首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The levator ani muscle (LA) of the rat is highly androgen‐sensitive and, like all skeletal muscles, deteriorates structurally and functionally when denervated. In order to elucidate the interplay of neural and endocrine influences, the separate and combined effects of denervation and castration on myofiber cross‐sectional area and nuclear populations were quantitatively studied. In one group of 4‐month‐old male rats (A), the LA was denervated. Another group (B) was surgically castrated and a third group (C) was both denervated and castrated. The control rats (D) remained both gonad‐ and nerve‐intact. After two months, the LA was obtained for myofiber and nuclear enumeration, cross‐sectional area and satellite cell frequency determination. In the denervated muscle of gonad‐intact rats (Group A), myofiber cross‐sectional area was markedly diminished (265.84 ± 11.38μm2; compared with controls [Group D]: 1519.98 ± 79.41μm2; P < 0.05). Satellite cell nuclei, as a percentage of total sublaminar nuclei (i.e., satellite cell ratio), increased significantly (4.26%, from a control value of 1.91%). Castration alone (Group B) resulted in pronounced myofiber atrophy (mean cross‐sectional area: 754.03 ± 89.63μm2) but had no significant effect on satellite cell ratio (2.36%). The combination of castration and denervation (Group C) elicited the same degree of myofiber atrophy as denervation alone (Group A) but had no significant impact on satellite cell ratio. Instead, the nuclear count per myofiber declined to about a third of the control level (300.5 ± 38.49 compared with 861.7 ± 24.8; P < 0.05). The results indicate that the atrophic effects of denervation and castration on the LA are non‐synergistic and mechanistically similar. They also show that the inability of satellite cells to respond mitotically to the withdrawal of neural input under disandrogenized conditions is a factor in the myonuclear depletion of the denervated muscle of castrated rats. Anat Rec 255:324–333, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

2.
Denervation stimulates quiescent satellite cells in skeletal muscle to reenter the cell cycle. In the androgen-sensitive rat levator ani muscle (LA), this mitotic response to loss of neural input fails to occur in castrated animals. To elucidate the role of androgens in denervation-induced satellite cell proliferation, the denervated LA of castrated rats (Group A) was compared with that of animals infixed with testosterone implants after castration (Group B). Mean myofiber cross-sectional areas (Group A: 362.95 microm(2) +/- 27.74; Group B: 403.13 microm(2) +/- 53.87) and linear nuclear densities (Group A: 74.07 mm(-1) +/- 17.58; Group B: 104.13 mm(-1) +/- 4.06) were similar (P > 0.05) in both groups. The androgen-deprived myofibers of Group A, however, had a significantly lower nuclear content (271.0 +/- 74.91 vs. 1,285.80 +/- 81.74 in Group B; P < 0.05) on account of their considerably shorter mean length (3.44 mm +/- 0.29 vs. 12.31 mm +/- 0.92 in Group B; P < 0.05). The proportional representation of satellite cells in hormone-replaced, denervated muscle was more than twice that in the untreated group (Group B: 5.15 +/- 0.83% vs. Group A: 2.28 +/- 0.23%; P < 0.05). In absolute terms, the satellite cell number in Group B was approximately an order of magnitude greater than in Group A (408.4 x 10(3) vs. 38.08 x 10(3)). The results confirm the absence of testosterone as the factor responsible for the inability of satellite cells in the LA of castrated rats to respond mitotically to the withdrawal of neural input after denervation.  相似文献   

3.
Ageing in skeletal muscle results in motor frailty and a reduced capacity for self repair after injury. The contractile characteristics of muscle are determined principally by the myosin heavy chain (MHC) composition of its myofibers. During the restorative process, satellite cells play a central role. The present study compares the levator ani muscle of very old (32 months) and young (4 months) male WI/HicksCar rats in terms of structural integrity, MHC and satellite cell content. Myofiber typing was carried out by indirect immunohistochemistry using a panel of anti-MHC antibodies. Single myofibers for nuclear enumeration were isolated by an enzymatic technique while fiber cross-sectional areas and satellite cell frequencies were determined by computerized planimetry and electron microscopy. In both groups of rats, the myofiber population was homogeneously MHC type IIb-reactive. Cross-sectional data reflected a marked degree of atrophy in the muscle of the senile rats (710.05 +/- 63.6 microm2, compared with 1519.98 +/- 79.0 microm2 in young). The myofiber population was reduced by only about 6.7% with ageing and the representation of satellite cells, as a fraction of total sublaminal nuclei, was relatively stable (1.15 versus 1.91% in young; P > 0.05). The results indicate that ageing had a considerable atrophic effect on the levator ani muscle but induced neither MHC isoform transition nor massive depletion of the satellite cell pool. They suggest that the well-documented impairment of the restorative capacity of senile muscle could be due more to alterations in the nature of microenvironmental cues than to quantitative aspects of its cellular capacity to respond.  相似文献   

4.
We explore the interaction of muscle innervation and gonadal hormone action in the pubococcygeus muscle (Pcm) after castration and hormone replacement. Male Wistar rats were castrated and the Pcm was unilaterally denervated; after 2 or 6 weeks, the cross‐sectional area (CSA) of Pcm fibers was assessed. Additional groups of castrated rats were used to examine the effects of hormone replacement. At 2 weeks post surgeries, rats were implanted with Silastic capsules containing either dihydrotestosterone (DHT), estradiol benzoate (EB) or both hormones, and the CSA of Pcm fibers was assessed after 4 weeks of hormone treatment. At 2 weeks post surgeries, gonadectomy without hormone replacement resulted in reductions in the CSA of Pcm fibers, and denervation combined with castration increased the magnitude of this effect; further reductions in CSA were present at 6 weeks post surgeries, but again denervation combined with castration increased the magnitude of this effect. Hormone replacement with DHT resulted in hypertrophy in the CSA of nondenervated muscles compared to those of intact normal males, but this effect was attenuated in denervated muscles. Hormone replacement with EB treatment prevented further castration‐induced reductions in CSA of nondenervated muscles, but denervation prevented this effect. Similar to that seen with treatment with EB alone, combined treatment with both DHT and EB prevented further reductions in CSA of Pcm fibers in nondenervated muscles, but again denervation attenuated this effect. Thus, while hormone replacement can reverse or prevent further castration‐induced atrophy of Pcm fibers, these effects are dependent on muscle innervation. Anat Rec, 300:1327–1335, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

5.
The number of fibers in skeletal muscles changes little through life; however, the cross‐sectional area of its fibers is modified as result of denervation and in some muscles by castration. The pubococcygeus muscle (Pcm) participates in micturition and ejaculatory processes and its fibers cross‐sectional area is reduced in castrated rats, but denervation effects remained unknown. Here, we used a model in which unilateral denervation of this muscle in gonadally intact and castrated male rats, allowed us to explore the neural and gonadal hormone effects on the cross‐sectional area of its fibers. Denervation significantly reduced the mean cross‐sectional area values; likewise, the percentage distribution of its fibers. We found that castration had a greater effect than denervation. Castration resulted in a lack of fibers from 2,000 to 3,999 μm2, while in denervation it was from 2,500 to 3,999 μm2. It was interpreted that the castration effect was due to a lack of the direct gonadal hormone effect on muscle fibers, and to a reduction of the indirect hormonal action in its neuromuscular complex. In denervated Pcm of gonadally intact animals these effects were present; however, in denervated but castrated animals these were absent. Thus, combined surgeries resulted in the lowest mean cross‐sectional area values with a restricted fiber distribution from 500 to 1,499 μm2. In conclusion, the study in this important muscle showed that cross‐sectional area of its fibers depends on neural and direct/indirect gonadal hormone effects. Anat Rec, 296:1634–1639, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Little is known concerning the time-course and structural dynamics of reactivation of compensatory myogenesis in denervated muscle, its initiating cellular mechanisms, and the relationship between this process and the progression of postdenervation atrophy. The purpose of this study was to investigate the interrelations between temporal and spatial patterns of the myogenic response in denervated muscle and progressive atrophy of muscle fibers. Another objective was to study whether reactivation of myogenesis correlates with destabilization of the differentiated state and death of denervated muscle cells. It has remained unclear whether muscle fiber atrophy was the primary factor activating the myogenic response, what levels of cellular atrophy were associated with its activation, and whether the initiation and intensity of myogenesis depended on the local and individual heterogeneity of atrophic changes among fibers. For this reason, our objective was also to identify the levels of atrophic and degenerative changes in denervated muscle fibers that are correlated with activation of the myogenic response. We found that the reactivation of myogenesis in the tibialis anterior and extensor digitorum longus muscles of the rat starts between days 10-21 following nerve transection, before atrophy has attained advanced level, long before dead cells are found in the tissue. Formation of new muscle fibers reaches its maximum between 2 and 4 months following denervation and gradually decreases with progressive postdenervation atrophy. The myogenic response is biphasic and includes two distinct processes. The first process resembles the formation of secondary and tertiary generations of myotubes during normal muscle development and dominates during the first 2 months of denervation. During this period, activated satellite cells form new myotubes on live differentiated muscle fibers. Most of the daughter myotubes in 1- and 2-month denervated muscle develop on the surface of fast type parent muscle fibers, and some of the newly formed muscle fibers express slow myosin. Some fast type parent fibers are weakly or, more rarely, moderately immunopositive for embryonic isomyosin. This indicates that reactivation of myogenesis may also depend on the fiber type. The level of atrophy, destabilization of the differentiated myofiber phenotype, and degenerative changes of individual fibers in denervated muscle are very heterogeneous. The myogenic response of the first type is associated predominantly with fibers of average and higher than average levels of atrophy. Muscle cells that undergo a lesser degree of atrophy also form daughter fibers, although with a lower incidence. We did not find any correlation between the size of newly formed fibers and the level of atrophy of parent fibers. The topographical distribution of new myotubes both in the peripheral and central areas of the mid-belly equatorial sections at the early stages following nerve transection indicates that myogenesis of the first type represents a systemic reaction of muscle to the loss of neural control. These data indicate that activation of the myogenic response does not depend on cell death and degenerative processes per se. The second type of myogenesis is a typical regenerative reaction that occurs mainly within the spaces surrounded by the basal laminae of dead muscle fibers. Myocytes of different sizes are susceptible to degeneration and death, which indicates that cell death in denervated muscle does not correlate with levels of muscle cell atrophy. The regenerative process frequently results in development of abnormal muscle cells that branch or form small clusters. Replacement of lost fibers becomes activated between 2 and 4 months following nerve transection, i.e., mainly at advanced stages of postdenervation atrophy, when cell death becomes a contributing factor of the atrophic process. In long-term denervated muscle, the first and second types of myogenesisoccur concurrently, and the topographical distribution of the myogenic response becomes more heterogeneous than during the first weeks following denervation. Thus, our data demonstrate differential temporal and spatial expression of two patterns of myogenesis in denervated muscle that appear to be controlled by different regulatory mechanisms during the postdenervation period. (c) 2001 Wiley-Liss, Inc.  相似文献   

7.
The present study examines the influence of denervation on the regenerative ability of skeletal muscle in rats. Muscle denervation was achieved by transecting and ligating the cut ends of the sciatic nerve. Four to 48 weeks after denervation, the extensor digitorum longus (EDL) muscle was autotransplanted to induce muscle regeneration. The transplanted EDL muscles were examined at 1-12 weeks. Normal (i.e., no prior denervation) EDL muscle autotransplants were also examined for comparison. Denervation resulted in progressive atrophy of muscle, marked by a reduction in the size of myofibers and an increase in endomysialperimysial connective tissue. In spite of these alterations, typical events of muscle regeneration were invariably observed after transplantation. Initial myofiber degeneration and subsequent regeneration of myotubes occurred in a manner similar to normal muscle transplants. However, only a partial maturation of myotubes was observed in denervated muscles. These results show that extended denervation does not abolish the capability for muscle regeneration. The precursor myosatellite cells, proposed to be responsible for muscle regeneration, retain their regenerative potential after denervation. It is concluded, however, that the presence of intact innervation is crucial for the terminal differentiation and maturation of regenerating muscle.  相似文献   

8.
Denervation causes muscle atrophy and incapacity in humans. Although electrical stimulation (ES) and stretching (St) are commonly used in rehabilitation, it is still unclear whether they stimulate or impair muscle recovery and reinnervation. The purpose of this study was to evaluate the effects of ES and St, alone and combined (ES + St), on the expression of genes that regulate muscle mass (MyoD, Runx1, atrogin-1, MuRF1 and myostatin), on muscle fibre cross-sectional area and excitability, and on the expression of the neural cell adhesion molecule (N-CAM) in denervated rat muscle. ES, St and ES + St reduced the accumulation of MyoD, atrogin-1 and MuRF1 and maintained Runx1 and myostatin expressions at normal levels in denervated muscles. None of the physical interventions prevented muscle fibre atrophy or N-CAM expression in denervated muscles. In conclusion, although ES, St and ES + St changed gene expression, they were insufficient to avoid muscle fibre atrophy due to denervation.  相似文献   

9.
Myostatin, a member of the transforming growth factor-beta (TGF-beta) superfamily, has been identified as an inhibitor of skeletal muscle mass. To have an insight into the expression pattern of myostatin and its potential role in skeletal muscle atrophy induced by denervation, we used an animal model of peripheral nerve resection to examine the time-dependent changes in myostatin mRNA and protein levels in the denervated gastrocnemius muscle of rats after sciatic neurectomy by the aid of quantitative real-time RT-PCR and Western blotting, respectively. We also conducted morphometric analyses to measure the wet weight ratio of the denervated muscle (the operated side/contralateral non-operated side) and the cross sectional area of muscle fibers and to observe muscle morphology. The experimental results showed that myostatin mRNA and protein levels in rat gastrocnemius muscle persistently elevated after denervation, despite a fluctuation of myostatin mRNA level at day 3 after denervation, reached their respective peaks at day 28 after denervation, and then depressed slightly until day 56 after denervation. Furthermore, a significant negative linear correlation was found between myostatin abundance and muscle atrophy degree, suggesting that myostatin might probably play an important role in denervation-induced muscle atrophy. Our present study perhaps provides a new window into myostatin regulation in association with a specific type of muscle atrophy.  相似文献   

10.
The present study examines the influence of denervation on the regenerative ability of skeletal muscle in rats. Muscle denervation was achieved by transecting and ligating the cut ends of the sciatic nerve. Four to 48 weeks after denervation, the extensor digitorum longus (EDL) muscle was autotransplanted to induce muscle regeneration. The transplanted EDL muscles were examined at 1–12 weeks. Normal (i.e., no prior denervation) EDL muscle autotransplants were also examined for comparison. Denervation resulted in progressive atrophy of muscle, marked by a reduction in the size of myofibers and an increase in endomysialperimysial connective tissue. In spite of these alterations, typical events of muscle regeneration were invariably observed after transplantation. Initial myofiber degeneration and subsequent regeneration of myotubes occurred in a manner similar to normal muscle transplants. However, only a partial maturation of myotubes was observed in denervated muscles. These results show that extended denervation does not abolish the capability for muscle regeneration. The precursor myosatellite cells, proposed to be responsible for muscle regeneration, retain their regenerative potential after denervation. It is concluded, however, that the presence of intact innervation is crucial for the terminal differentation and maturation of regenerating muscle.  相似文献   

11.
Injury to the adult CNS often involves death of motoneurons, resulting in the paralysis and progressive atrophy of muscle. There is no effective therapy to replace motoneurons in the CNS. Our strategy to replace neurons and to rescue denervated muscles is to transplant dissociated embryonic day 14-15 (E14-15) ventral spinal cord cells into the distal stump of a peripheral nerve near the denervated muscles. Here, we test whether long-term delivery of two pharmacological inhibitors to denervated muscle, FK506 or SB203580, enhances reinnervation of muscle from embryonic cells transplanted in the tibial nerve of adult Fischer rats. FK506, SB203580 (2.5 mg/kg) or saline was delivered under the fascia of the medial gastrocnemius muscle for 4 weeks, beginning when muscles were denervated by section of the sciatic nerve. After 1 week of nerve degeneration, one million E14-15 ventral spinal cord cells were transplanted into the distal tibial nerve stump of each rat in the three treatment groups. Ten weeks later, all cell transplants had neuron-specific nuclear protein (NeuN) positive neurons. Neuron survival and axon regeneration were similar across treatments. An average (+/-S.E.) of 210+/-66, 100+/-36 and 176+/-58 myelinated axons grew distally from the cell transplants of rats with muscles treated with FK506, SB203580 or saline, respectively. Regenerating axons in muscles of all three treatments groups were detected with antibodies against phosphorylated neurofilaments and synaptophysin, and motor end plates were labeled with alpha-bungarotoxin. Muscles of rats that received transplants of media only had no axon growth, indicating that the muscles were denervated. The mean muscle fiber areas of rats that received cell transplants and had long-term delivery of FK506, SB203580 or saline to muscles were significantly larger than those of denervated muscle fibers. Thus, cell transplantation reduced muscle atrophy. Transplantation of embryonic cells also resulted in functional muscle reinnervation. Electromyographic activity and force were evoked from >90% of the muscles of rats with cell transplants, but not from denervated muscles. FK506-treated muscles were significantly more fatigue resistant than naive control muscles. FK506-treated muscles also had significantly stronger motor units than those in SB203580 or saline-treated muscles. These data suggest that a pathway regulated by FK506 improves the function of muscles reinnervated by embryonic neurons placed in peripheral nerve.  相似文献   

12.
Very little is known regarding structural and functional responses of the vascular bed of skeletal muscle to denervation and about the role of microcirculatory changes in the pathogenesis of post-denervation muscle atrophy. The purpose of the present study was to investigate the changes of the anatomical pattern of vascularization of the extensor digitorum longus muscle in WI/HicksCar rats 1, 2, 4, 7, 12, and 18 months following denervation of the limb. We found that the number of capillaries related to the number of muscle fibers, i.e. the capillary-to-fiber ratio (CFR), decreased by 88%, from 1.55 +/- 0.35 to 0.19 +/- 0.04, during the first 7 months after denervation and then slightly declined at a much lower rate during the next 11 months of observation to 10% of the CFR in normal muscle. Between months 2 and 4 after denervation, the CRF decreased by 2.4 times, from 58% to 24% of the control value. The loss of capillaries during the first 4 months following nerve transection was nearly linear and progressed with an average decrement of 4.16% per week. Electron microscopy demonstrated progressive degeneration of capillaries following nerve transection. In muscle cells close to degenerating capillaries, the loss of subsarcolemmal and intermyofibrillar mitochondria, local disassembly of myofibrils and other manifestations of progressive atrophy were frequently observed. The levels of devascularization and the degree of degenerative changes varied greatly within different topographical areas, resulting in significant heterogeneity of intercapillary distances and local capillary densities within each sample of denervated muscle. Perivascular and interstitial fibrosis that rapidly developed after denervation resulted in the spatial separation of blood vessels from muscle cells and their embedment in a dense lattice of collagen. As a result of this process, diffusion distances between capillaries and the surfaces of muscle fibers increased 10-400 times. Eighteen months after denervation most of the capillaries were heavily cushioned with collagen, and on the average 40% of the muscle cells were completely avascular. Devascularization of the tissue was accompanied by degeneration and death of muscle cells that had become embedded in a dense lattice of collagen. Immunofluorescent staining for the vascular isoform of alpha-actin revealed preservation of major blood vessels and a greater variability in thickness of their medial layer. Hyperplastic growth of the medial layer in some blood vessels resulted in narrowing of their lumens. By the end of month 7 after denervation, large deposits of collagen around arterioles often exceeded their diameters. Identification of oxidative muscle fibers after immunostaining for slow-twitch myosin, as well as using ultrastructural criteria, has shown that after 2 months of denervation oxidative muscle fibers were less susceptible to atrophy than glycolytic fibers. The lower rate of atrophy of type I muscle fibers at early stages of denervation may be explained by their initially better vascularization in normal muscle and their higher capacity to retain capillaries shortly after denervation. Thus, degeneration and loss of capillaries after denervation occurs more rapidly than the loss of muscle fibers, which results in progressive decrease of the CFR in denervated muscle. The change of capillary number in denervated muscle is biphasic: the phase of a rapid decrease of the CFR during the first 7 months after nerve transection is followed by the phase of stabilization. The presence of areas completely devoid of capillaries in denervated muscle and the virtual absence of such areas in normal muscle indicate the development of foci of regional hypoxia during long-term denervation. The anatomical pattern of muscle microvascularization changes dramatically after nerve transection. Each muscle fiber in normal muscle directly contacts on average 3-5 capillaries. (ABSTRACT TRUNCATED)  相似文献   

13.
The effects of beta adrenergic agonists, clenbuterol (2 mg/kg body weight/d) and isoproterenol (12 mg/kg body weight/d), in normal innervated and denervated rat gastrocnemius muscle were investigated. The daily administration of beta adrenergic agonists to normal innervated rats for a short period (7 d) resulted in the hypertrophy of gastrocnemius as confirmed from the measurement of total tissue protein contents. The development of denervation atrophy witnessed a stimulation in the expression of acid and alkaline phosphatases, pointing to an enhanced myofibrillar degeneration. An administration of beta adrenergic agonists inhibited the expression of raised levels of these enzymes in denervated muscle. A measurement of 3-methylhistidine in muscle revealed a loss of amino acid with the progress in the development of denervation atrophy. Serum and urine samples from denervated rats showed a progressive accumulation of 3-methylhistidine. Clenbuterol and isoproterenol treatment to these rats resulted in an inhibition of 3-methylhistidine accumulation. When 3-methylhistidine was used as a marker of myofibrillar degeneration, the results seemed to suggest that the degeneration of cyto-contractile apparatus accompanying denervation atrophy is attenuated in the presence of beta adrenergic agonists, implying that these sympathomimetic drugs are capable of reversing denervation atrophy in rat gastrocnemius.  相似文献   

14.
Background: The percentage of satellite cells rapidly decreases in aneurally regenerating soleus muscles of rat. Also denervation of intact muscles causes fiber loss and regeneration, but the fate of satellite cells is unknown; myonuclei have been suggested to undergo changes resembling those in apoptotic cells. Methods: Rat soleus and extensor digitorum longus (EDL) muscles were denervated at birth or at age 5 weeks and investigated after periods of up to 38 weeks. At least 400 myonuclei in each muscle were assessed by electron microscopy, and satellite cell nuclei were counted. In sity nick translation and tailing were performed after 30 weeks denervation in order to demonstrate DNA breaks associated with apoptosis. Results: Myotubes indicating regeneration were prominent in the adult denervated soleus and deep layers of EDL muscles after 7 weeks and in the superficial parts of EDL muscle after 16 weeks. The percentage of satellite cell nuclei slowly decreased to less than one fifth of normal after 20–30 weeks. Almost all satellite cells had vanished 10 weeks after neonatal denervation. Degenerating myonuclei in adult, but not in neonatally denervated muscles, remotely resembled apoptotic nuclei of lymphocytes, but no evidence of DNA breaks was found. Conclusion: Denervation of rat skeletal muscles causes, in addition to fiber atrophy, loss of fibers with subsequent regeneration. Proliferation of satellite cells under aneural conditions may lead to exhaustion of the satellite cell pool. This process is more rapid in growing than in adult muscles. Myonuclei in denervated muscles do not show DNA breaks which can be demonstrated by in situ nick translation. © 1995 Wiley-Liss, Inc.  相似文献   

15.
The influence of electrical stimulation on calpain and ubiquitin-proteasome systems was examined in the denervated and unloaded tibialis anterior muscles of male Wistar rats. Animals were divided into 5 groups: control, denervation, denervation plus electrical stimulation, unloading, and hindlimb unloading plus electrical stimulation groups. Due to denervation and unloading for 14 days, muscle atrophy markedly occurred in the denervated and unloading animals, and the atrophy in the former was significantly more severe than that in the latter. In the denervated muscle, the atrophy was significantly attenuated by the electrical stimulation, but not in the unloaded muscle. Overexpression of calpain-2 and ubiquitinated proteins was observed only in denervated muscles. In the unloaded animals, though the expression level of calpain-2 appeared to be slightly higher than that in the control, the expression level of ubiquitinated proteins was almost the same as that in the control. The overexpression of calpain-1, calpain-2, and ubiquitinated proteins in the denervated muscle was inhibited by the electrical stimulation. However, there was no difference in these expressions between the unloaded and unloaded plus electrical stimulation groups. The mechanism of the preventive effect of the electrical stimulation on muscle atrophy might differ between the denervated and unloaded muscles.  相似文献   

16.
The purpose of this experiment was to compare the weight, insulin‐like growth factor‐I (IGF‐I) expression, and ultrastructure of the soleus muscle in growing castrated rats treated with testosterone or melatonin. In this study, adult male Wistar albino rats were used. The groups were arranged as sham, castrated, and testosterone‐ or melatonin‐injected groups after castration. The soleus muscle samples were fixed in Bouin's solution for immunohistochemistry, and in 2.5% gluteraldehyde in 0.1 M phosphate buffer (pH 7.4). Whereas castration reduced the soleus weight and fiber diameter, testosterone and melatonin administration increased them. IGF‐I immunostaining observed in the satellite cells and periphery of the myofibers was least intense in the castrated group. Strong staining of IGF‐I was observed in the testosterone‐ and melatonin‐administered groups. The ultrastructure of the soleus muscle in castrated animals showed the important ultrastructural modifications related to degeneration. In these groups, degenerative mitochondria, glycogen clusters under the sarcolemma, irregular Z lines, and loss of lamina externa were observed. The ultrastructure of myofibrils in the testosterone‐ and melatonin‐injected groups was similar to that in sham groups in view of structure. In conclusion, we suggest that melatonin is as effective as testosterone in the prevention of atrophy induced by castration through the IGF‐I axis. Anat Rec, 291:448–455, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

17.
Satellite cell frequency was assessed in control and stretched anterior latissimus dorsi (ALD) muscles of adult quail. A weight equal to 10% of body mass was attached to one wing for time intervals ranging from 1-30 days. The contralateral ALD served as the intra-animal control. Satellite cell frequency, expressed as a percentage of total myofiber nuclei within the basal lamina, was determined in eight control and stretched ALD muscles, that had been weighted for 5, 7, or 10 days. Satellite cell frequency was determined in 584 control and 473 stretched fibers and was not different in the control or stretched ALD muscles (15.6 +/- 2.3%, 16.7 +/- 6.1%, respectively). The number of myofiber nuclei (myonuclei and satellite cell nuclei) was examined in whole fiber segments from control and stretched ALD muscles of 27 adult quail. Nuclear frequency was determined in 500 control and 1,200 stretched fiber segments. Fiber volume was calculated from fiber length and diameter measurements. Nuclear number normalized to 10,000 microns 3 fiber volume was correlated to fiber cross-sectional area (P less than 0.0001). Fibers with cross-sectional areas less than 500 microns 2 had a greater nuclear to fiber volume ratio compared to fibers with areas greater than 500 microns 2. The nuclear-to-cytoplasmic ratio was not constant in smaller fibers. Nuclear density decreased as fiber cross-sectional area increased up to 500 microns 2. Fibers with cross-sectional areas greater than 500 microns 2 demonstrated a constant nuclear-to-cytoplasmic ratio. The results demonstrate that absolute nuclear number increased to maintain a constant nuclear-to-cytoplasmic ratio in the stretched hypertrophied fibers. Daughter cells originating from activated satellite cells may have contributed to the myonuclear population to maintain a constant nuclear-to-cytoplasmic ratio in the hypertrophied fibers of the adult quail.  相似文献   

18.
After a transient or permanent unilateral denervation of the soleus muscle of the rat changes were investigated of extra- and intrafusal muscle fibres of the denervated (reinnervated) muscle as well as its contralateral still innervated muscle. Those data which were obtained from normal muscles of uninjured rats served as control. The changes of permanent denervated muscles were clear and statistically significant. The extrafusal muscle fibres show a considerable atrophy. The nuclear-chain fibres exhibit a decrease of their calibres. The extent of this atrophy is not as pronounced as in extrafusal muscle fibres. The nuclear-bag fibres show 12 weeks after denervation a small atrophy (or pseudoatrophy) and 18 weeks after denervation a significant hypertrophy. At the same time the number of nuclear-bag fibres is increasing. Besides the increase in number of intrafusal muscle fibres per muscle spindle, a change is observed of proportion of both intrafusal fibre types in favour of nuclear-bag fibres. The hypertrophy and the increase in number of the nuclear-bag fibres are discussed in connection with their functional properties.  相似文献   

19.
Activated inhibitor of nuclear factor-κB kinase β (IKKβ) is necessary and sufficient for denervated skeletal muscle atrophy. Although several studies have shown that Mg2+/Mn2+-dependent protein phosphatase 1B (PPM1B) inactivated IKKβ, few studies have investigated the role of PPM1B in denervated skeletal muscle. In this study, we aim to explore the expression and significance of PPM1B and phosphorylated IKKβ (P-IKKβ) during atrophy of the denervated gastrocnemius. Thirty young adult female Wistar rats were subjected to right sciatic nerve transection and were sacrificed at 0 (control), 2, 7, 14, and 28 days after denervation surgery. The gastrocnemius was removed from both the denervated and the contralateral limb. The muscle wet weight ratio was calculated as the ratio of the wet weight of the denervated gastrocnemius to that of the contralateral gastrocnemius. RT-PCR and Western blot analysis showed that mRNA and protein levels of PPM1B were significantly lower than those of the control group at different times after the initiation of denervation, while P-IKKβ showed the opposite trends. PPM1B protein expression persistently decreased while P-IKKβ expression persistently increased for 28 days after denervation. PPM1B expression correlated negatively with P-IKKβ expression by the Spearman test, whereas decreasing PPM1B expression correlated positively with the muscle wet weight ratio. The expression levels of PPM1B and P-IKKβ were closely associated with atrophy in skeletal denervated muscle. These results suggest that PPM1B and P-IKKβ could be markers in skeletal muscle atrophy.  相似文献   

20.
Quantitative ultrastructural evaluation of satellite cells (SCs) of rats immobilized for 7, 14, and 36 days after soleus muscle denervation was performed. Alterations in SCs of experimental animals concerned mainly the decrease in the size of cells and their nuclei, in the volume fractions of the nucleus and nucleolus, as well as in the number of ribosome-like structures. They suggest that immobilization which proceeded denervation caused a decline in cell activity. An increase in the volume fraction and number of endosome/lysosome-like structures, suggesting elevated processes of degradation was also observed. The changes occurred mainly in the period between 7 and 14 days after muscle denervation and immobilization. In all groups of experimental animals an increase in number of caveolae-like structures on both, inner (muscle fiber-facing) and outer (basal lamina-facing) sides of SCs was found. Thus, it is likely that SCs of denervated and immobilized rats are affected by signal molecules released by muscle fibers and/or other cell types present in muscle. A tendency in changes in SCs, observed in the present study, was similar to those which we noticed previously in denervated soleus muscle. However, immobilization after denervation aggravated some of the ultrastructural alterations or the changes appeared earlier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号