‐regulation of NMDA receptor function in MIA rat offspring at an early postnatal age. Future research is required to determine whether these changes contribute to the neuronal and behavioral dysfunction observed in both juvenile and adult MIA rat offspring.  相似文献   

6.
Prenatal exposure to infectious or inflammatory insults can increase the risk of developing neuropsychiatric disorder in later life, including schizophrenia, bipolar disorder, and autism. These brain disorders are also characterized by pre- and postsynaptic deficits. Using a well-established mouse model of maternal exposure to the viral mimetic polyriboinosinic–polyribocytidilic acid [poly(I:C)], we examined whether prenatal immune activation might cause synaptic deficits in the hippocampal formation of pubescent and adult offspring. Based on the widely appreciated role of microglia in synaptic pruning, we further explored possible associations between synaptic deficits and microglia anomalies in offspring of poly(I:C)-exposed and control mothers. We found that prenatal immune activation induced an adult onset of presynaptic hippocampal deficits (as evaluated by synaptophysin and bassoon density). The early-life insult further caused postsynaptic hippocampal deficits in pubescence (as evaluated by PSD95 and SynGAP density), some of which persisted into adulthood. In contrast, prenatal immune activation did not change microglia (or astrocyte) density, nor did it alter their activation phenotypes. The prenatal manipulation did also not cause signs of persistent systemic inflammation. Despite the absence of overt glial anomalies or systemic inflammation, adult offspring exposed to prenatal immune activation displayed increased hippocampal IL-1β levels. Taken together, our findings demonstrate that age-dependent synaptic deficits and abnormal pro-inflammatory cytokine expression can occur during postnatal brain maturation in the absence of microglial anomalies or systemic inflammation.  相似文献   

7.
Microglia, the resident immune cells of the central nervous system, play critical roles in neurodevelopment, synaptic pruning, and neuronal wiring. Early in development, microglia migrate via the tangential and radial migration pathways to their final destinations and mature gradually, a process that includes morphological changes. Recent research has implicated microglial abnormality in the etiology of schizophrenia. Since prenatal exposure to viral or bacterial infections due to maternal immune activation (MIA) leads to increased risk of schizophrenia in the offspring during adulthood, the present study systematically investigated how MIA induced by polyinosinic:polycytidylic acid (a mimic of viral double‐stranded RNA) affected microglial immunoreactivity along the migration and maturation trajectories in the brains of male and female rat offspring on postnatal day (PND) 2. The immunohistochemistry revealed significant changes in the density of IBA‐1 immunoreactive cells in the corpus callosum, somatosensory cortex, striatum, and the subregions of the hippocampus of the MIA offspring. The male and female MIA offspring displayed markedly altered microglial immunoreactivity in both the tangential and radial migration, as well as maturation, pathways when compared to their sex‐ and age‐matched controls as evidenced by morphology‐based cell counting. Given the important roles of microglia in synaptic pruning and neuronal wiring and survival, these changes may lead to structural and functional neurodevelopmental abnormalities, and so contribute to the functional deficits observed in juvenile and adult MIA offspring. Future research is required to systematically determine how MIA affects microglial migration and maturation in rat offspring.  相似文献   

8.
Mutation of human chromosome 15q13.3 increases the risk for autism and schizophrenia. One of the noteworthy genes in 15q13.3 is CHRNA7, which encodes the nicotinic acetylcholine receptor alpha 7 subunit (α7nAChR) associated with schizophrenia in clinical studies and rodent models. This study investigates the role of α7nAChR in maternal immune activation (MIA) mice model, a murine model of environmental risk factor for autism and schizophrenia. We provided choline, a selective α7nAChR agonist among its several developmental roles, in the diet of C57BL/6N wild-type dams throughout the gestation and lactation period and induced MIA at mid-gestation. The adult offspring behavior and gene expression profile in the maternal-placental-fetal axis at mid-gestation were investigated. We found that choline supplementation prevented several MIA-induced behavioral abnormalities in the wild-type offspring. Pro-inflammatory cytokine interleukin-6 (Il6) and Chrna7 gene expression in the wild-type fetal brain were elevated by poly(I:C) injection and were suppressed by gestational choline supplementation. We further investigated the gene expression level of Il6 in Chrna7 mutant mice. We found that the basal level of Il6 was higher in Chrna7 mutant fetal brain, which suggests that α7nAChR may serve an anti-inflammatory role in the fetal brain during development. Lastly, we induced MIA in Chrna7+/− offspring. The Chrna7+/− offspring were more vulnerable to MIA, with increased behavioral abnormalities. Our study shows that α7nAChR modulates inflammatory response affecting the fetal brain and demonstrates its effects on offspring behavior development after MIA.  相似文献   

9.
Maternal immune activation (MIA) during pregnancy in rodents increases the risk of the offspring to develop schizophrenia-related behaviors, suggesting a relationship between the immune system and the brain development. Here we tested the hypothesis that MIA induced by the viral mimetic polyinosinic-polycytidylic acid (poly I:C) in early or late gestation of mice leads to behavioral and neuroanatomical disorders in the adulthood. On gestational days (GDs) 9 or 17 pregnant dams were treated with poly I:C or saline via intravenous route and the offspring behaviors were measured during adulthood. Considering the progressive structural neuroanatomical alterations in the brain of individuals with schizophrenia, we used magnetic resonance imaging (MRI) to perform brain morphometric analysis of the offspring aged one year. MIA on GD9 or GD17 led to increased basal locomotor activity, enhanced motor responses to ketamine, a psychotomimetic drug, and reduced time spent in the center of the arena, suggesting an increased anxiety-like behavior. In addition, MIA on GD17 reduced glucose preference in the offspring. None of the treatments altered the relative volume of the lateral ventricles. However, a decrease in brain volume, especially for posterior structures, was observed for one-year-old animals treated with poly I:C compared with control groups. Thus, activation of the maternal immune system at different GDs lead to neuroanatomical and behavioral alterations possibly related to the positive and negative symptoms of schizophrenia. These results provide insights on neuroimmunonological and neurodevelopmental aspects of certain psychopathologies, such as schizophrenia.  相似文献   

10.
Environmental enrichment (EE) has been successfully implemented in human rehabilitation settings. However, the mechanisms underlying its success are not understood. Incorporating components of EE protocols into our animal models allows for the exploration of these mechanisms and their role in mitigation. Using a mouse model of maternal immune activation (MIA), the present study explored disruptions in social behavior and associated hypothalamic pituitary adrenal (HPA) axis functioning, and whether a supportive environment could prevent these effects. We show that prenatal immune activation of toll-like receptor 3, by the viral mimetic polyinosinic-polycytidylic acid (poly(I:C)), led to disrupted maternal care in that dams built poorer quality nests, an effect corrected by EE housing. Standard housed male and female MIA mice engaged in higher rates of repetitive rearing and had lower levels of social interaction, alongside sex-specific expression of several ventral hippocampal neural stress markers. Moreover, MIA males had delayed recovery of plasma corticosterone in response to a novel social encounter. Enrichment housing, likely mediated by improved maternal care, protected against these MIA-induced effects. We also evaluated c-Fos immunoreactivity associated with the novel social experience and found MIA to decrease neural activation in the dentate gyrus. Activation in the hypothalamus was blunted in EE housed animals, suggesting that the putative circuits modulating social behaviors may be different between standard and complex housing environments. These data demonstrate that augmentation of the environment supports parental care and offspring safety/security, which can offset effects of early health adversity by buffering HPA axis dysregulation. Our findings provide further evidence for the viability of EE interventions in maternal and pediatric settings.  相似文献   

11.
12.
Despite the potential of rodent models of maternal immune activation (MIA) to identify new biomarkers and therapeutic interventions for a range of psychiatric disorders, current approaches using these models ignore two of the most important aspects of this risk factor for human disease: (i) most pregnancies are resilient to maternal viral infection and (ii) susceptible pregnancies can lead to different combinations of phenotypes in offspring. Here, we report two new sources of variability—the baseline immunoreactivity (BIR) of isogenic females prior to pregnancy and differences in immune responses in C57BL/6 dams across vendors—that contribute to resilience and susceptibility to distinct combinations of behavioral and biological outcomes in offspring. Similar to the variable effects of human maternal infection, MIA in mice does not cause disease-related phenotypes in all pregnancies and a combination of poly(I:C) dose and BIR predicts susceptibility and resilience of pregnancies to aberrant repetitive behaviors and alterations in striatal protein levels in offspring. Even more surprising is that the intermediate levels of BIR and poly(I:C) dose are most detrimental to offspring, with higher BIR and poly(I:C) doses conferring resilience to measured phenotypes in offspring. Importantly, we identify the BIR of female mice as a biomarker before pregnancy that predicts which dams will be most at risk as well as biomarkers in the brains of newborn offspring that correlate with changes in repetitive behaviors. Together, our results highlight considerations for optimizing MIA protocols to enhance rigor and reproducibility and reveal new factors that drive susceptibility of some pregnancies and resilience of others to MIA-induced abnormalities in offspring.  相似文献   

13.
Maternal immune activation (MIA) is a newly developed animal model of schizophrenia. It has recently been reported that when MIA is induced with the cytokine inducer polyinosinic-polycytidilic acid (poly I:C) rats do not show deficits in prepulse inhibition (PPI), a test that is often considered a validity benchmark. The aim of the current experiment was to determine whether doses of poly I:C that have previously been shown to induce the behavioural features of schizophrenia can disrupt PPI in rats. Pregnant rat dams were given a single injection of poly I:C (4.0 mg/kg) or a saline injection equivalent on gestational day 15. Acoustic startle reactivity, habituation of the startle response and PPI were assessed in juvenile (34-35 day) and adult (>56 day) offspring. Prenatal immune activation did not alter startle reactivity on startle-only or prepulse-only trials. Furthermore, there was no effect of MIA on habituation of the startle response. MIA does however disrupt PPI, as PPI was reduced significantly in adult MIA offspring, and a trend was observed in the juvenile animals. Our finding that prenatal poly I:C can disrupt PPI in MIA rats further validates this procedure as an animal model.  相似文献   

14.
Several epidemiological studies have shown an association between infection or inflammation during pregnancy and increased risk of autism in the child. In addition, animal models have illustrated that maternal inflammation during gestation can cause autism-relevant behaviors in the offspring; so called maternal immune activation (MIA) models. More recently, permanent changes in T cell cytokine responses were reported in children with autism and in offspring of MIA mice; however, the cytokine responses of other immune cell populations have not been thoroughly investigated in these MIA models. Similar to changes in T cell function, we hypothesized that following MIA, offspring will have long-term changes in macrophage function. To test this theory, we utilized the poly (I:C) MIA mouse model in C57BL/6J mice and examined macrophage cytokine production in adult offspring. Pregnant dams were given either a single injection of 20 mg/kg polyinosinic–polycytidylic acid, poly (I:C), or saline delivered intraperitoneally on gestational day 12.5. When offspring of poly (I:C) treated dams reached 10 weeks of age, femurs were collected and bone marrow-derived macrophages were generated. Cytokine production was measured in bone marrow-derived macrophages incubated for 24 h in either growth media alone, LPS, IL-4/LPS, or IFN-γ/LPS. Following stimulation with LPS alone, or the combination of IFN-γ/LPS, macrophages from offspring of poly (I:C) treated dams produced higher levels of IL-12(p40) (p < 0.04) suggesting an increased M1 polarization. In addition, even without the presence of a polarizing cytokine or LPS stimulus, macrophages from offspring of poly (I:C) treated dams exhibited a higher production of CCL3 (p = 0.05). Moreover, CCL3 levels were further increased when stimulated with LPS, or polarized with either IL-4/LPS or IFN-γ/LPS (p < 0.05) suggesting a general increase in production of this chemokine. Collectively, these data suggest that MIA can produce lasting changes in macrophage function that are sustained into adulthood.  相似文献   

15.
Growing evidence suggests that early-life interactions among genetic, immune, and environment factors may modulate neurodevelopment and cause psycho-cognitive deficits. Maternal immune activation (MIA) induces autism-like behaviors in offspring, but how it interplays with perinatal brain injury (especially birth asphyxia or hypoxia ischemia [HI]) is unclear. Herein we compared the effects of MIA (injection of poly[I:C] to dam at gestational day 12.5), HI at postnatal day 10, and the combined MIA/HI insult in murine offspring of both sexes. We found that MIA induced autistic-like behaviors without microglial activation but amplified post-HI NFκB signaling, pro-inflammatory responses, and brain injury in offspring. Conversely, HI neither provoked autistic-like behaviors nor concealed them in the MIA offspring. Instead, the dual MIA/HI insult added autistic-like behaviors with diminished synaptic density and reduction of autism-related PSD-95 and Homer-1 in the hippocampus, which were missing in the singular MIA or HI insult. Further, the dual MIA/HI insult enhanced the brain influx of Otx2-positive monocytes that are associated with an increase of perineuronal net-enwrapped parvalbumin neurons. Using CCR2-CreER mice to distinguish monocytes from the resident microglia, we found that the monocytic infiltrates gradually adopted a ramified morphology and expressed the microglial signature genes (Tmem119, P2RY12, and Sall1) in post-MIA/HI brains, with some continuing to express the proinflammatory cytokine TNFα. Finally, genetic or pharmacological obstruction of monocytic influx significantly reduced perineuronal net-enwrapped parvalbumin neurons and autistic-like behaviors in MIA/HI offspring. Together, these results suggest a pathologic role of monocytes in the two-hit (immune plus neonatal HI) model of neurodevelopmental defects.SIGNIFICANCE STATEMENT In autism spectrum disorders (ASDs), prenatal infection or maternal immune activation (MIA) may act as a primer for multiple genetic and environmental factors to impair neurodevelopment. This study examined whether MIA cooperates with neonatal cerebral hypoxia ischemia to promote ASD-like aberrations in mice using a novel two-hit model. It was shown that the combination of MIA and neonatal hypoxia ischemia produces autistic-like behaviors in the offspring, and has synergistic effects in inducing neuroinflammation, monocytic infiltrates, synaptic defects, and perineuronal nets. Furthermore, genetic or pharmacological intervention of the MCP1-CCR2 chemoattractant pathway markedly reduced monocytic infiltrates, perineuronal nets, and autistic-like behaviors. These results suggest reciprocal escalation of immune and neonatal brain injury in a subset of ASD that may benefit from monocyte-targeted treatments.  相似文献   

16.
Neurogenesis, the process in which new neurons are generated, occurs throughout life in the mammalian hippocampus. Decreased adult hippocampal neurogenesis (AHN) is a common feature across psychiatric disorders, including schizophrenia, depression- and anxiety-related behaviours, and is highly regulated by environmental influences. Epidemiological studies have consistently implicated maternal immune activation (MIA) during neurodevelopment as a risk factor for psychiatric disorders in adulthood. The extent to which the reduction of hippocampal neurogenesis in adulthood may be driven by early life exposures, such as MIA, is however unclear. We therefore reviewed the literature for evidence of the involvement of MIA in disrupting AHN. Consistent with our hypothesis, data from both in vivo murine and in vitro human models of AHN provide evidence for key roles of specific cytokines induced by MIA in the foetal brain in disrupting hippocampal neural progenitor cell proliferation and differentiation early in development. The precise molecular mechanisms however remain unclear. Nonetheless, these data suggest a potential latent vulnerability mechanism, whereby MIA primes dysfunction in the unique hippocampal pool of neural stem/progenitor cells. This renders offspring potentially more susceptible to additional environmental exposures later in life, such as chronic stress, resulting in the unmasking of psychopathology. We highlight the need for studies to test this hypothesis using validated animal models of MIA, but also to test the relevance of such data for human pathology at a molecular basis through the use of patient-derived induced pluripotent stem cells (hiPSC) differentiated into hippocampal progenitor cells.  相似文献   

17.
Maternal infection in pregnancy is an environmental risk factor for the development of schizophrenia and related disorders in the offspring, and this association is recapitulated in animal models using gestational infection or immune stimulation. We have recently shown that behavioral abnormalities and altered hippocampal morphology emerging in adult offspring of dams treated with the viral mimic polyriboinosinic-polyribocytidilic acid (poly I:C) are prevented by treatment with the atypical antipsychotic drug risperidone (RIS) in adolescence. Here we used a battery of cellular markers and Nissl stain to morphometrically analyze different hippocampal cell populations in the offspring of poly I:C and saline-treated mothers that received saline or RIS in adolescence, at different time points of postnatal development. We report that impaired neurogenesis, disturbed micro-vascularization and loss of parvalbumin-expressing hippocampal interneurons, are found in the offspring of poly I:C-treated dams. Most, but not all, of these neuropathological changes are not present in poly I:C offspring that had been treated with RIS. These effects may be part of the complex processes underlying the capacity of RIS treatment in adolescence to prevent structural and behavioral abnormalities deficits in the poly I:C offspring.  相似文献   

18.
Maternal exposure to infection during pregnancy greatly increases the risk of psychopathology in the offspring. In support of clinical findings, rodent models of maternal immune activation (MIA) show that prenatal exposure to pathogens can induce phenotypic changes in the offspring associated with schizophrenia, autism, depression and anxiety. In the current study, we investigated the effects of MIA via polyinosinic:polycytidylic acid (poly I:C) on emotional behavior and communication in rats. Pregnant rats were administered poly I:C or saline on gestation day 15 and male offspring were tested in an auditory fear conditioning paradigm in early adulthood. We found that prenatal poly I:C exposure significantly altered affective signaling, namely, the production of aversive 22-kHz ultrasonic vocalizations (USVs), in terms of call number, structure and temporal patterning. MIA led to an increase in aversive 22-kHz USVs to 300% of saline controls. Offspring exposed to MIA not only emitted more 22-kHz USVs, but also emitted calls that were shorter in duration and occurred in bouts containing more calls. The production of appetitive 50-kHz USVs and audible calls was not affected. Intriguingly, alterations in aversive 22-kHz USV emission were observed despite no obvious changes in overt defensive behavior, which highlights the importance of assessing USVs as an additional measure of fear. Aversive 22-kHz USVs are a prominent part of the rat's defensive behavioral repertoire and serve important communicative functions, most notably as alarm calls. The observed changes in aversive 22-kHz USVs show that MIA has long-term effects on emotional behavior and communication in exposed rat offspring.  相似文献   

19.
BackgroundSchizophrenia is a highly disabling psychiatric disorder with a proposed neurodevelopmental basis. One mechanism through which genetic and environmental risk factors might act is by triggering persistent brain inflammation, as evidenced by long-lasting neuro-immunological disturbances in patients. Our goal was to investigate whether microglia activation is a neurobiological correlate to the altered behaviour in the maternal immune activation (MIA) model, a well-validated animal model with relevance to schizophrenia. A recent observation in the MIA model is the differential maternal body weight response to the immune stimulus, correlated with a different behavioural outcome in the offspring. Although it is generally assumed that the differences in maternal weight response reflect differences in cytokine response, this has not been investigated so far. Our aim was to investigate whether (i) the maternal weight response to MIA reflects differences in the maternal cytokine response, (ii) the differential behavioural phenotype of the offspring extends to depressive symptoms such as anhedonia and (iii) there are changes in chronic microglia activation dependent on the behavioural phenotype.MethodsBased on a dose–response study, MIA was induced in pregnant rats by injecting 4 mg/kg Poly I:C at gestational day 15. Serum samples were collected to assess the amount of TNF-α in the maternal blood following MIA. MIA offspring were divided into weight loss (WL; n = 14) and weight gain (WG; n = 10) groups, depending on the maternal body weight response to Poly I:C. Adult offspring were behaviourally phenotyped for prepulse inhibition, locomotor activity with and without amphetamine and MK-801 challenge, and sucrose preference. Finally, microglia activation was scored on CD11b- and Iba1-immunohistochemically stained sections.ResultsPregnant dams that lost weight following MIA showed increased levels of TNF-α compared to controls, unlike dams that gained weight following MIA. Poly I:C WL offspring showed the most severe behavioural outcome. Poly I:C WG offspring, on the other hand, did not show clear behavioural deficits. Most interestingly a reduced sucrose preference indicative of anhedonia was found in Poly I:C WL but not Poly I:C WG offspring compared to controls. Finally, there were no significant differences in microglia activation scores between any of the investigated groups.ConclusionsThe individual maternal immune response to MIA is an important determinant of the behavioural outcome in offspring, including negative symptoms such as anhedonia. We failed to find any significant difference in the level of microglia activation between Poly I:C WL, Poly I:C WG and control offspring.  相似文献   

20.
Maternal care during the first week of postnatal life influences hippocampal development and function (Liu et al., 2000; Nature Neurosci., 3, 799-806). Offspring reared by mothers who exhibit increased levels of pup licking/grooming (LG) show increased hippocampal synaptic density and enhanced spatial learning and memory. Using 5-bromo-2'-deoxyuridine (BrdU), a thymidine analogue incorporated into cells during DNA synthesis, we examined the effects of early maternal care on hippocampal cell proliferation and neuronal survival in the rat. Twenty-four hours following injection on day 7 of life (P7) there were no differences in BrdU labelling in the offspring of high- compared with low-LG mothers, suggesting no maternal effect on the rate of proliferation at this age. However, 14 and 83 days following injection (P21 and P90), the offspring of high-LG mothers had significantly more surviving BrdU-labelled cells and BrdU-NeuN+-colabelled neurons in the dentate gyrus subgranular zone and granule cell layer. At P21, the offspring of high-LG mothers showed increased protein expression of basic fibroblast growth factor and significantly decreased levels of pyknosis. These findings suggest an influence of maternal care on neuronal survival in the hippocampus. Conversely, at the same time point there was a significantly higher level of hippocampal glial fibrillary acidic protein expression in the offspring of low-LG mothers. These findings emphasize the importance of early maternal care for hippocampal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号