首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mature dendritic cell (DC) is considered to be the most potent antigen-presenting cell. Regulation of the DC, particularly its survival, is therefore critical. Mature DC are markedly more sensitive to HLA-DR-mediated apoptosis than immature DC. To further characterize this key survival difference, we compared the intracellular signals initiated via HLA-DR in mature versus immature DC. Apoptosis was unchanged by inhibition of tyrosine kinases or phosphatases. HLA-DR-mediated re-localization of protein kinase C (PKC)-delta to the nucleus was detected in mature DC by confocal microscopy and by immunoblotting. Activation of PKC-delta in mature DC was revealed by the detection of the PKC-delta catalytic fragment in the nuclear fraction isolated from mature DC which had been stimulated via HLA-DR. The broad-spectrum PKC inhibitor, Calphostin C, as well as the PKC-delta-selective inhibitor, Rottlerin, inhibited HLA-DR-mediated apoptosis of mature cells. Taken together, these data reveal a role for the PKC-delta isoenzyme in regulating HLA class II-mediated apoptosis of mature DC. Thus, the lifespan of the mature DC could be controlled by signals generated in the course of antigen presentation, and thereby prevent DC persistence and prolonged stimulation of T and B lymphocytes.  相似文献   

2.
T cell activation is mediated by microclusters (MCs) containing T cell receptors (TCRs), kinases, and adaptors. Although TCR MCs translocate to form a central supramolecular activation cluster (cSMAC) of the immunological synapse at the interface of a T cell and an antigen-presenting cell, the role of MC translocation in T cell signaling remains unclear. Here, we found that the accumulation of MCs at cSMAC was important for T cell costimulation. Costimulatory receptor CD28 was initially recruited coordinately with TCR to MCs, and its signals were mediated through the assembly with the kinase PKCtheta. The accumulation of MCs at the cSMAC was accompanied by the segregation of CD28 from the TCR, which resulted in the translocation of both CD28 and PKCtheta to a spatially unique subregion of cSMAC. Thus, costimulation is mediated by the generation of a unique costimulatory compartment in the cSMAC via the dynamic regulation of MC translocation.  相似文献   

3.
F J Kos  H D Bear 《Immunology》1998,94(4):575-579
Ligation of CD28 molecules expressed on the surface of human leukaemic natural killer-like YT cells triggers intracellular signals leading to cytolysis of target cells expressing CD80 or CD86 molecules. Known intracellular events include tyrosine phosphorylation, activation of phosphatidylinositol 3-kinase, and protein kinase C (PKC). In this study, we report that PKC-delta isoenzyme activity is required for CD28-triggered cytotoxicity mediated by YT cells and we also demonstrate that one of the primary targets of bryostatin 1, a modulator of PKC activity, is PKC-delta. Treatment of YT cells with bryostatin 1 caused degradation of PKC-delta, but not other PKC isoenzymes, and completely blocked the cytolytic activity of YT cells. In addition, PKC-delta-specific antibody introduced into YT cells by electroporation inhibited partially the YT cell-mediated cytotoxicity of B-lymphoblastoid cell line JY. This effect was specific, since addition of anti-PKC-delta antibody-blocking peptide in combination with anti-PKC-delta antibody to YT cells for electroporation, neutralized the effect of this antibody. These results demonstrate that YT cell cytolytic activity is dependent on PKC-delta, which is selectively down-regulated by bryostatin 1.  相似文献   

4.
The role of the basal activity of the serine/threonine protein kinase, protein kinase C (PKC) in the regulation of anti-CD95-induced apoptosis in Jurkat T cells was investigated. The PKC-specific inhibitor GF 109203X and the proposed cPKC-specific inhibitor Go 6976, in a concentration-dependent manner, increased the percentage of cells undergoing apoptosis induced by anti-CD95 mAb as demonstrated by propidium iodide (PI) staining, TUNEL assay and DNA fragmentation by gel electrophoresis. Furthermore, Go 6976 and GF 109203X abrogated phorbol myristate acetate-induced inhibition of anti-CD95-induced apoptosis. To examine the molecular mechanism by which PKC modulates anti-CD95-induced apoptosis, the effects of Go 6976 on known effector and regulatory molecules of cell death were studied. Increased recruitment of cells undergoing apoptosis was associated with enhanced anti-CD95-induced proteolytic cleavage of the most receptor-proximal cysteine protease caspase-8, subsequent cleavage and activation of the machinery protease caspase-3, and cleavage of the caspase substrates DNA-dependent protein kinase catalytic subunit, poly-(ADP-ribose) polymerase and lamin B1. CD95 and FADD protein levels in Jurkat T cells were not altered by Go 6976 treatment. In addition, Go 6976 did not alter protein levels and subcellular distribution of the anti-apoptotic molecules Bcl-2 and Bcl-xL. These data suggest indirectly that basal PKC activity acts at an early stage in the anti-CD95-induced caspase pathway to attenuate subsequent activation of downstream effector molecules and associated apoptosis in Jurkat T cells.   相似文献   

5.
6.
The relationship between potentiation of serotonin (5-hydroxytryptamine, 5-HT)-induced contraction by endothelin-1 (ET-1) and the activity of protein kinase C (PKC) was examined in the porcine coronary artery. Low concentrations (30-100 pM) of ET-1 selectively potentiated the 5-HT-induced contraction 1.5 to 2 times over the control without any additional increase in myosin light-chain phosphorylation. The potentiation was attenuated by PKC down-regulation caused by phorbol 12-myristate 13-acetate. By Western blot analysis with isoform-specific antibodies to PKC, at least four isoforms (PKCalpha, PKCbeta1, PKCdelta and PKCzeta) were identified in the porcine coronary artery. PKCalpha and PKCdelta were mostly in the cytosol fraction, whereas PKCbeta1 and PKCzeta were almost equally distributed in the cytosol and membrane fractions in the resting and contractile states. Of the four isoforms, only PKCdelta was translocated from the cytosol to the membrane fraction during the contractile potentiation by ET-1. These results suggest that the activity of PKCdelta, a Ca2+-independent PKC isoform, is involved in the potentiation of 5-HT-induced contraction by ET-1 in the porcine coronary artery.  相似文献   

7.
The understanding and control of many pathophysiological conditions is based on knowledge of subtly regulated intracellular signaling networks. We have found that in pervanadate (PV)-treated J558L myeloma cells, amongst other signaling proteins, protein kinase C (PKC)-delta and src homology 2-containing inositol phosphatase (SHIP) are tyrosine phosphorylated on expression of the B cell receptor, suggesting a role for these proteins in the preformed B cell receptor transducer complex. Rottlerin, a widely used PKC-delta-specific inhibitor, efficiently blocks these PV-induced tyrosine phosphorylation events. Furthermore, PV treatment of bone marrow-derived mast cells (BMMC) also results in tyrosine phosphorylation of PKC-delta, SHIP, and additional proteins. Rottlerin also inhibits these responses, indicating that PKC-delta might play an important enhancing role in the propagation of phosphotyrosine signals in B cells and mast cells and hence in the regulation of function of both cell types. Therefore, BMMC from PKC-delta -/- mice were generated by in vitro differentiation and assayed for tyrosine phosphorylation events in response to PV. Intriguingly, and opposite to the Rottlerin data, PKC-delta -/- BMMC show a stronger response to PV than wild-type cells, suggesting an attenuating role for PKC-delta. This response can be inhibited equally well by Rottlerin, indicating clearly that Rottlerin is not specific for PKC-delta in vivo. A comparison between Rottlerin and the panspecific PKC inhibitor bisindolylmaleimide suggests that Rottlerin also targets kinases beyond the PKC family. Moreover, Ser473 phosphorylation of protein kinase B (PKB) after PV treatment is blocked by Rottlerin as efficiently as by the phosphatidylinositol 3-kinase inhibitor LY294002. In this report, we provide evidence that PKC-delta constitutes a crucial attenuating factor in B cell and mast cell signal transduction and suggest that PKC-delta is important for the regulation of physiological B and mast cell functions as well as for their pathophysiology. Furthermore, dominant PKC-delta-independent effects of Rottlerin are presented, indicating restrictions of this inhibitor for use in signal transduction research.  相似文献   

8.
Various human colon cancer cell lines tested in vitro differed significantly in susceptibility to growth inhibition of recombinant human interferon-beta (rHuIFN-beta). Two p53-mutant lines, COH and CC-M2, derived from high-grade colon adenocarcinoma, showed signs of apoptosis after treatment with 250 IU/ml of HuIFN- beta in the culture medium. The similarly p53-mutated HT-29 line from a grade I adenocarcinoma showed no apoptosis, however, and only cell cycle G1/G0 or S phase retardation with 1000 IU/ml HuIFN-beta. After HuIFN-beta exposure, COH and CC-M2 cells showed increased levels of Fas and FasL proteins, alteration of mitochondrial membrane potential, and activation of caspase-9, caspase-8, and caspase-3 in a time-dependent manner. Treatment of COH and CC-M2 cells with anti-FasL antibodies or rFas/Fc fusion protein, however, could not prevent the apoptosis induced by HuIFN-beta. In contrast, cell-permeable specific inhibitors of the three caspases could inhibit the DNA fragmentation and cell death but not the mitochondrial membrane potential changes. Treatment with mitochondria-stabilizing reagents could significantly abrogate the apoptosis and caspase activation induced by HuIFN-beta. These results suggest that in COH and CC-M2 colon cancer cell lines, HuIFN-beta induces apoptosis mainly through mitochondrial membrane alteration and subsequent activation of the caspase cascade pathway, but not by the Fas/FasL interaction or the p53-dependent apoptotic mechanism.  相似文献   

9.
Ras proteins are membrane-associated transducers of eternal stimuli to unknown intracellular targets. The constitutively activated v-ras oncogene induces dedifferentiation in thyroid cells. v-Ras appears to act by stimulating protein kinase C (PKC), which inhibits the nuclear migration of the catalytic subunit of the cAMP-dependent protein kinase A (PKA). Nuclear tissue-specific and housekeeping trans-acting factors that are dependent on phosphorylation by PKA are thus inactivated. Exclusion of the PKA subunit from the nucleus could represent a general mechanism for the pleiotropic effects of Ras and PKC on cellular growth and differentiation.  相似文献   

10.
11.
12.
Hepatoblastoma (HBL) is the most common malignant liver tumor in children. Since tumor suppressor p53 is rarely mutated in HBL, it remains unknown whether p53 could contribute to the hepatocarcinogenesis. In the present study, we have found for the first time that, like neuroblastoma (NBL), wild-type p53 was abnormally accumulated in the cytoplasm of the human HBL-derived Huh6 cells. In accordance with this notion, immunohistochemical analysis demonstrated that p53 is largely expressed in cytoplasm of human primary HBLs. In response to the oxidative stress, Huh6 cells underwent apoptotic cell death in association with the nuclear translocation of p53 and the transactivation of its target gene implicated in apoptotic cell death. siRNA-mediated knockdown of the endogenous p53 conferred the resistance of Huh6 cells to oxidative stress. Intriguingly, histone deacetylase inhibitor (nicotinamide) treatment strongly inhibited the oxidative stress-induced nuclear translocation of p53 as well as the p53-dependent apoptosis in Huh6 cells. In contrast to the previous observations, the cytoplasmic anchor protein for p53 termed Parc had undetectable effect on the cytoplasmic retention of p53. Collectively, our present results suggest that the abnormal cytoplasmic localization of p53 might contribute at least in part to the development of HBL.  相似文献   

13.
T cell activation is supposed to require two signals via the TCR and a co-stimulatory molecule. However, the signaling cascade of co-stimulatory molecules has remained elusive. Here we provide evidence that CD44, which is constitutively associated with Ick and fyn, supports proliferation as well as apoptosis mainly, if not exclusively, by enhancing signal transduction via the TCR/CD3 complex. Antigenic stimulation of a T helper line in the presence of a CD44 receptor globulin was accompanied by a significant decrease in IL-2 production. To evaluate the underlying mechanism, CD44 was cross-linked via an immobilized antibody (IM-7). Cross-linking of CD44 induces proliferation of peripheral T cells and apoptosis of thymocytes and a T helper line in the presence of subthreshold levels of anti-CD3. Several proteins are rapidly tyrosine phosphorylated; erk and c-jun are strongly activated; expression of CD69 and CD25 is up-regulated on mature T cells; and expression of CD95 and CD95L is up-regulated on the T helper line. All these phenomena become less dependent of CD44 in the presence of high amounts of anti-CD3. Furthermore, cross-linking of CD44 is only effective when supporting co-localization of CD44 with the TCR/CD3 complex, since mixtures of beads coated with either anti-CD3 (low dose) or anti-CD44 do not induce T cell activation. These findings imply the rearrangement of adhesion molecules with apposition of protein kinases as a critical event for the initiation of signaling via the TCR/CD3 complex.  相似文献   

14.
N Matsubara  S Fuchimoto    K Orita 《Immunology》1991,73(4):457-459
In this study we investigated whether the anti-proliferative effect of tumour necrosis factor-alpha (TNF-alpha) was associated with the activation of protein kinase C (PKC), using PANC-1 cells (TNF-alpha sensitive) and LoVo cells (TNF-alpha resistant). In combination with 12-0-tetradecanoylphorbol-13-acetate (TPA), a potent activator of PKC, TNF-alpha caused marked inhibition of the growth of LoVo cells. Inhibition of PANC-1 cell growth by TNF-alpha was blocked by pretreatment with TPA for 24 hr, along with down-regulation of PKC activity. Intracellular translocation of PKC from cytosol to membrane was induced by TNF-alpha treatment in PANC-1 cells but not in LoVo cells.  相似文献   

15.
We tested recent evidence that ischemic preconditioning (PC) involves in translocation of protein kinase C (PKC) from the cytosol to myocyte membrane. Isolated Langendorff-perfused rabbit hearts (n=96) were subjected to 60 or 45 min of ischemia (I) and 120 min of reperfusion (R) with or without PC (4 cycles of 5 min I and 5 min R; or single dose of 5 min I and 10 min R), respectively. Left ventricular function and infarct size (IS) were measured; myocardial cytosolic and membrane PKC activity were determined by 32P-gamma-ATP incorporation into PKC-specific peptide. PC enhanced improvement of functional recovery and reduced IS (26.9+/-1.4% versus 15.3+/-1.9%, p<0.01, in 60 min of I; 18.3+/-2.6% versus 8.6+/-2.5%, p<0.05, in 45 min of I); cytosolic PKC activity decreased 74% of total activity (p<0.05) both in 60 and 45 min of I; membrane PKC activity increased (1.7-fold of baseline, p<0.01, in 60 min of I; 1.8-fold, p<0.01, in 45 min of I; 1.5-fold, p<0.05, in 60 of min I and 120 min of R). From these results, it is concluded that translocation of PKC from the cytosol to myocyte membranes is an important mechanism responsible for PC effect.  相似文献   

16.
Engagement of the TCR by specific antigen results in activation of a tyrosine kinase pathway. A candidate for the kinase responsible for the rapid tyrosine phosphorylation detected with T cell activation is p60fyn, a member of the src kinase family. In an earlier study [Samelson et al. (1990) Proc. Natl Acad. Sci. USA 87:4358] this enzyme was co-immunoprecipitated with the TCR from T cells solubilized in digitonin. In that study a sensitive in vitro kinase assay was used to detect the associated p60fyn. It was subsequently found that the reproducibility of the interaction depended on lot-to-lot variations in digitonin. To eliminate the possibility that the association of antigen receptor and kinase is an artifact of solubilization with ill-defined digitonin preparations, a cross-linking protocol was developed to stabilize the interaction between the TCR and p60fyn. T cells were permeabilized with tetanolysin and proteins were cross-linked with the water soluble chemical cross-linker, 3,3' dithiobis(sulfosuccinimidylpropionate). These experiments allowed the confirmation of the interaction between the TCR, p60fyn, and several additional proteins. The cross-linking studies also enabled the mapping of the interaction of p60fyn and associated proteins to the TCR zeta-chain. This technique should have a general use in stabilizing interactions between other receptors and molecules required for intracellular signaling.  相似文献   

17.
Macrophages (Mφ) and dendritic cells are the major target cell populations of the obligate intracellular parasite Leishmania. Inhibition of host cell apoptosis is a strategy employed by multiple pathogens to ensure their survival in the infected cell. Leishmania promastigotes have been shown to protect Mφ, neutrophils, and dendritic cells from both natural and induced apoptosis. Nevertheless, the effect of the infection with Leishmania amastigotes in the apoptosis of these cell populations has not been established, which results are very important since amastigotes persist in cells for many days and are responsible for sustaining infection in the host. As shown in this study, apoptosis of monocyte-derived dendritic cells (moDC) induced by treatment with camptothecin was downregulated by infection with L. mexicana amastigotes from 42.48 to 36.92 % as detected by Annexin-V binding to phosphatidylserine. Also, the infection of moDC with L. mexicana amastigotes diminished the fragmentation of DNA as detected by terminal deoxynucleotidyl transferase-mediated fluorescein-dUTP nick end labeling assay, and changes in cell morphology were analyzed by electron microscopy. The observed antiapoptotic effect was found to be associated with an 80 % reduction in the presence of active caspase-3 in infected moDC. The capacity of L. mexicana amastigotes to delay apoptosis induction in the infected moDC may have implications for Leishmania pathogenesis by favoring the invasion of its host and the persistence of the parasite in the infected cells.  相似文献   

18.
Ingestion of Histoplasma capsulatum yeast cells inhibits the oxidative burst response of murine macrophages (M phi's). Since protein kinase C (PKC) is believed to be an integral part of the signal transduction pathway involved in the production of reactive oxygen intermediates, we investigated the relationship between PKC activity and oxidative burst inhibition in H. capsulatum-containing murine peritoneal M phi's. An inhibitory effect on both basal and phorbol myristate acetate-mobilized membrane PKC activities was observed in M phi's which had ingested H. capsulatum but not latex spheres. These results suggest that one way in which H. capsulatum may disrupt the oxidative burst is through a PCK-dependent mechanism.  相似文献   

19.
The intracellular signaling pathways activated upon ligation of the co-stimulatory receptor CD28 remain relatively ill-defined, although CD28 ligation does result in the strong association with, and activation of, phosphatidylinositol (PI) 3-kinase. The downstream effector targets of the CD28-activated PI 3-kinase-dependent signaling pathway remain poorly defined, but recent evidence from other systems has shown that Akt/protein kinase B (PKB) is a major target of PI 3-kinase and have indicated that a major function of PKB is the regulation of cell survival events. Given the strong coupling of CD28 to PI 3-kinase and the known protective effects of both CD28 and PI 3-kinase against apoptosis in different cell models, we investigated the effects of CD28 on PKB activation. We demonstrate that ligation of CD28 by either anti-CD28 monoclonal antibodies or the natural ligand B7.1, results in the marked activation of PKB in both the leukemic T cell line Jurkat and freshly isolated human peripheral blood-derived normal T lymphocytes. Our data suggest therefore, that PKB may be an important intracellular signal involved in CD28 signal transduction and demonstrate CD28 coupling to downstream elements of a signaling cascade known to promote cell survival.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号