首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efficacy of hippocampal fetal cell (HFC) grafting for restraining spontaneous recurrent motor seizures (SRMS) in chronic temporal lobe epilepsy (TLE) is unknown. We investigated both survival and anti-seizure effects of 5'-bromodeoxyuridine (BrdU) labeled embryonic day 19 (E19) HFC grafts pretreated with different neurotrophic factors and a caspase inhibitor. Grafts were placed bilaterally into the hippocampi of F344 rats exhibiting kainate (KA) induced chronic TLE, where the frequency of SRMS varied from 3.0 to 3.5 seizures/8-h duration. The first group received standard (untreated) HFC grafts, the second group received HFC grafts pretreated and transplanted with brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and caspase inhibitor Ac-YVAD-cmk (BNC-treated HFC grafts), the third group received HFC grafts pretreated and transplanted with fibroblast growth factor-2 (FGF-2) and caspase inhibitor Ac-YVAD-cmk (FC-treated HFC grafts), and the fourth group served as epilepsy-only controls. Epileptic rats receiving standard HFC grafts exhibited 119% increase in the frequency of SRMS at 2 months post-grafting consistent with 125% increase in seizure frequency observed in epilepsy-only controls during the same period. However, in epileptic rats receiving HFC grafts treated with BNC or FC, the frequency of SRMS was 33-39% less than their pre-transplant scores and 73-76% less than rats receiving standard HFC grafts or epilepsy-only rats. The yield of surviving neurons was equivalent to 30% of injected cells in standard HFC grafts, 57% in HFC grafts treated with BNC and 98% in HFC grafts treated with FC. Thus, standard HFC grafts survive poorly in the chronically epileptic hippocampus and fail to restrain the progression of chronic TLE. In contrast, HFCs treated and grafted with BNC or FC survive robustly in the chronically epileptic hippocampus, considerably reduce the frequency of SRMS and blunt the progression of chronic TLE.  相似文献   

2.
While it is clear that acute hippocampal injury or status epilepticus increases the production of new neurons in the adult dentate gyrus (DG), the effects of chronic epilepsy on dentate neurogenesis are unknown. We hypothesize that epileptogenic changes and spontaneous recurrent motor seizures (SRMS) that ensue after hippocampal injury or status epilepticus considerably decrease dentate neurogenesis. We addressed this issue by quantifying the number of cells that are positive for doublecortin (DCX, a marker of new neurons) in the DG of adult F344 rats at 16 days and 5 months after an intracerebroventricular kainic acid (ICV KA) administration or after graded intraperitoneal KA (IP KA) injections, models of temporal lobe epilepsy (TLE). At early post-KA administration, the injured hippocampus exhibited increased dentate neurogenesis in both models. Conversely, at 5 months post-KA administration, the chronically epileptic hippocampus demonstrated severely declined neurogenesis, which was associated with considerable SRMS in both KA models. Additionally, stem/progenitor cell proliferation factors, FGF-2 and IGF-1, were decreased in the chronically epileptic hippocampus. Interestingly, the overall decrease in neurogenesis and the extent of SRMS were greater in rats receiving IP KA than rats receiving ICV KA, suggesting that the extent of neurogenesis during chronic TLE exhibits an inverse relationship with SRMS. These results provide novel evidence that chronic TLE is associated with extremely declined dentate neurogenesis. As fraction of newly born neurons become GABA-ergic interneurons, declined neurogenesis may contribute to the increased seizure-susceptibility of the DG in chronic TLE. Likewise, the hippocampal-dependent learning and memory deficits observed in chronic TLE could be linked at least partially to the declined neurogenesis.  相似文献   

3.
Temporal lobe epilepsy (TLE), characterized by spontaneous recurrent motor seizures (SRMS), learning and memory impairments, and depression, is associated with neurodegeneration, abnormal reorganization of the circuitry, and loss of functional inhibition in the hippocampal and extrahippocampal regions. Over the last decade, abnormal neurogenesis in the dentate gyrus (DG) has emerged as another hallmark of TLE. Increased DG neurogenesis and recruitment of newly born neurons into the epileptogenic hippocampal circuitry is a characteristic phenomenon occurring during the early phase after the initial precipitating injury such as status epilepticus. However, the chronic phase of the disease displays substantially declined DG neurogenesis, which is associated with SRMS, learning and memory impairments, and depression. This review focuses on DG neurogenesis in the chronic phase of TLE and first confers the extent and mechanisms of declined DG neurogenesis in chronic TLE. The available data on production, survival and neuronal fate choice decision of newly born cells, stability of hippocampal stem cell numbers, and changes in the hippocampal microenvironment in chronic TLE are considered. The next section discusses the possible contribution of declined DG neurogenesis to the pathophysiology of chronic TLE, which includes its potential effects on spontaneous recurrent seizures, cognitive dysfunction, and depression. The subsequent section considers strategies that may be useful for augmenting DG neurogenesis in chronic TLE, which encompass stem cell grafting, administration of distinct neurotrophic factors, physical exercise, exposure to enriched environment, and antidepressant therapy. The final section suggests possible ramifications of increasing the DG neurogenesis in chronic epilepsy.  相似文献   

4.
Diminution in the number of gamma-amino butyric acid positive (GABA-ergic) interneurons and their axon terminals, and/or alterations in functional inhibition are conspicuous brain alterations believed to contribute to the persistence of seizures in acquired epilepsies such as temporal lobe epilepsy. This has steered a perception that replacement of lost GABA-ergic interneurons would improve inhibitory synaptic neurotransmission in the epileptic brain region and thereby reduce the occurrence of seizures. Indeed, studies using animal prototypes have reported that grafting of GABA-ergic progenitors derived from multiple sources into epileptic regions can reduce seizures. This review deliberates recent advances, limitations and challenges concerning the development of GABA-ergic cell therapy for epilepsy. The efficacy and limitations of grafts of primary GABA-ergic progenitors from the embryonic lateral ganglionic eminence and medial ganglionic eminence (MGE), neural stem/progenitor cells expanded from MGE, and MGE-like progenitors generated from human pluripotent stem cells for alleviating seizures and co-morbidities of epilepsy are conferred. Additional studies required for possible clinical application of GABA-ergic cell therapy for epilepsy are also summarized.  相似文献   

5.
We investigated the activation of the IL-1 beta system and markers of adaptive immunity in rat brain during epileptogenesis using models of temporal lobe epilepsy (TLE). The same inflammatory markers were studied in rat chronic epileptic tissue and in human TLE with hippocampal sclerosis (HS). IL-1 beta was expressed by both activated microglia and astrocytes within 4 h from the onset of status epilepticus (SE) in forebrain areas recruited in epileptic activity; however, only astrocytes sustained inflammation during epileptogenesis. Activation of the IL-1 beta system during epileptogenesis was associated with neurodegeneration and blood-brain barrier breakdown. In rat and human chronic epileptic tissue, IL-1 beta and IL-1 receptor type 1 were broadly expressed by astrocytes, microglia and neurons. Granulocytes appeared transiently in rat brain during epileptogenesis while monocytes/macrophages were present in the hippocampus from 18 h after SE onset until chronic seizures develop, and they were found also in human TLE hippocampi. In rat and human epileptic tissue, only scarce B- and T-lymphocytes and NK cells were found mainly associated with microvessels. These data show that specific inflammatory pathways are chronically activated during epileptogenesis and they persist in chronic epileptic tissue, suggesting they may contribute to the etiopathogenesis of TLE.  相似文献   

6.
The links among the extent of hippocampal neurodegeneration, the frequency of spontaneous recurrent motor seizures (SRMS), and the degree of aberrant mossy fiber sprouting (MFS) in temporal lobe epilepsy (TLE) are a subject of contention because of variable findings in different animal models and human studies. To understand these issues further, we quantified these parameters at 3-5 months after graded injections of low doses of kainic acid (KA) in adult F344 rats. KA was administered every 1 hr for 4 hr, for a cumulative dose of 10.5 mg/kg bw, to induce continuous stages III-V motor seizures for >3 hr. At 4 days post-KA, the majority of rats (77%) exhibited moderate bilateral neurodegeneration in different regions of the hippocampus; however, 23% of rats exhibited massive neurodegeneration in all hippocampal regions. All KA-treated rats displayed robust SRMS at 3 months post-KA, and the severity of SRMS increased over time. Analyses of surviving neurons at 5 months post-KA revealed two subgroups of rats, one with moderate hippocampal injury (HI; 55% of rats) and another with widespread HI (45%). Rats with widespread HI exhibited greater loss of CA3 pyramidal neurons and robust aberrant MFS than rats with moderate HI. However, the frequency of SRMS (approximately 3/hr) was comparable between rats with moderate and widespread HI. Thus, in comparison with TLE model using Sprague-Dawley rats (Hellier et al. [1998] Epilepsy Res. 31:73-84), a much lower cumulative dose of KA leads to robust chronic epilepsy in F344 rats. Furthermore, the occurrence of SRMS in this model is always associated with considerable bilateral hippocampal neurodegeneration and aberrant MFS. However, more extensive hippocampal CA3 cell loss and aberrant MFS do not appear to increase the frequency of SRMS. Because most of the features are consistent with mesial TLE in humans, the F344 model appears ideal for testing the efficacy of potential treatment strategies for mesial TLE.  相似文献   

7.
Shetty AK  Hattiangady B 《Hippocampus》2007,17(10):943-956
Degeneration of the CA3 pyramidal and dentate hilar neurons in the adult rat hippocampus after an intracerebroventricular kainic acid (KA) administration, a model of temporal lobe epilepsy, leads to permanent loss of the calcium binding protein calbindin in major fractions of dentate granule cells and CA1 pyramidal neurons. We hypothesize that the enduring loss of calbindin in the dentate gyrus and the CA1 subfield after CA3-lesion is due to disruption of the hippocampal circuitry leading to hyperexcitability in these regions; therefore, specific cell grafts that are capable of both reconstructing the disrupted circuitry and suppressing hyperexcitability in the injured hippocampus can restore calbindin. We compared the effects of fetal CA3 or CA1 cell grafting into the injured CA3 region of adult rats at 45 days after KA-induced injury on the hippocampal calbindin. The calbindin immunoreactivity in the dentate granule cells and the CA1 pyramidal neurons of grafted animals was evaluated at 6 months after injury (i.e. at 4.5 months post-grafting). Compared with the intact hippocampus, the calbindin in "lesion-only" hippocampus was dramatically reduced at 6 months post-lesion. However, calbindin expression was restored in the lesioned hippocampus receiving CA3 cell grafts. In contrast, in the lesioned hippocampus receiving CA1 cell grafts, calbindin expression remained less than the intact hippocampus. Thus, specific cell grafting restores the injury-induced loss of calbindin in the adult hippocampus, likely via restitution of the disrupted circuitry. Since loss of calbindin after hippocampal injury is linked to hyperexcitability, re-expression of calbindin in both dentate gyrus and CA1 subfield following CA3 cell grafting may suggest that specific cell grafting is efficacious for ameliorating injury-induced hyperexcitability in the adult hippocampus. However, electrophysiological studies of KA-lesioned hippocampus receiving CA3 cell grafts are required in future to validate this possibility.  相似文献   

8.
Complex partial seizures arising from mesial temporal lobe structures are a defining feature of mesial temporal lobe epilepsy (TLE). For many TLE patients, there is an initial traumatic head injury that is the precipitating cause of epilepsy. Severe TLE can be associated with neuropathological changes, including hippocampal sclerosis, neurodegeneration in the dentate gyrus, and extensive reorganization of hippocampal circuits. Learning disabilities and psychiatric conditions may also occur in patients with severe TLE for whom conventional anti-epileptic drugs are ineffective. Novel treatments are needed to limit or repair neuronal damage, particularly to hippocampus and related limbic regions in severe TLE and to suppress temporal lobe seizures. A promising therapeutic strategy may be to restore inhibition of dentate gyrus granule neurons by means of cell grafts of embryonic stem cell-derived GABAergic neuron precursors. “Proof-of-concept” studies show that human and mouse embryonic stem cell-derived neural precursors can survive, migrate, and integrate into the brains of rodents in different experimental models of TLE. In addition, studies have shown that hippocampal grafts of cell lines engineered to release GABA or other anticonvulsant molecules can suppress seizures. Furthermore, transplants of fetal GABAergic progenitors from the mouse or human brain have also been shown to suppress the development of seizures. Here, we review these relevant studies and highlight areas of future research directed toward producing embryonic stem cell-derived GABAergic interneurons for cell-based therapies for treating TLE.  相似文献   

9.
The dentate gyrus, a region of the hippocampal formation, displays the highest level of plasticity in the brain and exhibits neurogenesis all through life. Dentate neurogenesis, believed to be essential for learning and memory function, responds to physiological stimuli as well as pathological situations. The role of dentate neurogenesis in the pathophysiology of temporal lobe epilepsy (TLE) has received increased attention lately because of its disparate response in the early and chronic stages of the disease. Acute seizures or status epilepticus immensely enhance dentate neurogenesis and lead to an aberrant migration of newly born neurons into the dentate hilus and the formation of epileptogenic circuitry in the injured hippocampus. Conversely, spontaneous recurrent seizures that arise during chronic TLE are associated with dramatically reduced dentate neurogenesis. In this review, we discuss the potential significance of enhanced but abnormal neurogenesis taking place shortly after brain injury or the status epilepticus towards the development of chronic epilepsy, and prospective implications of dramatically waned dentate neurogenesis occurring during chronic epilepsy for learning and memory function and depression in TLE. Furthermore, we confer whether hippocampal neurogenesis is a possible drug target for preventing TLE after brain injury or the status epilepticus, and for easing learning and memory impairments during chronic epileptic conditions. Additionally, we discuss some possible drugs and approaches that need to be evaluated in future in animal models of TLE to further understand the role of neurogenesis in the pathogenesis of TLE and whether modulation of neurogenesis is useful for treating TLE.  相似文献   

10.
Stroke in the developing brain is an important cause of chronic neurological morbidities including neurobehavioral dysfunction and epilepsy. Here, we describe a mouse model of neonatal stroke resulting from unilateral carotid ligation that results in acute seizures, long-term hyperactivity, spontaneous lateralized circling behavior, impaired cognitive function, and epilepsy. Exploration-dependent induction of the immediate early gene Arc (activity-regulated cytoskeleton associated protein) in hippocampal neurons was examined in the general population of neurons versus neurons that were generated ∼ 1 week after the ischemic insult and labeled with bromodeoxyuridine. Although Arc was inducible in a network-specific manner after severe neonatal stroke, it was impaired, not only in the ipsilateral injured but also in the contralateral uninjured hippocampi when examined 6 months after the neonatal stroke. Severity of both the stroke injury and the acquired poststroke epilepsy negatively correlated with Arc induction and new neuron integration into functional circuits in the injured hippocampi.  相似文献   

11.
We evaluated the effects of intra-hippocampal transplantation of human umbilical mesenchymal stem cells (HUMSCs) on pilocarpine-treated rats. Sprague–Dawley rats were divided into the following three groups: (1) a normal group of rats receiving only PBS, (2) a status epilepticus (SE) group of rats with pilocarpine-induced SE and PBS injected into the hippocampi, and (3) a SE + HUMSC group of SE rats with HUMSC transplantation. Spontaneous recurrent motor seizures (SRMS) were monitored using simultaneous video and electroencephalographic recordings at two to four weeks after SE induction. The results showed that the number of SRMS within two to four weeks after SE was significantly decreased in SE + HUMSCs rats compared with SE rats. All of the rats were sacrificed on Day 29 after SE. Hippocampal morphology and volume were evaluated using Nissl staining and magnetic resonance imaging. The results showed that the volume of the dorsal hippocampus was smaller in SE rats compared with normal and SE + HUMSCs rats. The pyramidal neuron loss in CA1 and CA3 regions was more severe in the SE rats than in normal and SE + HUMSCs rats. No significant differences were found in the hippocampal neuronal loss or in the number of dentate GABAergic neurons between normal and SE + HUMSCs rats. Compared with the SE rats, the SE + HUMSCs rats exhibited a suppression of astrocyte activity and aberrant mossy fiber sprouting. Implanted HUMSCs survived in the hippocampus and released cytokines, including FGF-6, amphiregulin, glucocorticoid-induced tumor necrosis factors receptor (GITR), MIP-3β, and osteoprotegerin. In an in vitro study, exposure of cortical neurons to glutamate showed a significant decrease in cell viability, which was preventable by co-culturing with HUMSCs. Above all, the expression of human osteoprotegerin and amphiregulin were significantly increased in the media of the co-culture of neurons and HUMSCs. Our results demonstrate the therapeutic benefits of HUMSC transplantation for the development of epilepsy, which are likely due to the ability of the cells to produce neuroprotective and anti-inflammatory cytokines. Thus, HUMSC transplantation may be an effective therapy in the future.  相似文献   

12.
Temporal lobe epilepsy (TLE), exemplified by complex partial seizures, is recognized in ~30% of epileptic patients. Seizures in TLE are associated with cognitive dysfunction and are resistant to antiepileptic drug therapy in ~35% of patients. Although surgical resection of the hippocampus bestows improved seizure regulation in most cases of intractable TLE, this choice can cause lasting cognitive deficiency and reliance on antiepileptic drugs. Thus, alternative therapies that are proficient in both containing the spontaneous recurrent seizures and reversing the cognitive dysfunction are needed. The cell transplantation approach is promising in serving as an adept alternate therapy for TLE, because this strategy has shown the capability to curtail epileptogenesis when used soon after an initial precipitating brain injury, and to restrain spontaneous recurrent seizures and improve cognitive function when utilized after the occurrence of TLE. Nonetheless, this treatment needs further advancement and rigorous evaluation in animal prototypes of chronic TLE before the conceivable clinical use. It is especially vital to gauge the efficacy of distinct donor cell types, such as the hippocampal precursor cells, γ-aminobutyric acid-ergic progenitors, and neural stem cells derived from diverse human sources (including the embryonic stem cells and induced pluripotent stem cells) for longstanding seizure suppression using continuous electroencephalographic recordings for prolonged periods. Additionally, the identification of the mechanisms underlying the graft-mediated seizure suppression and improved cognitive function, and the development of apt grafting strategies that enhance the anti-seizure and pro-cognitive effects of grafts will be necessary. The goal of this review is to evaluate the progress made hitherto in this area and to discuss the prospect for cell-based therapy for TLE.  相似文献   

13.
R C Roberts  M DiFiglia 《Brain research》1990,532(1-2):151-159
Neurons in long-term striatal grafts were examined to determine if they retain the neurotransmitter characteristics of cells in younger grafts. In addition, calbindin-d28k, a ubiquitous marker of medium spiny neurons, was used to examine the overall frequency and ultrastructural characteristics of spiny neurons in the older grafts. Grafts from 17-day fetal striata were injected into the quinolinic acid-lesioned caudate nucleus in 5 adult rats. After 16 months, the neostriatum was processed for the localization of immunoreactive GABA, calbindin, enkephalin and NADPH-diaphorase (-d) activity. The proportions of GABA-, enkephalin- and NADPH-d-labeled neurons to total Nissl-stained neurons in the 16-month-old grafts (25 +/- 6, 13 +/- 4, and 3 +/- 3, respectively) were similar to findings in 2-month-old grafts. Calbindin-positive cells formed the highest proportion (36.3 +/- 3) of labeled neurons in the older grafts. Nuclear and spine morphology of immunoreactive calbindin cells varied more in the grafts than in host caudate. Results show that there is long-term survival and stability of GABA, enkephalin and NADPH-d cell populations in the grafts and that some grafted spiny neurons may exhibit altered phenotype from those of host striatum.  相似文献   

14.
PURPOSE: To define the changes in gene and protein expression of the neuronal glutamate transporter (EAAT3/EAAC1) in a rat model of temporal lobe epilepsy as well as in human hippocampal and neocortical epilepsy. METHODS: The expression of EAAT3/EAAC1 mRNA was measured by reverse Northern blotting in single dissociated hippocampal dentate granule cells from rats with pilocarpine-induced temporal lobe epilepsy (TLE) and age-matched controls, in dentate granule cells from hippocampal surgical specimens from patients with TLE, and in dysplastic neurons microdissected from human focal cortical dysplasia specimens. Immunolabeling of rat and human hippocampi and cortical dysplasia tissue with EAAT3/EAAC1 antibodies served to corroborate the mRNA expression analysis. RESULTS: The expression of EAAT3/EAAC1 mRNA was increased by nearly threefold in dentate granule cells from rats with spontaneous seizures compared with dentate granule cells from control rats. EAAT3/EAAC1 mRNA levels also were high in human dentate granule cells from patients with TLE and were significantly elevated in dysplastic neurons in cortical dysplasia compared with non-dysplastic neurons from postmortem control tissue. No difference in expression of another glutamate transporter, EAAT2/GLT-1, was observed. Immunolabeling demonstrated that EAAT3/EAAC1 protein expression was enhanced in dentate granule cells from both rats and humans with TLE as well as in dysplastic neurons from human cortical dysplasia tissue. CONCLUSIONS: Elevations of EAAT3/EAAC1 mRNA and protein levels are present in neurons from hippocampus and neocortex in both rats and humans with epilepsy. Upregulation of EAAT3/EAAC1 in hippocampal and neocortical epilepsy may be an important modulator of extracellular glutamate concentrations and may occur as a response to recurrent seizures in these cell types.  相似文献   

15.
PURPOSE: To determine whether repeated seizures contribute to hippocampal sclerosis, we investigated whether cell loss in the (para) hippocampal region was related to the severity of chronic seizure activity in a rat model for temporal lobe epilepsy (TLE). METHODS: Chronic epilepsy developed after status epilepticus (SE) that was electrically induced 3-5 months before. The presence of neuronal damage was assessed by using Fluoro-Jade and dUTP nick end-labeling (TUNEL) of brain sections counterstained with Nissl. RESULTS: We found a negative correlation between the numbers of surviving hilar cells and the duration of the SE (r = -0.66; p < 0.01). In the chronic phase, we could discriminate between rats with occasional seizures (0.15 +/- 0.05 seizures per day) without progression and rats with progressive seizure activity (8.9 +/- 2.8 seizures/day). In both groups, the number of TUNEL-positive cells in parahippocampal regions was similar and higher than in controls. In the hippocampal formation, this was not significantly different from controls. Fluoro-Jade staining showed essentially the same pattern at 1 week and no positive neurons in chronic epileptic rats. CONCLUSIONS: Cell death in this rat model is related to the initial SE rather than to the frequency of spontaneous seizures. These results emphasize that it is of crucial importance to stop the SE as soon as possible to prevent extended cell loss and further progression of the disease. They also suggest that neuroprotectants can be useful during the first week after SE, but will not be very useful in the chronic epileptic phase.  相似文献   

16.
Numerous studies indicate that initial precipitating injuries (IPI) such as febrile seizures during early childhood may play a pivotal role in the pathogenesis of temporal lobe epilepsy (TLE) and Ammon’s horn sclerosis (AHS). Previous data demonstrate an increase of horizontally oriented neurons in molecular layers of hippocampal subfields, which are immunoreactive for calretinin (CR-ir) and resemble Cajal-Retzius-like cells. Cajal-Retzius cells are transiently expressed in the murine developing hippocampus and are critically involved in neuronal pattern formation. Here we investigated a potential relationship between the distribution of horizontally oriented calretinin-immunoreactive neurons and the clinical history of TLE patients with AHS. Horizontally oriented neurons in the molecular layer of the hippocampal formation have been visualized by antibodies against the calcium-binding proteins calretinin and calbindin D-28k. Cell counts derived from 27 epilepsy patients with AHS were compared with autopsy specimens from developing and adult normal human hippocampus (n = 26). During ontogeny, CR-ir cells showed a marked perinatal peak in the CA1 and dentate gyrus molecular layer (CA1-ML, DG-ML) followed by a gradual postnatal decline. In hippocampal specimens from TLE patients with AHS and seizure onset before the age of 4 years, significantly higher levels of CR-ir neurons in CA1-ML (P = 0.05) and DG-ML (P < 0.05) were encountered than in AHS patients without precipitating seizures or with an uneventful early medical history. However, all three groups had higher levels of CR-ir neurons compared to adult controls obtained at autopsy (P < 0.01). In addition, AHS specimens showed increased CR-ir neuropil staining throughout the DG-ML compared with the restricted distribution of CR-ir fibers within the superficial granule cell layer visible in controls. These findings suggest that a condsiderable number of TLE patients with AHS display signs of impaired hippocampal maturation and circuitry formation as indicated by increased numbers of Cajal-Retzius like cells. It remains to be elucidated, how these changes contribute to the pathogenesis of TLE. Received: 23 April 1998 / Revised, accepted: 29 June 1998  相似文献   

17.
Hippocampal kindling was investigated in rats with a 6-hydroxydopamine-induced lesion of the forebrain catecholamine system after implantation of neural tissue from the fetal locus coeruleus region either bilaterally into the amygdala-piriform cortex (i.e., distant to the kindling site) or unilaterally into the hippocampus (close to the kindling site). Lesioned animals with either sham grafts or control grafts consisting of fetal striatal tissue showed a kindling rate much faster than that of normal controls. In contrast, in rats with bilateral locus coeruleus grafts in the amygdala-piriform cortex (implanted at three sites) the development of seizures was similar to that of controls and significantly slower than that in lesioned animals with sham grafts. All these animals had bilateral surviving grafts with a mean of 125 noradrenergic cells per implantation site. In the animals with locus coeruleus grafts in the stimulated hippocampus the kindling rate did not differ from that in the lesioned animals with control grafts. Most of these animals had large surviving grafts and showed a dense noradrenergic reinnervation of the implanted hippocampus. The present findings indicate that grafting of fetal pontine tissue (rich in noradrenergic neurons) to a site distant to the stimulation focus, but important for the generalization and spread of seizures, can retard the development of seizures in hippocampal kindling. Together with the data of our previous report this study also indicates that noradrenergic reinnervation of both hippocampi is important for the seizure-suppressant action in hippocampal kindling of locus coeruleus grafts implanted in the hippocampus.  相似文献   

18.
Here we describe a new non-human primate model of temporal lobe epilepsy (TLE) to better investigate the cause/effect relationships of human TLE. Status epilepticus (SE) was induced in adult marmosets by pilocarpine injection (250mg/kg; i.p.). The animals were divided in 2 groups: acute (8h post-SE) and chronic (3 and 5 months post-SE). To manage the severity of SE, animals received diazepam 5min after the SE onset (acute group: 2.5 or 1.25mg/kg; i.p.; chronic group/; 1.25mg/kg; i.p). All animals were monitored by video and electrocorticography to assess SE and subsequent spontaneous recurrent seizures (SRS). To evaluate brain injury produced by SE or SRS we used argyrophil III, Nissl and neo-Timm staining techniques. Magnetic resonance image was also performed in the chronic group. We observed that pilocarpine was able to induce SE followed by SRS after a variable period of time. Prolonged SE episodes were associated with brain damage, mostly confined to the hippocampus and limbic structures. Similar to human TLE, anatomical disruption of dentate gyrus was observed after SRS. Our data suggest that pilocarpine marmoset model of epilepsy has great resemblance to human TLE, and could provide new tools to further evaluate the subtle changes associated with human epilepsy.  相似文献   

19.
Structural changes in limbic regions are often observed in individuals with temporal lobe epilepsy (TLE) and in animal models. However, the brain structural changes during the evolution into epilepsy remain largely unknown. Therefore, the purpose of this study was to define the temporal changes in limbic structures after experimental status epilepticus (SE) during the latency period of epileptogenesis in vivo, with quantitative diffusion tensor imaging (DTI) and T2 relaxometry in an animal model of chronic TLE. A pair of fifty micron electrodes was implanted into the ventral hippocampus in twelve male adult rats. Self-sustaining SE was induced with electrical stimulation in eleven rats. Three rats served as age-matched controls. In vivo diffusion tensor and T2 magnetic resonance imaging (MRI) was performed at 11.1 Tesla, pre- and post-implantation of electrodes and 3, 5, 7, 10, 20, 40 and 60 days post-SE to assess structural changes. Spontaneous seizures were identified with continuous time-locked video-monitoring. Following imaging in vivo, fixed, excised brains were MR imaged at 17.6 Tesla. Subsequently, histological analysis was correlated with MRI results. Following SE, 8/11 injured rats developed spontaneous seizures. Unique to these 8 rats, early T2, diffusivity and anisotropy changes were observed in vivo within the parahippocampal gyrus (contralateral) and fimbria (bilateral). In excised brains, bilateral increase in anisotropy was observed in the dentate gyrus, corresponding to mossy fiber sprouting as determined by Timm staining. Using T2 relaxometry and DTI, specific transient and long-term structural changes were observed only in rats that developed spontaneous limbic seizures.  相似文献   

20.
Granule Cell Neurogenesis After Status Epilepticus in the Immature Rat Brain   总被引:16,自引:7,他引:9  
Summary: Purpose : Several experimental paradigms of seizure induction that produce epilepsy as a consequence have been shown to be associated with the proliferation of dentate granule cells. In developing animals, the acute sequela of hilar damage and the chronic sequelae of spontaneous seizures and mossy fiber synaptic reorganization, in response to status epilepticus, occur in an age-dependent manner. We investigated seizure-induced granule cell neurogenesis in developing rat pups to study the association between hilar injury, granule cell neurogenesis, and epilepsy.
Methods : Rat pups of 2 and 3 weeks postnatal age were subjected to lithium-pilocarpine status epilepticus (LiPC SE). Rats were given bromodeoxyuridine (BrdU; 50 mg/kg intra-peritoneal) twice daily for 4 days beginning 3 days after SE to label dividing cells. Routine immunocytochemistry and quantification of BrdU labeling by image analysis were performed. Results were compared with previously reported data on cellular injury, mossy fiber sprouting, and spontaneous seizures in rat pups of these ages after LiPC SE.
Results : In 3-week-old pups, which demonstrate SE-induced hilar damage and develop spontaneous seizures accompanied by mossy fiber sprouting, the BrdU-immunoreactive area (percent) in the subgranular proliferative zone increased to 10·6 ± 2·5 compared with 1·4 ± 0·5 in the control animals (p < 0·05). The 2-week-old animals, which show neither hilar damage nor sprouting and rarely develop spontaneous seizures, also showed a comparable extent of SE-induced neurogenesis [8·0 ± 1·4 (LiPC SE) versus 0·4 ± 0·2 (control), p < 0·05].
Conclusions : Seizure-induced granule cell neurogenesis does not appear to be a function of seizure-induced hilar cellular damage. Granule cell neurogenesis induced by SE does not determine epileptogenesis in the developing rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号