首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined whether calcitonin gene-related peptide-immunoreactive (CGRP-ir) neurons in the vagal and glossopharyngeal ganglia innervate the larynx. Many CGRP-ir neurons were located mostly in the superior glossopharyngeal–jugular ganglion complex that was fused the superior glossopharyngeal ganglion and the jugular ganglion in the cranial cavity. When Fluorogold was applied to the cut end of the superior laryngeal nerve (SLN) or the recurrent laryngeal nerve (RLN), many Fluorogold-labeled neurons were found in the superior glossopharyngeal–jugular ganglion complex and the nodose ganglion. Double-labeling for CGRP and Fluorogold showed that about 80% of Fluorogold-labeled neurons in the superior glossopharyngeal–jugular ganglion complex expressed CGRP-like immunoreactivity in the case of application to the SLN, and about 50% of Fluorogold-labeled neurons expressed CGRP-like immunoreactivity in the case of the RLN. Only a few double-labeled neurons were found in the nodose ganglion. The number of the Fluorogold-labeled neurons and double-labeled neurons in the superior glossopharyngeal–jugular ganglion complex in the case of the SLN was larger than that in the case of the RLN. These results indicate that sensory information from the larynx might be conveyed by many CGRP-ir neurons located in the superior glossopharyngeal–jugular ganglion complex by way of the SLN and the RLN.  相似文献   

2.
We have studied the connections of calcitonin gene-related peptide immunoreactive (CGRP-ir) sensory neurons in the ganglia of the vagus nerve. Many CGRP-ir neurons were identified in the jugular ganglion located in the cranial cavity, while fewer CGRP-ir neurons were found in the nodose ganglion located at the level of the jugular foramen. Application of Fluorogold to the cut end of the cervical vagus nerve resulted in many Fluorogold-labeled neurons in both the jugular and the nodose ganglia. Application of Fluorogold to the cut end of the subdiaphragmatic vagus nerve resulted in Fluorogold-labeled neurons mostly in the nodose ganglion with only a few labeled neurons in the jugular ganglion. Injection of Fluorogold into the heart resulted in Fluorogold-labeled neurons in both the jugular and the nodose ganglia. Double labeling combining CGRP immunohistochemistry and Fluorogold retrograde tracing showed that in cases of both the application of Fluorogold to the cut end of the cervical vagus nerve and the injection of Fluorogold into the heart, about 40% of the Fluorogold-labeled neurons in the jugular ganglion expressed CGRP-like immunoreactivity. These results indicate that many CGRP-ir neurons in the jugular ganglion innervate the cervical and thoracic visceral organs, including the heart, but only a few CGRP-ir neurons project to the abdominal visceral organs.  相似文献   

3.
We have determined the localization of calcitonin gene-related peptide-immunoreactive (CGRP-ir) and calretinin-ir neurons in the vagal ganglia that innervate the cervical or subdiaphragmatic esophagus. Many CGRP-ir neurons were found exclusively in the jugular ganglion located in the cranial cavity. Calretinin-ir neurons were distributed throughout the vagal ganglia. Injection of Fluorogold into the cervical esophagus resulted in many Fluorogold-labeled neurons in the jugular and nodose ganglia. Injection of Fluorogold into the subdiaphragmatic esophagus resulted in many Fluorogold-labeled neurons, with most in the nodose ganglion. In the case of Fluorogold injection into the cervical esophagus, double-labeling combining immunohistochemistry and retrograde tracing showed that about 40% of the Fluorogold-labeled neurons in the jugular ganglion express CGRP-like immunoreactivity, and about 20% of the Fluorogold-labeled neurons in both the jugular and nodose ganglia express calretinin-like immunoreactivity. In the case of injection into the subdiaphragmatic esophagus, only a few Fluorogold-labeled neurons express CGRP-like immunoreactivity or calretinin-like immunoreactivity in the vagal ganglia. These results indicate that the cervical esophagus receives projections from many CGRP-ir neurons in the jugular ganglion and from calretinin-ir neurons in the jugular and nodose ganglia, while the subdiaphragmatic esophagus receives projections from only a few CGRP-ir and calretinin-ir neurons in the vagal ganglia.  相似文献   

4.
We have determined whether brain-derived neurotrophic factor immunoreactive (BDNF-ir) neurons in the vagal ganglia innervate the gastrointestinal tract. Many BDNF-ir neurons were medium in size and located throughout the jugular and nodose ganglia. When Fluorogold was injected into the wall of the cervical esophagus, many retrogradely Fluorogold-labeled neurons were found in both the jugular ganglion and the nodose ganglion. When Fluorogold was injected into the body of the stomach or applied to the cut end of the subdiaphragmatic vagus nerve, numerous Fluorogold-labeled neurons were found mostly in the nodose ganglion. Double-labeling combining immunohistochemistry for BDNF and retrograde tracing with Fluorogold showed that more than 90% of the neurons in the jugular ganglion and the nodose ganglion projecting to the cervical esophagus contained BDNF-like immunoreactivity. In the cases of both Fluorogold injection into the stomach and Fluorogold application to the subdiaphragmatic vagus nerve, almost all Fluorogold-labeled neurons in the nodose ganglion contained BDNF-like immunoreactivity. These results indicated that almost all vagal sensory neurons located in either the jugular ganglion or the nodose ganglion that innervate the gastrointestinal tract are BDNF-ir neurons.  相似文献   

5.
The neurons of origin of the internal ramus of the rabbit accessory nerve were identified in the dorsal nucleus of the vagus nerve, using bilateral injections of horseradish peroxidase into the inferior vagal ganglion, soft palate, and pharynx, which were preceded by different combinations of the unilateral intracranial severings of the rootlets of the vagus and glossopharyngeal nerves, those of the cranial root of the accessory nerve, and the trunk of its spinal root. The neurons of origin occupied the caudal four-fifths of the dorsal vagal nucleus extending from about 1.0 mm rostral to the obex as far caudally as the second cervical spinal segment, with their number being about half the total number of neurons of the nucleus. Although considerably fewer, they were also located in the nucleus retroambigualis of the caudal half of the first cervical spinal segment and the second segment. Axons of most internal ramus neurons traversed the rootlets of the cranial accessory root. Axons of the few neurons located more caudally than about 1.0 mm caudal to the obex emerged from the upper cervical spinal cord to run along the trunk of the spinal accessory root before finally joining the internal ramus; caudal to the midlevel of the first cervical segment, the dorsal vagal nucleus and the nucleus retroambigualis contained neurons whose axons followed only that course.  相似文献   

6.
C J Helke  K M Hill 《Neuroscience》1988,26(2):539-551
The presence and distribution of multiple neuropeptides in vagal and glossopharyngeal afferent ganglia of the rat were studied using immunohistochemistry. Substance P-, calcitonin-gene related peptide-, cholecystokinin-, neurokinin A-, vasoactive intestinal polypeptide-, and somatostatin-immunoreactive neurons were detected in each visceral afferent ganglion. Neurotensin-immunoreactive cells were not observed. In the nodose ganglion (inferior ganglion of the vagus nerve) occasional immunoreactive cells were scattered throughout the main (caudal) portion of the ganglion with small clusters of cells seen in the rostral portion. The pattern of distribution of the various peptides in the nodose ganglion was similar, with the exception of vasoactive intestinal polypeptide-immunoreactive neurons which exhibited a more caudal distribution. The relative numbers of immunoreactive cells varied, with the greatest numbers being immunoreactive for substance P or vasoactive intestinal polypeptide, and the lowest numbers being immunoreactive for neurokinin A and somatostatin. A build-up of immunoreactivity for each of the peptides, except somatostatin and neurotensin, was detected in vagal nerve fibers of colchicine-injected ganglia. Numerous peptide-immunoreactive cells were also found in the petrosal (inferior ganglion of the glossopharyngeal nerve) and jugular (superior ganglion of the vagus nerve) ganglia. No specific intraganglionic distribution was noted although the relative numbers of cells which were immunoreactive for the different peptides varied considerably. Substance P and calcitonin-gene related peptide were found in large numbers of cells, cholecystokinin was seen in moderate numbers of cells, and neurokinin A, vasoactive intestinal polypeptide and somatostatin were seen in fewer cells. These data provide evidence for the presence and non-uniform distribution of multiple peptide neurotransmitters in vagal and glossopharyngeal afferent neurons. In general, relatively greater numbers of immunoreactive cells were located in the rostral compared with caudal nodose ganglion, and in the petrosal and jugular ganglia compared with the nodose ganglion. Thus, multiple neuropeptides may be involved as afferent neurotransmitters in the reflexes mediated by vagal and glossopharyngeal sensory nerves.  相似文献   

7.
The central distributions of afferents from the oral cavity, the pharynx, the larynx and the esophagus to the nucleus tractus solitarii (NTS) were examined by using transganglionic anterograde transport of the cholera toxin B subunit (CT-b). Injections of CT-b into the body of the tongue and the hard palate resulted in heavy labeling of the lateral subnucleus (l-NTS) of the NTS rostral to the area postrema. Injection into the root of the tongue resulted in heavy labeling of the l-NTS, the dorsal half of the medial (m-NTS), the intermediate (im-NTS) and the interstitial (is-NTS) subnuclei rostral to the area postrema. Injections into the soft palate and the pharynx resulted in a similar labeling pattern in the is-NTS, im-NTS and m-NTS to that in the case of the root of the tongue, but this labeling extended rostrocaudally. Heavy labeling of the medial aspect of the l-NTS was found in the case of the soft palate, but the labeling was sparse in the case of the pharynx. Moderate labeling was also found in the commissural subnucleus (co-NTS). Injection into the larynx resulted in labeling of the is-NTS throughout the NTS, and of the rostral half of im-NTS. Injection into the esophagus resulted in heavy labeling of the central subnucleus, and moderate labeling of the co-NTS and the caudal half of im-NTS. A few but consistent anterogradely labeled terminals were found to appose retrogradely labeled small neurons in the rostral tip of the dorsal motor nucleus of vagus in the cases of injections into the root of the tongue, the soft palate, the pharynx, and the larynx. These results have characterized the viscerotopic representation of afferent projections from the oral and the cervical visceral organs to the subnuclei of the NTS.  相似文献   

8.
The intermediate subnucleus of the nucleus tractus solitarii (imNTS) receives somatosensory inputs from the soft palate and pharynx, and projects onto the nucleus ambiguus, thus serving as a relay nucleus for swallowing. The ultrastructure and synaptology of the rat imNTS, and its glossopharyngeal afferent terminals, have been examined with cholera toxin-conjugated horseradish peroxidase (CT-HRP) as an anterograde tracer. The imNTS contained oval or ellipsoid-shaped, small to medium-sized neurons (18.2×11.4 μm) with little cytoplasm, few cell organelles and an irregularly shaped nucleus. The cytoplasm often contained one or two nucleolus-like stigmoid bodies. The average number of axosomatic terminals was 1.8 per profile. About 83% of them contained round vesicles and formed asymmetric synaptic contacts (Gray’s type I), while about 17% contained pleomorphic vesicles and formed symmetric synaptic contacts (Gray’s type II). The neuropil contained small or large axodendritic terminals, and about 92% of them were Gray’s type I. When CT-HRP was injected into the nodose ganglion, many labeled terminals were found in the imNTS. All anterogradely labeled terminals contacted dendrites but not somata. The labeled terminals were usually large (2.69±0.09 μm) and exclusively of Gray’s type I. They often contacted more than two dendrites, were covered with glial processes, and formed synaptic glomeruli. A small unlabeled terminal occasionally made an asymmetric synaptic contact with a large labeled terminal. The large glossopharyngeal afferent terminals and the neurons containing stigmoid bodies characterized the imNTS neurons that received pharyngeal afferents.  相似文献   

9.
S Vanhatalo  S Soinila 《Neuroscience》2001,107(3):491-497
Recent studies have provided convincing evidence for the presence of peptidergic nerve fibers in the pituitary anterior lobe in several animal species. This study was aimed at elucidating the origin of this innervation by neuroanatomical tracing, denervation experiments, and immunohistochemistry. Immunohistochemistry against substance P and growth-associated protein 43 revealed a dense fiber plexus within the anterior lobe, and these markers were mostly colocalized. Retrograde tracing with Fluorogold from the pituitary gland stained neurons in the hypothalamus, superior cervical ganglia and the nodose ganglia. None of the Fluorogold-labelled neurons in the hypothalamus or superior cervical ganglion were substance P-immunoreactive, while many of the neuronal cell bodies in the nodose ganglion exhibited substance P immunoreactivity. There were no Fluorogold-labelled neurons in the trigeminal, otic or cervical dorsal root ganglia. Surgical transection of the pituitary stalk or bilateral removal of the superior cervical ganglion did not abolish the anterior lobe nerve fibers, and anterograde tracing with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindo-carbocyanine perchlorate from the pituitary stalk failed to stain any nerve fibers within the anterior lobe. Our findings suggest that the nodose ganglion neurons likely innervate the pituitary anterior lobe, while neither hypothalamus nor sympathetic superior cervical ganglion may be a source of this innervation.By showing a distinct neuronal system in the pituitary anterior lobe our findings (i) support the previous functional studies demonstrating a distinct regulation of the morphology of the anterior lobe innervation by hormonal changes, and (ii) suggest that the innervation of the pituitary anterior lobe is a part of the visceral innervation by the vagus nerve rather than a part of the other intracranial innervation. These findings provide a neuroanatomic basis for the reported observations about the neural regulation of the pituitary anterior lobe.  相似文献   

10.
The aim of the present study was to investigate the effect of temporomandibular joint inflammation on the excitability of trigeminal root ganglion neurons innervating the temporomandibular joint using a perforated patch-clamp technique. Inflammation was induced by injection of complete Freund's adjuvant into the rat temporomandibular joint. The threshold for escape from mechanical stimulation in the temporomandibular joint-inflamed rats was significantly lower than that in control rats. Fluorogold labeling was used to identify the trigeminal root ganglion neurons innervating the site of inflammation. When voltage-clamp (V(h)=-60 mV) conditions were applied to these Fluorogold-labeled small diameter trigeminal root ganglion neurons (<30 mum), voltage-dependent transient K(+) current densities were significantly reduced in the inflamed rats compared with controls. In addition, the voltage-dependence of inactivation of the voltage-dependent transient K(+) current was negatively shifted in the labeled temporomandibular joint-inflamed trigeminal root ganglion neurons. Furthermore, temporomandibular joint inflammation significantly reduced the threshold current and significantly increased action potential firings evoked at two-fold threshold in the Fluorogold-labeled small trigeminal root ganglion neurons. Application of 4-aminopyridine (0.5mM) to control trigeminal root ganglion neurons mimicked the changes in the firing properties observed after complete Freund's adjuvant treatment. Together, these results suggest that temporomandibular joint inflammation increases the excitability of trigeminal root ganglion neurons innervating temporomandibular joint by suppressing voltage-dependent transient K(+) current via a leftward shift in the inactivation curve. These changes may contribute to trigeminal inflammatory allodynia in temporomandibular joint disorder.  相似文献   

11.
Our objective was to determine the branching and distribution of the motor nerves supplying the human soft palate muscles. Six adult specimens of the soft palate in continuity with the pharynx, larynx, and tongue were processed with Sihler's stain, a technique that can render large specimens transparent while counterstaining their nerves. The cranial nerves were identified and dissection followed their branches as they divided into smaller divisions toward their terminations in individual muscles. The results showed that both the glossopharyngeal (IX) and vagus (X) nerves have three distinct branches, superior, middle, and inferior. Only the middle branches of each nerve contributed to the pharyngeal plexus to which the facial nerve also contributed. The pharyngeal plexus was divided into two parts, a superior innervating the palatal and neighboring muscles and an inferior innervating pharyngeal constrictors. The superior branches of the IX and X nerves contributed innervation to the palatoglossus, whereas their middle branches innervated the palatopharyngeus. The palatoglossus and palatopharyngeus muscles appeared to be composed of at least two neuromuscular compartments. The lesser palatine nerve not only supplied the palatal mucosa and palatine glandular tissue but also innervated the musculus uvulae, palatopharyngeus, and levator veli palatine. The latter muscle also received its innervation from the superior branch of X nerve. The findings would be useful for better understanding the neural control of the soft palate and for developing novel neuromodulation therapies to treat certain upper airway disorders such as obstructive sleep apnea.  相似文献   

12.
The origin of the afferent fibers to the lingual muscles of the dog was investigated by means of retrograde transport of horseradish peroxidase (HRP) from injection sites in the tongue and the extrinsic lingual muscles. Intralingual injections were not satisfactory because the enzyme diffused beyond the intrinsic lingual muscles to include virtually all tissues within the tongue. Thus, the resultant retrograde labeling of cell bodies of the trigeminal, geniculate, glossopharyngeal, vagal, and first cervical (C1) spinal ganglia represented a composite of lingual sensory innervation. In order to confine HRP uptake to intramuscular nerve endings, injections were limited to surgically isolated extrinsic lingual muscles, i.e., the genioglossus, hyoglossus, and styloglossus. After these intramuscular injections, labeled neurons appeared ipsilaterally in the C1 spinal ganglion, the proximal vagal (jugular) ganglion, and trigeminal ganglion. Earlier suggestions that the lingual proprioceptive neurons of the dog reside in the distal vagal (nodose) ganglion and hypoglossal ganglia were not confirmed. The mesencephalic nucleus of the trigeminal nerve failed to label after enzyme injections into the tongue or the extrinsic lingual muscles. The retrograde labeling of cell bodies in the C1 spinal ganglion was abolished when HRP injections into the extrinsic lingual muscles were preceded by surgical interruption of the ansa cervicalis or distal section of the hypoglossal nerve. Retrograde labeling of neurons in the proximal vagal ganglion persisted after hypoglossal nerve transections.  相似文献   

13.
We have examined whether the smooth muscle fibers in the lower esophagus and the cardia of the stomach of the rat are innervated by calcitonin gene-related peptide-immunoreactive (CGRP-ir) fibers coming from the nucleus ambiguus. Immunohistochemical observations revealed that there were many CGRP-ir fibers and free endings in all external muscular layers of the lower esophagus and the cardia. Occasionally, bundles of CGRP-ir fibers were found in the inner oblique muscle layer of the cardia. There were also many CGRP-ir fibers in the mucous membrane in the lower esophagus and the cardia. When Fluorogold was injected into the junction of the lower esophagus and the cardia, many retrogradely labeled neurons were found in the compact formation of the nucleus ambiguus and the dorsal motor nucleus of the vagus nerve. Double labeling with immunohistochemistry for CGRP and the retrograde tracer Fluorogold showed that almost all of neurons (more than 90%) in the nucleus ambiguus that project to the lower esophagus or the cardia contained CGRP, while no CGRP-ir neurons were found in the dorsal motor nucleus of the vagus nerve. These results indicate that the vagal motor neurons of the nucleus ambiguus that contain CGRP project not only to the striated muscle fibers of the esophagus but also to the smooth muscle fibers of the external muscle layers of the lower esophagus and the cardia.  相似文献   

14.
The origin of the afferent fibers to the lingual muscles of the dog was investigated by means of retrograde transport of horseradish peroxidase (HRP) from injection sites in the tongue and the extrinsic lingual muscles. Intralingual injections were not satisfactory because the enzyme diffused beyond the intrinsic lingual muscles to include virtually all tissues within the tongue. Thus, the resultant retrograde labeling of cell bodies of the trigeminal, geniculate, glossopharyngeal, vagal, and first cervical (C1) spinal ganglia represented a composite of lingual sensory innervation. In order to confine HRP uptake to intramuscular nerve endings, injections were limited to surgically isolated extrinsic lingual muscles, i.e., the genioglossus, hyoglossus, and styloglossus. After these intramuscular injections, labeled neurons appeared ipsilaterally in the C1 spinal ganglion, the proximal vagal (jugular) ganglion, and trigeminal ganglion. Earlier suggestions that the lingual proprioceptive neurons of the dog reside in the distal vagal (nodose) ganglion and hypoglossal ganglia were not confirmed. The mesencephalic nucleus of the trigeminal nerve failed to label after enzyme injections into the tongue or the extrinsic lingual muscles. The retrograde labeling of cell bodies in the C1 spinal ganglion was abolished when HRP injections into the extrinsic lingual muscles were preceded by surgical interruption of the ansa cervicalis or distal section of the hypoglossal nerve. Retrograde labeling of neurons in the proximal vagal ganglion persisted after hypoglossal nerve transections.  相似文献   

15.
经颈上节传递心脏痛感觉信息的迷走神经传入通路   总被引:4,自引:0,他引:4  
目的 观察经颈上节至结状节传递心脏感觉信息的迷走神经传入通路。 方法 逆行追踪及逆行追踪结合免疫组织化学方法。 结果 HRP注射入颈上节后 ,逆行标记的一小团细胞恒定地出现在结状节上段 ,其数量较少且分布局限。将荧光金 (fluorogold ,FG)注射入颈上节后并结合免疫荧光组织化学染色 ,观察到结状节内约 18 5 %的SP阳性标记细胞同时呈阳性FG逆行标记。 结论 结合以往文献 ,研究结果提示 ,心脏的感觉信息向中枢传递存在着经颈上节至结状节的含SP神经活性物质的迷走神经传入通路  相似文献   

16.
Summary Chronic guanethidine treatment of rats produced extensive damage to sympathetic neurons of the superior cervical ganglion and pelvic plexus. No ultrastructural changes were observed in parasympathetic cholinergic neurons in the ciliary ganglion and pelvic plexus, nor in sensory neurons in nodose and dorsal root ganglia. A total of only six nerve cell bodies free of degenerative changes were observed in sections of superior cervical ganglia from 20 rats. This suggests either that the earlier estimates of 5% cholinergic neurons in the superior cervical ganglion based on acetylcholinesterase staining are too high, or implies that sympathetic cholinergic neurons, unlike parasympathetic neurons, are damaged by chronic guanethidine treatment.  相似文献   

17.
The glossopharyngeal nerve, via the carotid sinus nerve (CSN), presents baroreceptors from the internal carotid artery (ICA) and chemoreceptors from the carotid body. Although neurons in the nodose ganglion were labelled after injecting tracer into the carotid body, the vagal pathway to these baro‐ and chemoreceptors has not been identified. Neither has the glossopharyngeal intracranial afferent/sensory pathway that connects to the brainstem been defined. We investigated both of these issues in male Sprague–Dawley rats (n = 40) by injecting neural tracer wheat germ agglutinin‐horseradish peroxidase into: (i) the peripheral glossopharyngeal or vagal nerve trunk with or without the intracranial glossopharyngeal rootlet being rhizotomized; or (ii) the nucleus of the solitary tract right after dorsal and ventral intracranial glossopharyngeal rootlets were dissected. By examining whole‐mount tissues and brainstem sections, we verified that only the most rostral rootlet connects to the glossopharyngeal nerve and usually four caudal rootlets connect to the vagus nerve. Furthermore, vagal branches may: (i) join the CSN originating from the pharyngeal nerve base, caudal nodose ganglion, and rostral or caudal superior laryngeal nerve; or (ii) connect directly to nerve endings in the middle segment of the ICA or to chemoreceptors in the carotid body. The aortic depressor nerve always presents and bifurcates from either the rostral or the caudal part of the superior laryngeal nerve. The vagus nerve seemingly provides redundant carotid baro‐ and chemoreceptors to work with the glossopharyngeal nerve. These innervations confer more extensive roles on the vagus nerve in regulating body energy that is supplied by the cardiovascular, pulmonary and digestive systems.  相似文献   

18.
The distribution of pituitary adenylatecyclase-activating polypeptide-immunoreactive (PACAP-IR) nerve fibers was studied in the rat epiglottis and pharynx. PACAP-IR nerve fibers were located beneath the mucous epithelium, and occasionally penetrated the epithelium. These nerve fibers were abundant on the laryngeal side of the epiglottis and in the dorsal and lateral border region between naso-oral and laryngeal parts of the pharynx. PACAP-IR nerve fibers were also detected in taste buds within the epiglottis and pharynx. In addition, many PACAP-IR nerve fibers were found around acinar cells and blood vessels. The double immunofluorescence method demonstrated that distribution of PACAP-IR nerve fibers was similar to that in CGRP-IR nerve fibers in the epithelium and taste bud. However, distributions of PACAP-IR and CGRP-IR nerve fibers innervating mucous glands and blood vessels were different. The retrograde tracing method also demonstrated that PACAP and CGRP were co-expressed by vagal and glossopharyngeal sensory neurons innervating the pharynx. These findings suggest that PACAP-IR nerve fibers in the epithelium and taste bud of the epiglottis and pharynx which originate from the vagal and glossopharyngeal sensory ganglia include nociceptors and chemoreceptors. The origin of PACAP-IR nerve fibers which innervate mucous glands and blood vessels may be the autonomic ganglion.  相似文献   

19.
Oral cavity representation at the frontal operculum of macaque monkeys   总被引:2,自引:0,他引:2  
Receptive properties of neurons at areas 3 and 1-2, and the gustatory area (area G) in the frontal operculum (Fop) and the neighboring areas were investigated in the cerebral cortex of Macaca irus and Macaca fuscata by applying mechanical and taste stimulation to the oral cavity and lips. Tactile neurons with different receptive properties were noted in areas 3, 1-2 and G. Areas 3 and G were packed with tongue neurons, though a considerable number of palate neurons were also found in area G, while area 1-2 was involved in representation of the tongue, palate, periodontia and lips. Both the anterior and posterior parts of the tongue were represented on these areas, and of the palate, the posterior part (the soft palate) was largely represented. The anterior and posterior periodontia were represented, without separation. Various tissues were represented with different laterality: Periodontia and the lips were most frequently represented bilaterally or contralaterally, but the tongue and palate often ipsilaterally. In area 6, the insula and other areas surrounding areas 3, 1-2 and G, tactile neurons were also found to have receptive fields on the lips, tongue, palate or periodontium, and the receptive fields on the tongue or palate were mainly bilateral. On the other hand, most of the taste neurons were located in area G and some in area 1-2 and the insula. The present study demonstrated that in macaque monkeys, tactile sensation of the oral cavity is represented on areas 3, 1-2 and G in the Fop as well as on the surrounding areas (e.g., area 6 and the insula), and taste sensation on areas G and 1-2 and the insula.  相似文献   

20.
The primary objective of this study was to determine whether circulating factors gain direct access to and affect the activity of vagal afferent cell bodies in the nodose ganglia and glossopharyngeal afferents cell bodies in the petrosal ganglia, of the rat. We found that the occipital and internal carotid arteries provided the sole blood supply to the nodose ganglia, and that i.v. injections of the tracer, Basic Blue 9, elicited strong cytoplasmic staining in vagal and glossopharyngeal afferent cell bodies that was prevented by prior ligation of the occipital but not the internal carotid arteries. We also found that occipital artery injections of 5-HT elicited pronounced dose-dependent reductions in heart rate and diastolic arterial blood pressure that were (1) virtually abolished after application of the local anesthetic, procaine, to the ipsilateral nodose and petrosal ganglia, (2) markedly attenuated after transection of the ipsilateral vagus between the nodose ganglion and brain and virtually abolished after subsequent transection of the ipsilateral glossopharyngeal nerve between the petrosal ganglion and the brain, (3) augmented after ipsilateral transection of the aortic depressor and carotid sinus nerves, and (4) augmented after transection of all ipsilateral glossopharyngeal and vagal afferent nerves except for vagal cardiopulmonary afferents. These findings suggest that blood-borne 5-HT in the occipital artery gains direct access to and activates the cell bodies of vagal cardiopulmonary afferents of the rat and glossopharyngeal afferents of undetermined modalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号