首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mice that are homozygous for the autosomal recessive motheaten allele (me/me) lack the protein tyrosine phosphatase SHP-1. Loss of SHP-1 leads to many hematopoietic abnormalities, as well as defects such as infertility and low body weight. However, little is known regarding the role SHP-1 plays in the development of the central nervous system (CNS). To define the role of SHP-1 in CNS development and differentiation, we examined the brains of me/me mice at various times after birth for neuronal and glial abnormalities. Although the brains of me/me mice are slightly smaller than age-matched wild-type littermates, both me/me and wild-type brains are similar in weight, possess an intact blood-brain barrier, and have largely normal neuronal architecture. Significantly, the current study reveals that me/me brain shows decreases in the number of glial fibriallary acidic protein (GFAP)+ astrocytes and F480+ microglia compared with wild-type mice. In addition, decreased immunostaining for the myelin-synthesizing enzyme CNPase was observed in me/me mice, confirming the loss of myelin in these animals, as reported (Massa et al. [2000] Glia 29:376-385). It is particularly significant that there is a decreased number of immunolabeled glia of all subtypes and that this deficit in glial number is not restricted to a particular class of glia. This suggests that SHP-1 is necessary for the normal differentiation and distribution of astrocytes, microglia, and oligendrocytes within the murine CNS.  相似文献   

2.
The role of the tyrosine phosphatase SHP-1 in the hematopoietic system has been well studied; however, its role in the central nervous system (CNS) response to injury is not well understood. Previous studies in our laboratory have demonstrated increased immunoreactivity for SHP-1 in a subset of reactive astrocytes that do not appear to enter the cell cycle following deafferentation of the chicken auditory brainstem. In order to determine whether mammalian astrocytes also upregulate SHP-1 immunoreactivity following CNS injury, a mouse model of focal cerebral ischemia was utilized to study SHP-1 expression. The brains of 3-week-old mice were analyzed at four time points following permanent middle cerebral artery occlusion (MCAO): 1, 3, 7, and 14 days. Our results demonstrate consistent infarct volumes within surgical groups, and infarct volumes decrease as a function of time from 1 day (maximum infarct volume) to 14 days (minimum infarct volume) post-MCAO. In addition, SHP-1 protein levels are upregulated following cerebral ischemia and this increase peaks at 7 days post-MCAO. Analysis of confocal images further reveals that immunoreactivity for SHP-1 occurs predominantly in GFAP+ reactive astrocytes, although a small percentage of F4-80+ microglia are also double labeled for SHP-1 at early times post-MCAO. These SHP-1+ reactive astrocytes do not appear to enter the cell cycle (as defined by PCNA immunoreactivity), confirming our previous studies in the avian auditory brainstem. These results suggest that SHP-1 plays an important role in the regulation of glial activation and proliferation in the ischemic CNS.  相似文献   

3.
High susceptibility to cerebral ischemia in GFAP-null mice.   总被引:22,自引:0,他引:22  
Astrocytes perform a variety of functions in the adult central nervous system (CNS) that contribute to the survival of neurons. Thus, it is likely that the activities of astrocytes affect the extent of brain damage after ischemic stroke. The authors tested this hypothesis by using a mouse ischemia model to compare the infarct volume produced in wild-type mice with that produced in mice lacking glial fibrillary acidic protein (GFAP), an astrocyte specific intermediate filament component. Astrocytes lacking GFAP have been shown to have defects in process formation, induction of the blood-brain barrier. and volume regulation; therefore, they might be compromised in their ability to protect the CNS after injury. The authors reported here that 48 hours after combined permanent middle cerebral artery occlusion (MCAO) and 15 minutes transient carotid artery occlusion (CAO) GFAP-null mice had a significantly (P < 0.001) larger cortical infarct volume (16.7 +/- 2.2 mm3) than their wild-type littermates (10.1 +/- 3.9 mm3). Laser-Doppler flowmetry revealed that the GFAP-null mice had a more extensive and profound decrease in cortical cerebral blood flow within 2 minutes after MCAO with CAO. These results indicated a high susceptibility to cerebral ischemia in GFAP-null mice and suggested an important role for astrocytes and GFAP in the progress of ischemic brain damage after focal cerebral ischemia with partial reperfusion.  相似文献   

4.
5.
Apolipoprotein E (ApoE) is a major apolipoprotein in the central nervous system (CNS) that plays an important role in Alzheimer's disease. It may also be involved in other CNS disorders including ischemic injury. We investigated the changes of ApoE protein and mRNA expression in the brain with middle cerebral artery occlusion (MCAO) to clarify its origin after focal ischemia in rats. Increased ApoE immunoreactivity was recognized in astrocytes 3-14 days after MCAO in the affected side of cortex, and in neurons 4-14 days after MCAO in the same area. ApoE immunoreactivity was also detected in macrophages in the ischemic core 3-14 days after MCAO. In contrast, ApoE mRNA was expressed in astrocytes and macrophages, but not in neurons. These results suggested that neuronal ApoE was not synthesized in neurons, but derived from astrocytes.  相似文献   

6.
7.
Inflammatory processes have been implicated in the pathogenesis of brain damage after stroke. In rodent stroke models, focal ischemia induces several proinflammatory chemokines, including monocyte chemoattractant protein-1 (MCP-1). The individual contribution to ischemic tissue damage, however, is largely unknown. To address this question, the authors subjected MCP-1-deficient mice (MCP-1-/-) to permanent middle cerebral artery occlusion (MCAO). Measurement of basal blood pressure, cerebral blood flow, and blood volume revealed no differences between wild-type (wt) and MCP-1-/- mice. MCAO led to similar cerebral perfusion deficits in wt and MCP-1-/- mice, excluding differences in the MCA supply territory and collaterals. However, compared with wt mice, the mean infarct volume was 29% smaller in MCP-1-/- mice 24 hours after MCAO (P = 0.022). Immunostaining showed a reduction of phagocytic macrophage accumulation within infarcts and the infarct border in MCP-1-/- mice 2 weeks after MCAO. At the same time point, the authors found an attenuation of astrocytic hypertrophy in the infarct border and thalamus in MCP-1-/- mice. However, these effects on macrophages and astrocytes in MCP-1-/- mice occurred too late to suggest a protective role in acute infarct growth. Of note: at 6 hours after MCAO, MCP-1-/- mice produced significantly less interleukin-1beta in ischemic tissue; this might be related to tissue protection. The results of this study indicate that inhibition of MCP-1 signaling could be a new acute treatment approach to limit infarct size after stroke.  相似文献   

8.
《Neurological research》2013,35(4):390-394
Abstract

Apolipoprotein E (ApoE) is a major apolipoprotein in the central nervous system (CNS) that plays an important role in Alzheimer's disease. It may also be involved in other CNS disorders including ischemic injury. We investigated the changes of ApoE protein and mRNA expression in the brain with middle cerebral artery occlusion (MCAO) to clarify its origin after focal ischemia in rats. Increased ApoE immunoreactivity was recognized in astrocytes 3-14 days after MCAO in the affected side of cortex, and in neurons 4-14 days after MCAO in the same area. ApoE immunoreactivity was also detected in macrophages in the ischemic core 3-14 days after MCAO. In contrast, ApoE mRNA was expressed in astrocytes and macrophages, but not in neurons. These results suggested that neuronal ApoE was not synthesized in neurons, but derived from astrocytes.  相似文献   

9.
Disruption of the blood‐brain barrier (BBB) following cerebral ischemia is closely related to the infiltration of peripheral cells into the brain, progression of lesion formation, and clinical exacerbation. However, the mechanism that regulates BBB integrity, especially after permanent ischemia, remains unclear. Here, we present evidence that astrocytic N‐myc downstream‐regulated gene 2 (NDRG2), a differentiation‐ and stress‐associated molecule, may function as a modulator of BBB permeability following ischemic stroke, using a mouse model of permanent cerebral ischemia. Immunohistological analysis showed that the expression of NDRG2 increases dominantly in astrocytes following permanent middle cerebral artery occlusion (MCAO). Genetic deletion of Ndrg2 exhibited enhanced levels of infarct volume and accumulation of immune cells into the ipsilateral brain hemisphere following ischemia. Extravasation of serum proteins including fibrinogen and immunoglobulin, after MCAO, was enhanced at the ischemic core and perivascular region of the peri‐infarct area in the ipsilateral cortex of Ndrg2‐deficient mice. Furthermore, the expression of matrix metalloproteinases (MMPs) after MCAO markedly increased in Ndrg2?/? mice. In culture, expression and secretion of MMP‐3 was increased in Ndrg2?/? astrocytes, and this increase was reversed by adenovirus‐mediated re‐expression of NDRG2. These findings suggest that NDRG2, expressed in astrocytes, may play a critical role in the regulation of BBB permeability and immune cell infiltration through the modulation of MMP expression following cerebral ischemia.  相似文献   

10.
Zhao J  Brooks DM  Lurie DI 《Glia》2006,53(3):304-312
Accumulating evidence suggests a deleterious role for activated microglia in facilitating neuronal death by producing neurocytotoxic substances during injury, infection, or neurodegenerative diseases. After cochlear ablation, abnormal microglial activation accompanied by increased neuronal loss within the auditory brainstem occurs in motheaten (me/me) mice deficient in the protein tyrosine phosphatase SHP-1. To determine whether abnormally activated microglia contribute to neuronal death in me/me mice, primary microglial cultures from me/me and wild-type mouse cortices were stimulated by the bacterial endotoxin lipopolysaccharide (LPS) to evaluate the secretion of the neurotoxic mediators nitric oxide (NO), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta). Me/me microglia release significantly greater amounts of all three mediators compared with wild-type microglia. However, the increased release of these compounds in microglia lacking SHP-1 does not appear to occur through activation of extracellular signal-regulated kinase (ERK), p38 kinase subgroups of mitogen-activated protein (MAP) kinases, or increases in NF-kappaB-inducing kinase (NIK). These results suggest that abnormal microglial activation and release of neurotoxic compounds may potentiate neuronal death in deafferented cells and can thus potentiate neurodegeneration in the me/me brainstem. Our data also indicate that SHP-1 is engaged in signaling pathways in LPS-activated microglia, but not through regulation of the ERK and p38 MAP kinases.  相似文献   

11.
12.
Permanent middle cerebral artery occlusion (MCAO) causes neurodegeneration and a robust activation of glial cells primarily in sensorimotor brain regions of rats. It has been shown that hyperbaric oxygen (HBO) increases oxygen supply to ischaemic areas and reduces neuronal cell loss. The effects of HBO treatment on microgliosis and astrogliosis in permanent cerebral ischaemia have not been addressed so far, but might be critical for neurodegeneration and neuroprotection, respectively. Therefore, we used spontaneously hypertensive rats with permanent MCAO to investigate the time window to start HBO and to compare the effects of different HBO treatment frequencies on infarct volume and on differences with regard to microgliosis and astrogliosis. Seven days after MCAO the infarct volume was calculated from Nissl-stained brain sections by image analysis. HBO significantly decreased the infarct volume when used as early as 15, 90 or 180 min post-MCAO by 24%, 16% and 13%, respectively, in the single-treatment group. Repetitive HBO treatment (first HBO session 90 min after MCAO) was not effective. Microglial cells and astrocytes were detected by cytochemical fluorescent labelling and confocal laser scanning microscopy. In the single-treatment group we observed significantly higher astrocyte immunoreactivity but decreased microglial density in the peri-infarct region. These effects of HBO treatment on glial cells were not present in rats where HBO did not reduce the infarct volume (360 min after MCAO). Our data indicate that HBO-induced suppression of microgliosis and aggravated response of astrocytes might contribute to the reported beneficial effects of early HBO treatment in cerebral ischaemia.  相似文献   

13.
We examined the influence of type 4 metabotropic glutamate (mGlu4) receptors on ischemic brain damage using the permanent middle cerebral artery occlusion (MCAO) model in mice and the endothelin-1 (Et-1) model of transient focal ischemia in rats. Mice lacking mGlu4 receptors showed a 25% to 30% increase in infarct volume after MCAO as compared with wild-type littermates. In normal mice, systemic injection of the selective mGlu4 receptor enhancer, N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-caboxamide (PHCCC; 10 mg/kg, subcutaneous, administered once 30 minutes before MCAO), reduced the extent of ischemic brain damage by 35% to 45%. The drug was inactive in mGlu4 receptor knockout mice. In the Et-1 model, PHCCC administered only once 20 minutes after ischemia reduced the infarct volume to a larger extent in the caudate/putamen than in the cerebral cortex. Ischemic rats treated with PHCCC showed a faster recovery of neuronal function, as shown by electrocorticographic recording and by a battery of specific tests, which assess sensorimotor deficits. These data indicate that activation of mGlu4 receptors limit the development of brain damage after permanent or transient focal ischemia. These findings are promising because selective mGlu4 receptor enhancers are under clinical development for the treatment of Parkinson''s disease and other central nervous system disorders.  相似文献   

14.
Astrocytic demise precedes delayed neuronal death in focal ischemic rat brain.   总被引:21,自引:0,他引:21  
Active neuronal-glial interaction is important in the maintenance of brain homeostasis and is vital for neuronal survival following brain injury. The time course of post-ischemic astroglial dysfunction and neuronal death was studied in the spontaneously hypertensive rat (SHR) brain following permanent middle cerebral artery occlusion (MCAO). In situ hybridization with 35S-labeled riboprobes for GFAP and GLUT3 was used to monitor mRNA expression in glia and neurons. Astrocytic proteins GFAP, vimentin, S100, Glutathione-S-Transferase Yb (GST Yb) and neuronal protein TG2 were detected by immunofluorescence. Cells were co-stained with in situ end labeling (ISEL) to detect DNA fragmentation, a hallmark of cell death. GFAP mRNA expression declined rapidly in the ischemic region of the cortex and was almost absent by 12 h. Immunohistochemical studies revealed a parallel decline in the corresponding protein: a reduction in GFAP staining was apparent in the infarct after 3 h and by 24 h, there was essentially no remaining GFAP. Three other glial proteins (vimentin, S100 and GST Yb) disappeared from infarct over a similar time course. A few ISEL positive cells were observed in the infarct at 6 h, but maximal detection was not seen until 24-48 h. Most of the ISEL-positive cells were neurons, identified by co-staining with the neuronal marker TG2. Few cells expressing GFAP or other glial markers were positive at any time point. Neuronal GLUT3 mRNA declined more slowly than GFAP mRNA in the ischemic core and disappeared during the period of neuronal death. Concurrent with the loss of GFAP mRNA and protein expression in the infarct, there was a rapid rise in GFAP mRNA in the peri-infarct region of ipsilateral hemisphere and proximal region of the contralateral hemisphere. This was followed by the enhanced GFAP protein expression characteristic of reactive astrocytes, but over a significantly slower time course. These studies show that MCAO leads to a rapid decline of GFAP mRNA and glial proteins, which appears to precede the decline in neuronal mRNA and neuronal death within the infarct. Early astroglial dysfunction may play a critical role in determining the outcome of acute hypoxic-ischemic injury by compromising neuronal-glial interactions.  相似文献   

15.
Astrocytes are intimately involved in both glutamate and gamma-aminobutyric acid (GABA) synthesis, and ischemia-induced disruption of normal neuroastrocytic interactions may have important implications for neuronal survival. The effects of middle cerebral artery occlusion (MCAO) on neuronal and astrocytic intermediary metabolism were studied in rats 30, 60, 120, and 240 minutes after MCAO using in vivo injection of [1-13C]glucose and [1,2- 13C]acetate combined with ex vivo 13C magnetic resonance spectroscopy and high-performance liquid chromatography analysis of the ischemic core (lateral caudoputamen and lower parietal cortex) and penumbra (upper frontoparietal cortex). In the ischemic core, both neuronal and astrocytic metabolism were impaired from 30 minutes MCAO. There was a continuous loss of glutamate from glutamatergic neurons that was not replaced as neuronal glucose metabolism and use of astrocytic precursors gradually declined. In GABAergic neurons astrocytic precursors were not used in GABA synthesis at any time after MCAO, and neuronal glucose metabolism and GABA-shunt activity declined with time. No flux through the tricarboxylic acid cycle was found in GABAergic neurons at 240 minutes MCAO, indicating neuronal death. In the penumbra, the neurotransmitter pool of glutamate coming from astrocytic glutamine was preserved while neuronal metabolism progressively declined, implying that glutamine contributed significantly to glutamate excitotoxicity. In GABAergic neurons, astrocytic precursors were used to a limited extent during the initial 120 minutes, and tricarboxylic acid cycle activity was continued for 240 minutes. The present study showed the paradoxical role that astrocytes play in neuronal survival in ischemia, and changes in the use of astrocytic precursors appeared to contribute significantly to neuronal death, albeit through different mechanisms in glutamatergic and GABAergic neurons.  相似文献   

16.
A recently discovered protein phosphatase PHLPP (PH domain Leucine-rich repeat Protein Phosphatase) has been shown to dephosphorylate Akt on its hydrophobic motif (Ser473) thereby decreasing Akt kinase activity. We generated PHLPP1 knockout (KO) mice and used them to explore the ability of enhanced in vivo Akt signaling to protect the brain against ischemic insult. Brains from KO mice subjected to middle cerebral artery occlusion (MCAO) for 2 hours showed significantly greater increases in Akt activity and less neurovascular damage after reperfusion than wild-type (WT) mice. Remarkably, infarct volume in the PHLPP1 KO was significantly reduced compared with WT (12.7±2.7% versus 22.9±3.1%) and this was prevented by Akt inhibition. Astrocytes from KO mice and neurons in which PHLPP1 was downregulated showed enhanced Akt activation and diminished cell death in response to oxygen-glucose deprivation. Thus, deletion of PHLPP1 can enhance Akt activation in neurons and astrocytes, and can significantly increase cell survival and diminish infarct size after MCAO. Inhibition of PHLPP could be a therapeutic approach to minimize damage after focal ischemia.  相似文献   

17.
Our previous study demonstrated that the inhibition of interleukin-1beta (IL-1beta) reduces ischemic brain injury; however, the molecular mechanism of the action of IL-1 in cerebral ischemia is unclear. We are investigating currently the role of NFkappaB during focal cerebral ischemia, using mutant mice deficient in the interleukin-1 converting enzyme gene (ICE KO) in a middle cerebral artery occlusion (MCAO) model. Adult male ICE KO and wild-type mice (n = 120) underwent up to 24 hr of permanent MCAO. Cytoplasmic phospho-NFkappaB/p65 expression in ischemic brain was examined using Western blot analysis and immunohistochemistry. NFkappaB DNA-binding activity was detected using electrophoretic mobility shift assay (EMSA). Furthermore, ICAM-1 expression was examined in both the ICE KO and wild-type mice (WT). Western blot analysis and immunostaining showed that the level of cytosolic phosphorylated NFkappaB/p65 increased after 2 and 4 hr of MCAO in WT mice; however, NFkappaB/p65 was significantly reduced after MCAO in the ICE KO mice (P < 0.05). EMSA showed that NFkappaB DNA-binding activity increased after MCAO in WT mice; but this effect was reduced in the ICE KO mice. The number of ICAM-1-positive vessels in the ischemic hemisphere was greatly attenuated in the ICE KO mice (P < 0.05), which paralleled the results of immunohistochemistry. Our results demonstrate that NFkappaB phosphorylation is reduced in ICE KO mice, suggesting that ICE or IL-1 are involved in early NFkappaB phosphorylation. Because cerebral ischemia induced infarction is significantly reduced in ICE KO mice, we conclude that early NFkappaB phosphorylation plays a disruptive role in the ischemic process.  相似文献   

18.
Poly(ADP-ribose) polymerase-2 (PARP-2) is a member of the PARP enzyme family, and, similarly to PARP-1, catalyzes the formation of ADP-ribose polymers in response to DNA damage. While PARP-1 overactivation contributes to ischemic cell death, no information is available regarding the role of PARP-2. In this study, we evaluated the impact of PARP-2 deletion on histopathological outcome from two different experimental models of cerebral ischemia. Male PARP-2-/- mice and wild-type (WT) littermates were subjected to either 2 h of middle cerebral artery occlusion (MCAO) followed by 22 h reperfusion, or underwent 10 mins of KCl-induced cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR) and 3-day survival. After MCAO, infarct volume was reduced in PARP-2-/- mice (38%+/-12% of contralateral hemisphere) compared with WT (64%+/-16%). After CA/CPR, PARP-2 deletion significantly increased neuronal cell loss in the hippocampal CA1 field (65%+/-36% ischemic neurons) when compared with WT mice (31%+/-33%), with no effect in either striatum or cortex. We conclude that PARP-2 is a novel executioner of cell death pathways in focal cerebral ischemia, but might be a necessary survival factor after global ischemia to mitigate hippocampal delayed cell death.  相似文献   

19.
Reactive astrocytes have been implicated in neuronal loss following ischemic stroke. However, the molecular mechanisms associated with this process are yet to be fully elucidated. In this work, we tested the hypothesis that astroglial NF-κB, a key regulator of inflammatory responses, is a contributor to neuronal death following ischemic injury. We compared neuronal survival in the ganglion cell layer (GCL) after retinal ischemia-reperfusion in wild-type (WT) and in GFAP-IκBα-dn transgenic mice, where the NF-κB classical pathway is suppressed specifically in astrocytes. The GFAP-IκBα-dn mice showed significantly increased survival of neurons in the GCL following ischemic injury as compared with WT littermates. Neuroprotection was associated with significantly reduced expression of pro-inflammatory genes, encoding Tnf-α , Ccl2 (Mcp1) , Cxcl10 (IP10) , Icam1 , Vcam1, several subunits of NADPH oxidase and NO-synthase in the retinas of GFAP-IκBα-dn mice. These data suggest that certain NF-κB-regulated pro-inflammatory and redox-active pathways are central to glial neurotoxicity induced by ischemic injury. The inhibition of these pathways in astrocytes may represent a feasible neuroprotective strategy for retinal ischemia and stroke.  相似文献   

20.
As an endogenous activator of toll-like receptor-4 (Tlr4), the extracellular matrix glycoprotein tenascin-C (TnC) regulates chemotaxis, phagocytosis and proinflammatory cytokine production in microglia. The role of TnC for ischemic brain injury, post-ischemic immune responses and stroke recovery has still not been evaluated. By comparing wild type and TnC−/− mice exposed to transient intraluminal middle cerebral artery occlusion (MCAO), we examined the effects of TnC deficiency for ischemic injury, neurological deficits, microglia/macrophage activation and brain leukocyte infiltration using behavioural tests, histochemical studies, Western blot, polymerase chain reaction and flow cytometry. Histochemical studies revealed that TnC was de novo expressed in the ischemic striatum, which contained the infarct core, and overlapped with the area of strongest accumulation of Iba1 + microglia/macrophages. TnC deficiency increased overall Iba1 immunoreactivity in the perilesional cortex, suggesting that TnC might restrict the distribution of microglial cells to the infarct core. By analysing microglial morphology in 3D we found that the post-ischemic loss of microglial cell territory, branching and volume at 3 and 7 days post-ischemia was amplified in the brains of TnC deficient compared with wild type mice. Microglial cell number was not different between genotypes. Hence, TnC deficiency reduced tissue surveillance by microglial cells. Concomitantly, the number of infiltrating leukocytes and, more specifically, T cells was increased in the ischemic brain parenchyma of TnC deficient compared with wild type mice. Ischemic injury and neurological deficits were not affected by TnC deficiency. We propose that the reduced microglia surveillance in TnC deficient mice might favour leukocyte accumulation in the ischemic brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号