共查询到20条相似文献,搜索用时 15 毫秒
1.
H Bergstrand B Lundquist K Karabelas P Michelsen 《The Journal of pharmacology and experimental therapeutics》1992,260(3):1028-1037
To assess possible involvement of protein kinase C (PKC) in human basophil degranulation, the present work compared effects of various purported PKC inhibitors on leukocyte histamine release triggered by different stimuli. The effects recorded varied with the inhibitor and the secretagogue used; moreover, with a given secretagogue, different inhibitors often displayed different activities. Thus, histamine release triggered by the PKC activator 4 beta-phorbol 12-myristate 13-acetate was blocked by K252a, staurosporine and the purported specific PKC inhibitor Ro 31-7549, and reduced by calphostin C, H-7, TMB-8 and W-7 but not affected by polymyxin B; it was augmented by 2.1 microM palmitoyl carnitine. The leukocyte response induced by another putative activator of PKC, 1,2-isopropylidene-3-decanoyl-sn-glycerol, was also enhanced by 2.1 microM palmitoyl carnitine, slightly increased by staurosporine, TMB-8 and W-7 but not affected by calphostin C, H-7, K252a or Ro 31-7549, whereas the hyperosmolar mannitol-induced response was reduced by H-7, calphostin C, TMB-8 and W-7 and slightly augmented by staurosporine. Anti-IgE-induced histamine release was blocked by staurosporine and K252a and reduced by calphostin C, sphingosine, TMB-8 and W-7 but not affected by H-7, polymyxin B or retinal. It was enhanced by Ro 31-7549. In contrast, leukocyte histamine release induced by calcium ionophore A23187 or by ionomycin was blocked by retinal, TMB-8 and W-7 and reduced by calphostin C and palmitoyl carnitine but enhanced by H-7, staurosporine and polymyxin B; K252a and Ro 31-7549 did not affect such responses. Formyl-methionyl-leucyl-phenylalanine-triggered histamine release was barely affected by any agent used. Thus, the specific PKC inhibitor Ro 31-7549 selectively blocked 4 beta-phorbol 12-myristate 13-acetate-triggered leukocyte histamine release. These results imply that examined secretagogues trigger human leukocyte histamine release through partly separate pathways probably involving different kinase activities (PKC isozymes?). Moreover, the distinct effect patterns recorded for most purported PKC inhibitors imply a functional selectivity between these compounds. 相似文献
2.
Huang M Wang Y Cogut SB Mitchell BS Graves LM 《The Journal of pharmacology and experimental therapeutics》2003,304(2):753-760
Recently we reported that the pyridinylimidazole class of p38 mitogen-activated protein (MAP) kinase inhibitors potently inhibited the facilitated transport of nucleosides and nucleoside analogs in K562 cells. These compounds competed with the binding of nitrobenzylthioinosine (NBMPR) to K562 cells, consistent with inhibition of the NBMPR-sensitive equilibrative transporter (ENT1). In this study we examined a large number of additional protein kinase inhibitors for their effects on nucleoside transport. We find that incubation of K562 cells with tyrosine kinase inhibitors (AG825, AG1517, AG1478, STI-571), protein kinase C (PKC) inhibitors (staurosporine, GF 109203X, R0 31-8220, arcyriarubin A), cyclin-dependent kinase inhibitors (roscovitine, olomoucine, indirubin-3'-monoxime), or rapamycin resulted in a dose-dependent reduction of intracellular uptake of [3H]uridine. In contrast, neither the MAP kinase kinase inhibitors (U0126, PD 98059) nor the phosphatidyl inositol-3 kinase inhibitors (wortmannin, LY 294002) affected this process. Furthermore, both transient uptake and prolonged [3H]thymidine incorporation in K562 cells were inhibited by protein kinase inhibitors, inactive analogs of kinase inhibitors (R0 31-6045, SB202474), and NBMPR, independently of effects on cell proliferation as determined by MTT assay. These studies demonstrate that a wide variety of protein kinase inhibitors affect nucleoside uptake through selective inhibition of nucleoside transporters, independently of kinase inhibition. 相似文献
3.
4.
M A Alaoui-Jamali 《Biomedicine & Pharmacotherapy》2006,60(9):629-632
Protein kinases, including tyrosine kinases, are one of the largest classes of proteins implicated in cancer development and progression. Recent discovery of selective therapies targeting tyrosine kinase receptor signaling has provided encouraging clinical results. Clinical trials with anti-EGFR, anti-ErbB2/Her2, anti-Bcr-Abl and others have demonstrated the clinical utility of tyrosine kinases as therapeutic targets and as surrogate markers to guide the selection of patients susceptible to respond to treatment. This success has been tempered in part because resistance to targeted therapies is now documented to occur in experimental models and in patients, which hampers therapeutic efficacy. Mechanisms of resistance include cell heterogeneity in target expression, mutations in target's encoding genes, and compensatory signaling mechanisms. This paper provides a brief overview on the diversity of tyrosine kinase signaling and the impact on cancer cell response to targeted tyrosine kinase inhibitors. 相似文献
5.
Ding Y Boguslawski EA Berghuis BD Young JJ Zhang Z Hardy K Furge K Kort E Frankel AE Hay RV Resau JH Duesbery NS 《Molecular cancer therapeutics》2008,7(3):648-658
We hypothesized that signaling through multiple mitogen-activated protein kinase (MAPK) kinase (MKK) pathways is essential for the growth and vascularization of soft-tissue sarcomas, which are malignant tumors derived from mesenchymal tissues. We tested this using HT-1080, NCI, and Shac fibrosarcoma-derived cell lines and anthrax lethal toxin (LeTx), a bacterial toxin that inactivates MKKs. Western blots confirmed that LeTx treatment reduced the levels of phosphorylated extracellular signal-regulated kinase and p38 MAPK in vitro. Although short treatments with LeTx only modestly affected cell proliferation, sustained treatment markedly reduced cell numbers. LeTx also substantially inhibited the extracellular release of angioproliferative factors including vascular endothelial growth factor, interleukin-8, and basic fibroblast growth factor. Similar results were obtained with cell lines derived from malignant fibrous histiocytomas, leiomyosarcomas, and liposarcomas. In vivo, LeTx decreased MAPK activity and blocked fibrosarcoma growth. Growth inhibition correlated with decreased cellular proliferation and extensive necrosis, and it was accompanied by a decrease in tumor mean vessel density as well as a reduction in serum expression of angioproliferative cytokines. Vital imaging using high-resolution ultrasound enhanced with contrast microbubbles revealed that the effects of LeTx on tumor perfusion were remarkably rapid (<24 h) and resulted in a marked reduction of perfusion within the tumor but not in nontumor tissues. These results are consistent with our initial hypothesis and lead us to propose that MKK inhibition by LeTx is a broadly effective strategy for targeting neovascularization in fibrosarcomas and other similar proliferative lesions. 相似文献
6.
Wang H Lin L Jiang J Wang Y Lu ZY Bradbury JA Lih FB Wang DW Zeldin DC 《The Journal of pharmacology and experimental therapeutics》2003,307(2):753-764
Cytochrome P450 (P450)-dependent metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs), are proposed to be endothelium-derived hyperpolarizing factors (EDHF) that affect vascular tone; however, the effects of EDHF on endothelial-derived nitric oxide biosynthesis remain unknown. We examined the regulation of endothelial nitric-oxide synthase (eNOS) by EDHF and investigated the relevant signaling pathways involved. The P450 epoxygenases CYP102 F87V mutant, CYP2C11-CYPOR, and CYP2J2 were transfected into cultured bovine aortic endothelial cells, and the effects of endogenously formed or exogenously applied EETs on eNOS expression and activity were assessed. Transfection with the P450 epoxygenases led to increased eNOS protein expression, an effect that was attenuated by cotreatment with the P450 inhibitor 17-ODYA. Northern analysis demonstrated that P450 transfection led to increased eNOS mRNA levels consistent with an effect at the pretranslational level. P450 epoxygenase transfection resulted in increased eNOS activity as measured by the conversion of L-arginine to L-citrulline. Addition of synthetic EETs (50-200 nM) to the culture media also increased eNOS expression and activity. Treatment with mitogen-activated protein kinase (MAPK), MAPK kinase, and protein kinase C inhibitors apigenin, 2'-amino-3'-methoxyflavone (PD98059), and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), respectively, significantly inhibited the effects of P450 transfection on eNOS expression. Overexpression of P450 epoxygenases or addition of synthetic EETs increased Thr495 phosphorylation of eNOS, an effect that was inhibited by both apigenin and PD98059. Overexpression of P450 epoxygenases in rats resulted in increased aortic eNOS expression, providing direct evidence that EDHF can influence vascular eNOS levels in vivo. Based on this data, we conclude that EDHF up-regulates eNOS via activation of MAPK and protein kinase C signaling pathways. 相似文献
7.
蛋白激酶CK2是一种真核细胞中普遍存在的信使非依赖性丝 /苏氨酸蛋白激酶 ,其主要功能是作为参与细胞信号转导的一种重要分子 ,通过对底物的磷酸化而在细胞增殖和分化、信号的转导和加工、细胞凋亡等方面起重要作用。针对CK2的抑制剂的研究也取得了很大进展 ,CK2的抑制剂在探讨CK2的作用机制及在治疗某些类型的肿瘤和促进细胞凋亡方面越来越引起人们的关注。本文就蛋白激酶CK2的抑制剂的研究及应用作一综述 相似文献
8.
Modulation of skeletal muscle sodium channels by human myotonin protein kinase. 总被引:5,自引:1,他引:5 下载免费PDF全文
J P Mounsey P Xu J E John rd L T Horne J Gilbert A D Roses J R Moorman 《The Journal of clinical investigation》1995,95(5):2379-2384
In myotonic muscular dystrophy, abnormal muscle Na currents underlie myotonic discharges. Since the myotonic muscular dystrophy gene encodes a product, human myotonin protein kinase, with structural similarity to protein kinases, we tested the idea that human myotonin protein kinase modulates skeletal muscle Na channels. Coexpression of human myotonin protein kinase with rat skeletal muscle Na channels in Xenopus oocytes reduced the amplitude of Na currents and accelerated current decay. The effect required the presence of a potential phosphorylation site in the inactivation mechanism of the channel. The mutation responsible for human disease, trinucleotide repeats in the 3' untranslated region, did not prevent the effect. The consequence of an abnormal amount of the kinase would be altered muscle cell excitability, consistent with the clinical finding of myotonia in myotonic dystrophy. 相似文献
9.
Lipid A is the toxic principle of lipopolysaccharide of gram-negative bacteria, which causes a spectrum of changes in blood cells and vascular cells. We now report that human platelets are directly stimulated by endotoxic lipid A that activates protein kinase C. Rapid phosphorylation of a human platelet protein of Mr 47,000, a marker of protein kinase C activation, accompanies secretion of [14C]serotonin and aggregation triggered by endotoxic lipid A. These events are time and concentration dependent, with phosphorylation reaching maximum in 2 min and the concentration of lipid A causing a 50% effect (EC50) between 12 and 15 microM. Phospholipase C activation in lipid A-stimulated platelets was not observed as judged by a lack of generation of [3H]diacylglycerol in [3H]arachidonic acid-labeled platelets and a lack of generation of [32P]-phosphatidic acid in 32PO4-labeled platelets. Lipid A did not induce formation of TXA2 as measured by radioimmunoassay for TXB2. The stimulation of human platelets and activation of protein kinase C by endotoxic lipid A was blocked by lipid X, a structural precursor of lipid A. Lipid X also blocked the stimulation of human platelets by phorbol 12-myristate 13-acetate, suggesting that lipid A, lipid X and phorbol ester share reactive site(s) on the human platelet membrane. Although lipid X inhibited thrombin-induced phosphorylation of P47 it did not suppress secretion of [14C]serotonin, indicating the role of protein kinase C-independent pathways in platelet stimulation by thrombin. The inhibitory effect of lipid X did not involve generation of cyclic AMP in human platelet membrane preparations. These results indicate that human platelets are stimulated by endotoxic lipid A, a naturally occurring biologic modifier of protein kinase C. Due to the widespread presence of this enzyme in blood cells, vascular cells, and neurons, its modulation by lipid A may represent a significant mechanism underlying hematologic and circulatory derangements observed in endotoxic shock in humans. 相似文献
10.
AMP-activated protein kinase (AMPK) is an energy sensor that regulates cellular metabolism. When activated by a deficit in nutrient status, AMPK stimulates glucose uptake and lipid oxidation to produce energy, while turning off energy-consuming processes including glucose and lipid production to restore energy balance. AMPK controls whole-body glucose homeostasis by regulating metabolism in multiple peripheral tissues, such as skeletal muscle, liver, adipose tissues, and pancreatic beta cells--key tissues in the pathogenesis of type 2 diabetes. By responding to diverse hormonal signals including leptin and adiponectin, AMPK serves as an intertissue signal integrator among peripheral tissues, as well as the hypothalamus, in the control of whole-body energy balance. 相似文献
11.
OBJECTIVE: Persistent pulmonary hypertension of the newborn is characterized by the presence of intense vasoconstriction and vascular remodeling. Protein tyrosine phosphorylation has been recognized as a critical regulatory element in signal transduction, because it is dynamically regulated by the opposing actions of protein tyrosine kinases and protein tyrosine phosphatases. The objectives of this study were to investigate the role of protein kinase C and phosphatases in the neonatal pulmonary vasculature of normoxic and chronically hypoxic piglets. DESIGN: Prospective, randomized, unblinded study. SETTING: Hospital research laboratory. SUBJECTS: Newborn Yorkshire-Landrace piglets. INTERVENTIONS: Normoxic animals were 3-6 days old. Hypoxic animals were exposed to hypoxia (Fio2 0.10) between 1 and 15 days of age to induce pulmonary hypertension and then were studied. MEASUREMENTS AND MAIN RESULTS: In isolated perfused lungs from normoxic piglets, we measured the perfusion pressure to assess the vasoconstrictor response to protein kinase C activation with phorbol 12,13-dibutyrate or 1-oleyl-2-acetyl-glycerol. We also assessed the effect of protein kinase C inhibition with staurosporine (2 x 10-6M) and chelerythrine (5 x 10-5M) on endothelin-1-induced pulmonary vasoconstriction. We then examined the effect of chelerythrine and phosphatase inhibition with phenylarsine oxide on the baseline perfusion pressure of normoxic and chronically hypoxic piglets. Phorbol 12,13-dibutyrate and 1-oleyl-2-acetyl-glycerol caused a sustained, dose-dependent increase in perfusion pressure, with relative potencies about 100- and 1000-fold less than endothelin-1, respectively. Protein kinase C inhibitors, chelerythrine and staurosporine, decreased the constrictor response to endothelin-1. Chelerythrine did not affect baseline perfusion pressure in the normoxic animal, whereas it lowered pulmonary vascular tone in chronically hypoxic animals. With respect to phosphatases, phenylarsine oxide significantly increased perfusion pressure in normoxia as well as in hypoxia. CONCLUSIONS: These findings confirm that protein kinase C activation causes sustained vasoconstriction in the neonatal pulmonary vasculature and mediates the vasoconstrictor action of potent peptides, like endothelin-1. These findings also confirm that protein kinase C activation could be induced by hypoxic exposure in the neonatal piglet pulmonary vasculature. Phosphatases appear to modulate pulmonary vascular tone in the normoxic and hypoxic newborn piglet. 相似文献
12.
During the course of generating derivatives of N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide, a synthetic calmodulin inhibitor, we came across several analogues with shorter alkyl chains that exhibited inhibition of serine/threonine protein kinase activities in an ATP-competitive manner. Certain derivatives proved to be selective inhibitors of protein kinases useful for elucidation of relevant functions of the enzymes. One of them turned out to be a unique vasodilator that preferentially suppresses delayed cerebral vasospasm, a critical complication of subarachnoid hemorrhage, without significant changes in systemic blood pressure. The compound in question, 1-(5-isoquinolinesulfonyl)-homopiperazine, was identified from sequential development of protein kinase inhibitors with isoquinolinesulfonyl structures, which occupy the adenine pocket of the ATP-binding site of the enzyme. It recently has been proposed that the target kinase responsible for vasodilation by 1-(5-isoquinolinesulfonyl)-homopiperazine may be Rho-kinase, which regulates phosphorylation of myosin light chains and vasocontraction. Because protein phosphorylation plays important roles in regulation of various cellular functions, the foregoing is a good example of current progress in the development of protein kinase inhibitors with potential clinical applications. 相似文献
13.
H Bergstrand T Eriksson A Hallberg B Johansson K Karabelas P Michelsen A Nybom 《The Journal of pharmacology and experimental therapeutics》1992,263(3):1334-1346
To assess the role of protein kinase C (PKC) in the respiratory burst of adherent human polymorphonuclear leukocytes (PMNL), reduction of ferricytochrome C by cells triggered with a phorbol ester (PMA), ionophore A23187, serum-treated zymosan (STZ) or three lipid derivatives, 3-decanoyl-sn-glycerol (G-3-OCOC9), (R,R)-1,4-diethyl-2-O-decyl-L-tartrate (Tt-2-OC10) and 3-decyloxy-5-hydroxymethylphenol (DHP) was examined in a microtiter plate procedure in the presence of inhibitors of PKC and, for comparison, inhibitors of calmodulin, diacylglycerol and myosin light chain kinases and the peptidyl-prolyl cis-trans isomerase activity of fujiphilin. 1) Of the protein kinase inhibitors examined, Ro 31-7549 and staurosporine reduced responses to all stimuli except possibly STZ; in contrast, K252a and the myosin light chain kinase inhibitors ML-7 and ML-9 blocked responses to A23187 and STZ better than those triggered by PMA. H-7 reduced responses to A23187, DHP and G-3-OCOC9, and calphostin, palmitoyl carnitine, sphingosine and the multifunctional drugs TMB-8 and W-7 reduced A23187; they also, when examined, reduced decane derivative-induced O2- production more effectively than PMA- and STZ-triggered responses. Polymyxin B, 4 alpha-PMA and retinal displayed no inhibitory capacity. 2) Of the selective calmodulin antagonists, CGS 9343B, Ro 22-4839 and calmidazolium did not inhibit the oxidative response irrespective of the stimulus used, whereas metofenazate reduced those evoked by A23187, DHP, G-3-OCOC9 and STZ.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
14.
Small molecule inhibitors of tumor-promoted angiogenesis, including protein tyrosine kinase inhibitors. 总被引:1,自引:0,他引:1
Angiogenesis is an exciting and promising new area of research. The concept that tumor cells are absolutely dependent upon neovascularization to grow and metastasize has opened the door to a multitude of new approaches and targets for developing anticancer therapies. These potential new antiangiogenic therapies offer the possibility for improved efficacy and reduced toxicity relative to conventional cancer treatments without the possibility of drug resistance. In particular, reports of small molecule inhibitors of tumor-promoted angiogenesis are appearing ever more frequently in the scientific literature. For this reason, the major focus of this review will be to cover small molecule inhibitors of tumor-promoted angiogenesis. The present review concentrates on selected literature, principally from mid-1996 to mid-1998, where there are sufficient biological data to support claims of antiangiogenic activities by small molecules. In addition, a historical background is presented and some of the important issues related to this field are discussed within. 相似文献
15.
16.
TGF-beta is known to inhibit many of the immune cell functions including T cell proliferation and IL-2 production. The mechanism of such TGF-beta-mediated inhibition of T cell functions is poorly understood. The present study examined the effects of TGF-beta on the activation of protein tyrosine kinases (PTK) P56lck, P59fyn, and Zap-70, and protein tyrosine phosphatases (PTP) SHP-1 and SHP-2. A balance between the actions of PTK and PTP is critical for appropriate T cell activation. These studies were carried out using nylon wool-purified splenic T cells from healthy Sprague-Dawley rats. Results from these studies showed that incubation of T cells with TGF-beta inhibited the activation of P56lck, P59fyn and Zap-70. The decrease in these three protein tyrosine kinases was accompanied by an increase in the activation of the protein tyrosine phosphatase SHP-1. There was no change in the phosphorylation of SHP-2 with and without pretreatment of T cells with TGF-beta. The decrease in P56lck, P59fyn kinase activity, and Zap-70 phosphorylation was prevented when T cells were stimulated with anti-CD3 in the presence of pervanadate, an inhibitor of PTP. These results suggested that TGF-beta-mediated inhibition of P56lck, P59fyn, and Zap-70 is likely due to an up-regulation of protein tyrosine phosphatases such as SHP-1. 相似文献
17.
Structural studies with inhibitors of the cell cycle regulatory kinase cyclin-dependent protein kinase 2 总被引:2,自引:0,他引:2
Johnson LN De Moliner E Brown NR Song H Barford D Endicott JA Noble ME 《Pharmacology & therapeutics》2002,93(2-3):113-124
Components of the cell cycle machinery are frequently altered in cancer. Many of these alterations affect the cyclin-dependent kinases (CDKs) and their regulation. Staurosporine and 7-hydroxystaurosporine (UCN-01) are two natural product kinase inhibitors originally identified as potent protein kinase C inhibitors. Staurosporine is non-selective and too toxic for use in therapy, but UCN-01 shows greater selectivity, and is in clinical trials. We have determined the crystal structures of staurosporine bound to monomeric CDK2 and UCN-01 bound to active phospho-CDK2/cyclin A. Both compounds mimic the hydrogen bonds made by the adenine moiety of ATP, and both exploit the non-polar nature of the adenine-binding site. In the complex with UCN-01, a hydrogen-bonded water molecule is incorporated into the non-polar cavity, which provides a partial polar character in the environment of the 7-hydroxyl group. Comparison of the ATP-binding site of CDK2 with that of other kinases reveals that in Chk1 kinase, a major target for UCN-01 in the cell, one of the surrounding residues, Ala144 in CDK2, is a serine in Chk1, thus providing a possible explanation for the effectiveness of UCN-01 against this kinase. For cells to exit mitosis, the CDKs must be completely inactivated, firstly by the ubiquintin-mediated destruction of the cyclins, followed by dephosphorylation of phospho-Thr160 (in CDK2) catalysed by the kinase-associated phosphatase and protein phosphatase 2C. We describe the structure of phospho-CDK2 in complex with kinase-associated phosphatase, and discuss the substrate recognition promoted by interactions that are remote from the catalytic site. 相似文献
18.
Vogt A McDonald PR Tamewitz A Sikorski RP Wipf P Skoko JJ Lazo JS 《Molecular cancer therapeutics》2008,7(2):330-340
Mitogen-activated protein kinase phosphatase (MKP)-1 is a dual-specificity phosphatase that negatively regulates the activity of mitogen-activated kinases and that is overexpressed in human tumors. Contemporary studies suggest that induction of MKP-1 during chemotherapy may limit the efficacy of clinically used antineoplastic agents. Thus, MKP-1 is a rational target to enhance anticancer drug activity, but suitable small-molecule inhibitors of MKP-1 are currently unavailable. Here, we have used a high-content, multiparameter fluorescence-based chemical complementation assay for MKP activity in intact mammalian cells to evaluate the cellular MKP-1 and MKP-3 inhibitory activities of four previously described, quinone-based, dual-specificity phosphatase inhibitors, that is, NSC 672121, NSC 95397, DA-3003-1 (NSC 663284), and JUN-1111. All compounds induced formation of reactive oxygen species in mammalian cells, but only one (NSC 95397) inhibited cellular MKP-1 and MKP-3 with an IC(50) of 13 mumol/L. Chemical induction of MKP-1 by dexamethasone protected cells from paclitaxel-induced apoptosis but had no effect on NSC 95397. NSC 95397 phenocopied the effects of MKP-1 small inhibitory RNA by reversing the cytoprotective effects of dexamethasone in paclitaxel-treated cells. Isobologram analysis revealed synergism between paclitaxel and NSC 95397 only in the presence of dexamethasone. The data show the power of a well-defined cellular assay for identifying cell-active inhibitors of MKPs and support the hypothesis that small-molecule inhibitors of MKP-1 may be useful as antineoplastic agents under conditions of high MKP-1 expression. 相似文献
19.
Fukazawa H Noguchi K Masumi A Murakami Y Uehara Y 《Molecular cancer therapeutics》2004,3(10):1281-1288
Loss of contact with substratum triggers apoptosis in many normal cell types, a phenomenon termed anoikis. We reported previously that mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) inhibitors induced apoptosis in nonanchored MDA-MB231 and HBC4 human breast cancer cells, whereas anchored cells remained viable. Here, we report that activation of the BH3-only protein BimEL is the major mechanism for induction of anoikis sensitivity by MEK inhibitors in MDA-MB231 and HBC4 cells. On treatment with MEK inhibitors, BimEL in MDA-MB231 and HBC4 cells rapidly increased, irrespective of the state of anchorage. However, it translocated to mitochondria only in nonanchored cells, explaining why attached cells remain viable. MDA-MB231 and HBC4 cells had exceedingly low basal levels of BimEL compared with other breast cancer cells, suggesting that maintenance of low BimEL amount is important for survival of these cells. MEK inhibitors also induced the electrophoretic mobility shift of BimEL, indicative of reduced phosphorylation. In vitro, BimEL was phosphorylated by extracellular signal-regulated kinase on Ser(69), which resides in the BimEL-specific insert region. Using phosphospecific antibody against this site, we show that this residue is actually phosphorylated in cells. We also show that phosphorylation of Ser(69) promotes ubiquitination of BimEL. We conclude that MEK inhibitors sensitize MDA-MB231 and HBC4 cells to anoikis by blocking phosphorylation and hence degradation of BimEL, a mechanism that these cells depend on to escape anoikis. 相似文献
20.
Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance 总被引:5,自引:1,他引:5 下载免费PDF全文
Babitt JL Huang FW Xia Y Sidis Y Andrews NC Lin HY 《The Journal of clinical investigation》2007,117(7):1933-1939
Systemic iron balance is regulated by hepcidin, a peptide hormone secreted by the liver. By decreasing cell surface expression of the iron exporter ferroportin, hepcidin decreases iron absorption from the intestine and iron release from reticuloendothelial stores. Hepcidin excess has been implicated in the pathogenesis of anemia of chronic disease, while hepcidin deficiency has a key role in the pathogenesis of the iron overload disorder hemochromatosis. We have recently shown that hemojuvelin is a coreceptor for bone morphogenetic protein (BMP) signaling and that BMP signaling positively regulates hepcidin expression in liver cells in vitro. Here we show that BMP-2 administration increases hepcidin expression and decreases serum iron levels in vivo. We also show that soluble hemojuvelin (HJV.Fc) selectively inhibits BMP induction of hepcidin expression in vitro and that administration of HJV.Fc decreases hepcidin expression, increases ferroportin expression, mobilizes splenic iron stores, and increases serum iron levels in vivo. These data support a role for modulators of the BMP signaling pathway in treating diseases of iron overload and anemia of chronic disease. 相似文献