首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Monkey neurophysiology and human neuroimaging studies have demonstrated that passive viewing of optic flow stimuli activates a cortical network of temporal, parietal, insular, and cingulate visual motion regions. Here, we tested whether the human visual motion areas involved in processing optic flow signals simulating self‐motion are also activated by active lower limb movements, and hence are likely involved in guiding human locomotion. To this aim, we used a combined approach of task‐evoked activity and resting‐state functional connectivity by fMRI. We localized a set of six egomotion‐responsive visual areas (V6+, V3A, intraparietal motion/ventral intraparietal [IPSmot/VIP], cingulate sulcus visual area [CSv], posterior cingulate sulcus area [pCi], posterior insular cortex [PIC]) by using optic flow. We tested their response to a motor task implying long‐range active leg movements. Results revealed that, among these visually defined areas, CSv, pCi, and PIC responded to leg movements (visuomotor areas), while V6+, V3A, and IPSmot/VIP did not (visual areas). Functional connectivity analysis showed that visuomotor areas are connected to the cingulate motor areas, the supplementary motor area, and notably to the medial portion of the somatosensory cortex, which represents legs and feet. We suggest that CSv, pCi, and PIC perform the visual analysis of egomotion‐like signals to provide sensory information to the motor system with the aim of guiding locomotion.  相似文献   

2.
Stilla R  Sathian K 《Human brain mapping》2008,29(10):1123-1138
Previous functional neuroimaging studies have described shape-selectivity for haptic stimuli in many cerebral cortical regions, of which some are also visually shape-selective. However, the literature is equivocal on the existence of haptic or visuo-haptic texture-selectivity. We report here on a human functional magnetic resonance imaging (fMRI) study in which shape and texture perception were contrasted using haptic stimuli presented to the right hand, and visual stimuli presented centrally. Bilateral selectivity for shape, with overlap between modalities, was found in a dorsal set of parietal areas: the postcentral sulcus and anterior, posterior and ventral parts of the intraparietal sulcus (IPS); as well as ventrally in the lateral occipital complex. The magnitude of visually- and haptically-evoked activity was significantly correlated across subjects in the left posterior IPS and right lateral occipital complex, suggesting that these areas specifically house representations of object shape. Haptic shape-selectivity was also found in the left postcentral gyrus, the left lingual gyrus, and a number of frontal cortical sites. Haptic texture-selectivity was found in ventral somatosensory areas: the parietal operculum and posterior insula bilaterally, as well as in the right medial occipital cortex, overlapping with a medial occipital cortical region, which was texture-selective for visual stimuli. The present report corroborates and elaborates previous suggestions of specialized visuo-haptic processing of texture and shape.  相似文献   

3.
Placebo analgesia (PA) is one of the most studied placebo effects. Brain imaging studies published over the last decade, using either positron emission tomography (PET) or functional magnetic resonance imaging (fMRI), suggest that multiple brain regions may play a pivotal role in this process. However, there continues to be much debate as to which areas consistently contribute to placebo analgesia‐related networks. In the present study, we used activation likelihood estimation (ALE) meta‐analysis, a state‐of‐the‐art approach, to search for the cortical areas involved in PA in human experimental pain models. Nine fMRI studies and two PET studies investigating cerebral hemodynamic changes were included in the analysis. During expectation of analgesia, activated foci were found in the left anterior cingulate, right precentral, and lateral prefrontal cortex and in the left periaqueductal gray (PAG). During noxious stimulation, placebo‐related activations were detected in the anterior cingulate and medial and lateral prefrontal cortices, in the left inferior parietal lobule and postcentral gyrus, anterior insula, thalamus, hypothalamus, PAG, and pons; deactivations were found in the left mid‐ and posterior cingulate cortex, superior temporal and precentral gyri, in the left anterior and right posterior insula, in the claustrum and putamen, and in the right thalamus and caudate body. Our results suggest on one hand that the modulatory cortical networks involved in PA largely overlap those involved in the regulation of emotional processes, on the other that brain nociceptive networks are downregulated in parallel with behavioral analgesia. Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
Gender dysphoria (GD) is characterized by incongruence between one’s identity and gender assigned at birth. The biological mechanisms of GD are unclear. We investigated brain network connectivity patterns involved in own body perception in the context of self in GD. Twenty-seven female-to-male (FtM) individuals with GD, 27 male controls, and 27 female controls underwent resting state fMRI. We compared functional connections within intrinsic connectivity networks involved in self-referential processes and own body perception –default mode network (DMN) and salience network – and visual networks, using independent components analyses. Behavioral correlates of network connectivity were also tested using self-perception ratings while viewing own body images morphed to their sex assigned at birth, and to the sex of their gender identity. FtM exhibited decreased connectivity of anterior and posterior cingulate and precuneus within the DMN compared with controls. In FtM, higher “self” ratings for bodies morphed towards the sex of their gender identity were associated with greater connectivity of the anterior cingulate within the DMN, during long viewing times. In controls, higher ratings for bodies morphed towards their gender assigned at birth were associated with right insula connectivity within the salience network, during short viewing times. Within visual networks FtM showed weaker connectivity in occipital and temporal regions. Results suggest disconnectivity within networks involved in own body perception in the context of self in GD. Moreover, perception of bodies in relation to self may be reflective rather than reflexive, as a function of mesial prefrontal processes. These may represent neurobiological correlates to the subjective disconnection between perception of body and self-identification.  相似文献   

5.
Functional magnetic resonance imaging studies have shown that the insular cortex has a significant role in pain identification and information integration, while the default mode network is associated with cognitive and memory-related aspects of pain perception. However, changes in the functional connectivity between the default mode network and insula during pain remain unclear. This study used 3.0 T functional magnetic resonance imaging scans in 12 healthy subjects aged 24.8 ± 3.3 years to compare the differences in the functional activity and connectivity of the insula and default mode network between the baseline and pain condition induced by intramuscular injection of hypertonic saline. Compared with the baseline, the insula was more functionally connected with the medial prefrontal and lateral temporal cortices, whereas there was lower connectivity with the posterior cingulate cortex, precuneus and inferior parietal lobule in the pain condition. In addition, compared with baseline, the anterior cingulate cortex exhibited greater connectivity with the posterior insula, but lower connectivity with the anterior insula, during the pain condition. These data indicate that experimental low back pain led to dysfunction in the connectivity between the insula and default mode network resulting from an impairment of the regions of the brain related to cognition and emotion, suggesting the importance of the interaction between these regions in pain processing.  相似文献   

6.
Substantial disability in patients with hemianopia results from reduced visual perception. Several studies have shown that these patients have impaired saccades but may improve search strategies with appropriate training of saccades. We used fMRI to study the representation of saccades in patients with post-stroke hemianopia to the left. Brain activation during visually guided saccades was measured in 10 patients with a pure occipital cortical lesion causing homonymous hemianopia and in 10 healthy control subjects. Differences in activation between rest and saccades and between controls and patients were assessed with statistical parametric mapping (SPM'99). In normal subjects, significant activation was found in the frontal and parietal eye fields bilaterally and in the supplementary eye field. These areas were also activated in patients, however, to a lesser degree. In contrast, an area of increased activation in patients was found in the posterior parietal cortex of the (non-affected) left hemisphere. Visual field defects after striate lesions are associated with changes in the frontoparietal network underlying the cortical control of saccades.  相似文献   

7.
The present study describes the ipsilateral and contralateral cortico-cortical and cortico-thalamic connectivity of the parietal visual areas, posterior parietal caudal cortical area (PPc) and posterior parietal rostral cortical area (PPr), in the ferret using standard anatomical tract-tracing methods. The two divisions of posterior parietal cortex of the ferret are strongly interconnected, however area PPc shows stronger connectivity with the occipital and suprasylvian visual cortex, while area PPr shows stronger connectivity with the somatomotor cortex, reflecting the functional specificity of these two areas. This pattern of connectivity is mirrored in the contralateral callosal connections. In addition, PPc and PPr are connected with the visual and somatomotor nuclei of the dorsal thalamus. Numerous connectional similarities exist between the posterior parietal cortex of the ferret (PPc and PPr) and the cat (area 7 and 5), indicative of the homology of these areas within the Carnivora. These findings highlight the existence of a frontoparietal network as a shared feature of the organization of parietal cortex across Euarchontoglires and Laurasiatherians, with the degree of expression varying in relation to the expansion and areal complexity of the posterior parietal cortex. This observation indicates that the ferret is a potentially valuable experimental model animal for understanding the evolution and function of the posterior parietal cortex and the frontoparietal network across mammals. The data generated will also contribute to a connectomics database, to further cross-species analyses of connectomes and illuminate wiring principles of cortical connectivity across mammals.  相似文献   

8.

Purpose

We assessed response and functional connectivity patterns of different parts of the visual and motor cortices during visuo-motor integration with particular focus on the intraparietal sulcus (IPS).

Methods

Brain activity was measured during a visuo-motor task in 14 subjects using event-related fMRI. During central fixation, a blue or red target embedded in an array of grey distractors was presented for 250 ms in either the left or right visual hemifield. After a delay, the subjects were prompted to press the upper or lower response button for targets in the upper and lower hemifield with the left or right thumb for blue and red targets, respectively. The fMRI responses were evaluated for different regions of interests (ROIs), and the functional connectivity of the IPS subregions with these ROIs was quantified.

Results

In an anterior IPS region and a region in the anterior premotor cortex, presumably the frontal eye fields (FEF), visually driven responses were dominant contralateral to both visual stimulus and effector. Thus, the anterior IPS combines, in contrast to the posterior IPS and the occipital cortex, response properties of cortex activated by visual input and by motor output. Further, functional connectivity with the motor areas was stronger for the anterior than for the posterior IPS regions.

Discussion

Anterior IPS and FEF appear to be of major relevance for relating visual and effector information during visuo-motor integration. Patient studies with the devised paradigm are expected to uncover the impact of pathophysiologies and plasticity on the observed cortical lateralisation patterns.  相似文献   

9.
In humans, damage to posterior parietal or frontal cortices often induces a severe impairment of the ability to redirect gaze to visual targets introduced into the contralateral field. In cats, unilateral deactivation of the posterior middle suprasylvian (pMS) sulcus in the posterior inferior parietal region also results in an equally severe impairment of visually mediated redirection of gaze. In this study we tested the contributions of the pMS cortex and 14 other cortical regions in mediating redirection of gaze to visual targets in 31 adult cats. Unilateral cooling deactivation of three adjacent regions along the posterior bend of the suprasylvian sulcus (posterior middle suprasylvian sulcus, posterior suprasylvian sulcus, and dorsal posterior ectosylvian gyrus at the confluence of the occipital, parietal, and temporal cortices) eliminated visually mediated redirection of gaze towards stimuli introduced into the contralateral hemifield, while the redirection of gaze toward the ipsilateral hemifield remained highly proficient. Additional cortical loci critical for visually mediated redirection of gaze include the anterior suprasylvian gyrus (lateral area 5, anterior inferior parietal cortex) and medial area 6 in the frontal region. Cooling deactivation of: 1) dorsal or 2) ventral posterior suprasylvian gyrus; 3) ventral posterior ectosylvian gyrus, 4) middle ectosylvian gyrus; 5) anterior or 6) posterior middle suprasylvian gyrus (area 7); 7) anterior middle suprasylvian sulcus; 8) medial area 5; 9) the visual portion of the anterior ectosylvian sulcus (AES); 10) or lateral area 6 were all without impact on the ability to redirect gaze. In summary, we identified a prominent field of cortex at the junction of the temporo-occipito-parietal cortices (regions pMS, dPE, PS), an anterior inferior parietal field (region 5L), and a frontal field (region 6M) that all contribute critically to the ability to redirect gaze to novel stimuli introduced into the visual field during fixation. These loci have several features in common with cortical fields in monkey and human brains that contribute to the visually guided redirection of the head and eyes.  相似文献   

10.
《中国神经再生研究》2016,(8):1274-1277
There have been no studies reported on the difference in cortical activation during use of volar and dorsal hand splints. We attempted to investigate the difference in cortical activation in the somatosensory cortical area during use of volar and dorsal hand splints by functional magnetic resonance imaging (fMRI). We recruited eight healthy volunteers. fMRI was performed while subjects who were iftted with volar or dorsal hand splints performed grasp-release movements. Regions of interest were placed on the primary motor cortex (M1), primary somatosensory cortex (S1), posterior parietal cortex (PPC), and secondary somato-sensory cortex (S2). Results of group analysis of fMRI data showed that the total numbers of activated voxels in all ROIs were significantly higher during use of volar hand splint (3,376) compared with that (1,416) during use of dorsal hand splint. In each ROI, use of volar hand splint induced greater activation in all ROIs (M1:1,748, S1:1,455, PPC:23, and S2:150) compared with use of dorsal hand splint (M1:783, S1:625, PPC:0, and S2:8). The peak activated value was also higher during use of volar hand splint (t-value:17.29) compared with that during use of dorsal hand splint (t-value:13.11). Taken together, use of volar hand splint induced greater cortical activation relevant to somatosensory function than use of dorsal hand splint. This result would be important for the physiatrist and therapist to apply appropriate somatosensory input in patients with brain injury.  相似文献   

11.
The study of pain integration, in vivo, within the human brain has been largely improved by the functional neuro-imaging techniques available for about 10 years. Positron Emission Tomography (PET), complemented by laser evoked potentials (LEP) and functional Magnetic Resonance Imaging (fMRI) can nowadays generate maps of physiological or neuropathic pain-related brain activity. LEP and fMRI complement PET by their better temporal resolution and the possibility of individual subject analyze. Recent advances in our knowledge of pain mechanisms concern physiological acute pain, neuropathic pain and investigation of analgesic mechanisms. The sixteen studies using PET have demonstrated pain-related activations in thalamus, insula/SII, anterior cingulate and posterior parietal cortices Activity in right pre-frontal and posterior parietal cortices, anterior cingulate and thalami can be modulated by attention (hypnosis, chronic pain, diversion, selective attention to pain) and probably subserve attentional processes rather than pain analysis. Responses in insula/SII cortex presumably subserve discriminative aspects of pain perception while SI cortex is particularly involved in particular aspects of pain discrimination (movement, contact.) In patients, neuropathic pain, angina and atypical facial pain result in PET abnormalities whose significance remain obscure but which are localized in thalamus and anterior cingulate cortices suggesting their distribution is not random while discriminative responses remain detectable in insula/SII. Drug or stimulation induced analgesia are associated with normalization of basal thalamic abnormalities associated with many chronic pains. The need to investigate the significance of these responses, their neuro-chemical correlates (PET), their time course, the individual strategies by which they have been generated by correlating PET data with LEP and fMRI results, are the challenges that remain to be addressed in the next few years by physicians and researchers. To advance our knowledge of the mechanisms generating both abnormal pain and analgesia (drugs and surgical techniques) in patients is the main motivation of such anexciting challenge.  相似文献   

12.
The recognition and perception of places has been linked to a network of scene-selective regions in the human brain. While previous studies have focussed on functional connectivity between scene-selective regions themselves, less is known about their connectivity with other cortical and subcortical regions in the brain. Here, we determine the functional and structural connectivity profile of the scene network. We used fMRI to examine functional connectivity between scene regions and across the whole brain during rest and movie-watching. Connectivity within the scene network revealed a bias between posterior and anterior scene regions implicated in perceptual and mnemonic aspects of scene perception respectively. Differences between posterior and anterior scene regions were also evident in the connectivity with cortical and subcortical regions across the brain. For example, the Occipital Place Area (OPA) and posterior Parahippocampal Place Area (PPA) showed greater connectivity with visual and dorsal attention networks, while anterior PPA and Retrosplenial Complex showed preferential connectivity with default mode and frontoparietal control networks and the hippocampus. We further measured the structural connectivity of the scene network using diffusion tractography. This indicated both similarities and differences with the functional connectivity, highlighting biases between posterior and anterior regions, but also between ventral and dorsal scene regions. Finally, we quantified the structural connectivity between the scene network and major white matter tracts throughout the brain. These findings provide a map of the functional and structural connectivity of scene-selective regions to each other and the rest of the brain.  相似文献   

13.
As a predominately positive emotion, nostalgia serves various adaptive functions, including a recently revealed analgesic effect. The current fMRI study aimed to explore the neural mechanisms underlying the nostalgia-induced analgesic effect on noxious thermal stimuli of different intensities. Human participants'' (males and females) behavior results showed that the nostalgia paradigm significantly reduced participants'' perception of pain, particularly at low pain intensities. fMRI analysis revealed that analgesia was related to decreased brain activity in pain-related brain regions, including the lingual and parahippocampal gyrus. Notably, anterior thalamic activation during the nostalgia stage predicted posterior parietal thalamus activation during the pain stage, suggesting that the thalamus might play a key role as a central functional linkage in the analgesic effect. Moreover, while thalamus-PAG functional connectivity was found to be related to nostalgic strength, periaqueductal gray-dorsolateral prefrontal cortex (PAG-dlPFC) functional connectivity was found to be associated with pain perception, suggesting possible analgesic modulatory pathways. These findings demonstrate the analgesic effect of nostalgia and, more importantly, shed light on its neural mechanism.SIGNIFICANCE STATEMENT Nostalgia is known to reduce individuals'' perception of physical pain. The underlying brain mechanisms, however, are unclear. Our study found that the thalamus plays a key role as a functional linkage between nostalgia and pain, suggesting a possible analgesic modulatory mechanism of nostalgia. These findings have implications for the underlying brain mechanisms of psychological analgesia.  相似文献   

14.
Abstract Pain induced by gentle stroking, i.e. dynamic-mechanical allodynia, is one of the most distressing symptoms of neuropathic pain. The underlying neuronal pathways are still a matter of debate. Here, we investigated the cortical activations associated with dynamic-mechanical allodynia in an experimental human pain model by functional magnetic resonance imaging (fMRI). Large and stable areas of brush-evoked allodynia were induced in 11 healthy subjects by topical capsaicin (2.5%, 30 min) application following local heating (45 degrees C for 5 min), thus combining both physical and chemical sensitization. During the fMRI experiments, allodynia was rekindled by local heat application (40 degrees C for 5 min) immediately before the allodynia testing. Brushing the untreated forearm (control condition) led to activations of the contralateral primary somatosensory cortex (S1), contralateral parietal association cortex (PA), bilateral secondary somatosensory cortices (S2) and insula (contralateral). Brushing the allodynic skin was painful and the cortical responses were partially overlapping with those induced by the nonpainful brush stimulation. Additionally, the contralateral inferior frontal cortex (IFC) and the ipsilateral insula were activated. Direct comparison between nonpainful brushing and brush-evoked allodynia revealed significant increases in blood oxygenation level-dependent (BOLD) signals in contralateral S1, PA, IFC and bilateral S2/insula during allodynia. This study highlights the importance of a cortical network comprising S1, PA, S2/insula and IFC in the processing of dynamic-mechanical allodynia in the human brain. Furthermore, it demonstrates that the combined heat/capsaicin model can be used successfully in the exploration of brain processes underlying stimulus-evoked pain.  相似文献   

15.
Cortical activation patterns during voluntary blinks and voluntary saccades   总被引:3,自引:0,他引:3  
OBJECTIVE: To investigate the activation of frontal, parietal, and occipital areas in normal volunteers during voluntary blinks and during voluntary saccades using functional MRI (fMRI). BACKGROUND: A previous fMRI study revealed the activation of the precentral and posterior middle frontal gyrus ("frontal eye field" [FEF]), the medial part of the superior frontal gyrus ("supplementary eye field" [SEF]), and the visual cortex. The parietal cortex was not included in this study. Frontal and occipital cortical areas involved in voluntary blinking have not been shown previously using fMRI. METHODS: A 1.5-T standard clinical scanner was used for both anatomic and functional studies in 12 observers. To conduct data analyses the authors used voxel-by-voxel cross-correlation. RESULTS: Voluntary blinks led to the activation (p < 0.05) of the FEF, the SEF, the posterior parietal cortex ("parietal eye field" [PEF]), and the visual cortex. Voluntary blinking produced activity in the same cerebral structures as voluntary saccades. However, the number of activated voxels was smaller during voluntary blinking than during voluntary saccades in the visual cortex and in the FEF (p < 0.01). In contrast, the extent of activation was significantly higher (p < 0.003) in the SEF and in the PEF during voluntary blinking. CONCLUSIONS: Voluntary blinks and saccades are associated with similar loci of activation patterns; however, the quantitative distribution of activation suggests that the middle part of the frontal gyrus and posterior parietal cortex are of special significance for voluntary blinks. The results argue for the importance of considering quantitative distributional properties of parallel cortical activities associated with saccades and blinks.  相似文献   

16.
The overarching goal of the current investigation was to examine the connections of anterior parietal area 2 and the medial portion of posterior parietal area 5 in macaque monkeys; two areas that are part of a network involved reaching and grasping in primates. We injected neuroanatomical tracers into specified locations in each field and directly related labeled cells to histologically identified cortical field boundaries. Labeled cells were counted so that the relative density of projections to areas 2 and 5 from other cortical fields could be determined. Projections to area 2 were restricted and were predominantly from other somatosensory areas of the anterior parietal cortex (areas 1, 3b, and 3a), the second somatosensory area (S2), and from medial and lateral portions of area 5 (5M and 5L respectively). On the other hand, area 5M had very broadly distributed projections from a number of cortical areas including anterior parietal areas, from primary motor cortex (M1), premotor cortex (PM), the supplementary motor area (SMA), cortex on the medial wall, and from posterior parietal areas 5L and 7b. The more restricted pattern of connections of area 2 indicates that it processes somatic inputs locally and provides proprioceptive information to area 5M. 5M, which at least partially overlaps with functionally defined area MIP, receives inputs from somatosensory (predominantly from area 2), posterior parietal and motor cortex, which could provide the substrate for representing multiple coordinate systems necessary for planning ethologically relevant movements, particularly those involving the hand.  相似文献   

17.
Optic ataxia (OA) is classically defined as a deficit of visually guided movements that follows lesions of the posterior part of the posterior parietal cortex (PPC). Since the formalisation of the double stream of visual information processing [Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. Oxford: Oxford University Press] and the use of OA as an argument in favour of the involvement of the posterior parietal cortex (dorsal stream) in visually guided movements, many studies have looked at the visuomotor deficits of these patients. In parallel, the development of neuroimaging methods have led to increasing information about the role of the posterior parietal cortex in visually guided actions. In this article, we discuss the similarities and differences in the results that emerged from these two complementary viewpoints by combining a meta-analysis of neuroimaging data on reaching with lesion studies from OA patients and results of our own fMRI study on reaching in the ipsi- and contra-lateral visual field. We identified four bilateral parietal foci from the meta-analysis and found that the more posterior foci showed greater lateralisation for contralateral visual stimulation than more anterior ones Additionally, the more anterior foci showed greater lateralisation for the use of the contralateral hand than the more posterior ones. Therefore, we can demonstrate that they are organised along a postero-anterior gradient of visual-to-somatic information integration. Furthermore, from the combination of imaging and lesion data it can be inferred that a lesion of the three most posterior foci responsible for the target-hand integration could explain the hand and field effect revealed in OA reaching behaviour.  相似文献   

18.
Cognitive reappraisal recruits prefrontal and parietal cortical areas. Because of the near exclusive usage in past research of visual stimuli to elicit emotions, it is unknown whether the same neural substrates underlie the reappraisal of emotions induced through other sensory modalities. Here, participants reappraised their emotions in order to increase or decrease their emotional response to angry prosody, or maintained their attention to it in a control condition. Neural activity was monitored with fMRI, and connectivity was investigated by using psychophysiological interaction analyses. A right-sided network encompassing the superior temporal gyrus, the superior temporal sulcus and the inferior frontal gyrus was found to underlie the processing of angry prosody. During reappraisal to increase emotional response, the left superior frontal gyrus showed increased activity and became functionally coupled to right auditory cortices. During reappraisal to decrease emotional response, a network that included the medial frontal gyrus and posterior parietal areas showed increased activation and greater functional connectivity with bilateral auditory regions. Activations pertaining to this network were more extended on the right side of the brain. Although directionality cannot be inferred from PPI analyses, the findings suggest a similar frontoparietal network for the reappraisal of visually and auditorily induced negative emotions.  相似文献   

19.
To verify whether the activation of the posterior parietal and parietal opercular cortices to tactile stimulation of the ipsilateral hand is mediated by the corpus callosum, a functional magnetic resonance imaging (fMRI, 1.0 tesla) study was performed in 12 control and 12 callosotomized subjects (three with total and nine with partial resection). Eleven patients were also submitted to the tactile naming test. In all subjects, unilateral tactile stimulation provoked a signal increase temporally correlated with the stimulus in three cortical regions of the contralateral hemisphere. One corresponded to the first somatosensory area, the second was in the posterior parietal cortex, and the third in the parietal opercular cortex. In controls, activation was also observed in the ipsilateral posterior parietal and parietal opercular cortices, in regions anatomically corresponding to those activated contralaterally. In callosotomized subjects, activation in the ipsilateral hemisphere was observed only in two patients with splenium and posterior body intact. These two patients and another four with the entire splenium and variable portions of the posterior body unsectioned named objects explored with the right and left hand without errors. This ability was impaired in the other patients. The present physiological and anatomical data indicate that in humans activation of the posterior parietal and parietal opercular cortices in the hemisphere ipsilateral to the stimulated hand is mediated by the corpus callosum, and that the commissural fibres involved probably cross the midline in the posterior third of its body.  相似文献   

20.
Clinical and neuroimaging observations of the cortical network implicated in tactile attention have identified foci in parietal somatosensory, posterior parietal, and superior frontal locations. Tasks involving intentional hand-arm movements activate similar or nearby parietal and frontal foci. Visual spatial attention tasks and deliberate visuomotor behavior also activate overlapping posterior parietal and frontal foci. Studies in the visual and somatosensory systems thus support a proposal that attention to the spatial location of an object engages cortical regions responsible for the same coordinate referents used for guiding purposeful motor behavior. Tactile attention also biases processing in the somatosensory cortex through amplification of responses to relevant features of selected stimuli. Psychophysical studies demonstrate retention gradients for tactile stimuli like those reported for visual and auditory stimuli, and suggest analogous neural mechanisms for working memory across modalities. Neuroimaging studies in humans using memory tasks, and anatomic studies in monkeys support the idea that tactile information relayed from the somatosensory cortex is directed ventrally through the insula to the frontal cortex for short-term retention and to structures of the medial temporal lobe for long-term encoding. At the level of single neurons, tactile (such as visual and auditory) short-term memory appears as a persistent response during delay intervals between sampled stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号