首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porphyromonas gingivalis is a periodontal pathogen capable of invading primary cultures of normal human gingival epithelial cells (NHGEC). Involvement of P. gingivalis fimbriae in the invasion process was examined. Purified P. gingivalis 33277 fimbriae blocked invasion of this organism into NHGEC in a dose-dependent manner. DPG3, a P. gingivalis fimbria-deficient mutant, was impaired in its invasion capability approximately eightfold compared to its parent, strain 381. However, adherence of the mutant was only 50% reduced compared to the parent. Biotin labeling of NHGEC surface proteins revealed that two fimbriated strains, but not DPG3, bound a 48-kDa NHGEC protein. Adhesin-receptor interactions, such as fimbriae binding to a 48-kDa NHGEC surface receptor, may trigger activation of eukaryotic proteins involved in signal transduction and/or provoke the generation of surface P. gingivalis molecules required for internalization.  相似文献   

2.
Isogenic mutants of Porphyromonas gingivalis which differ in the expression of fimbriae were used to examine the contribution of fimbriae in invasion of a human oral epithelial cell line (KB). At a multiplicity of infection of 100, the wild-type P. gingivalis strains 33277, 381, and A7436 exhibited adherence efficiencies of 5.5, 0.11, and 5.0%, respectively, and invasion efficiencies of 0.15, 0.03, and 0.10%, respectively. However, adherence to and invasion of KB cells was not detected with the P. gingivalis fimA mutants, DPG3 and MPG1. Adherence of P. gingivalis wild-type strains to KB cells was completely inhibited by the addition of hyperimmune sera raised to the major fimbriae. Examination by electron microscopy of invasion of epithelial cells by the P. gingivalis wild-type strain 381 revealed microvillus-like extensions around adherent bacteria; this was not observed with P. gingivalis fim mutants. Taken together, these results indicate that the P. gingivalis major fimbriae are required for adherence to and invasion of oral epithelial cells.  相似文献   

3.
Porphyromonas gingivalis 381 fimbriae, their synthetic peptide segments, and lipopolysaccharide (LPS) were examined for hemagglutinating and migration-stimulating activities. P. gingivalis 381 fimbriae clearly caused hemagglutination, and several oligopeptide segments such as FP381(61-80), FP381(171-185), and FP381(302-321), corresponding to the amino acid residue numbers based on the amino acid sequence of fimbrillin proposed by Dickinson et al. (D. P. Dickinson, M. A. Kubiniec, F. Yoshimura, and R. J. Genco, J. Bacteriol. 170:1658-1665, 1988), were also demonstrated to agglutinate erythrocytes although less effectively than the native fimbriae. Furthermore, P. gingivalis 381 LPS but not Escherichia coli O55:B5 LPS definitely exhibited hemagglutination. P. gingivalis fimbriae as well as their synthetic peptides possessing hemagglutinating activity enhanced the chemotaxically induced migration of human peripheral blood monocytes. The results of the analyses using synthetic peptide FP381(61-80), its related compounds, and an analog suggested that the amino acid sequence XLTXXLTXXNXX within fimbrial protein molecules may play an important role structurally in the attachment of the protein to host cells such as erythrocytes and monocytes.  相似文献   

4.
BACKGROUND: The yeast Malassezia furfur (M. furfur), present in the normal microflora of human skin, can act as an allergen that incites specific IgE reactivity and T cell proliferation in atopic dermatitis (AD) patients. The role of antigen presenting dendritic cells (DCs) in the onset and maintenance of AD is not well established. OBJECTIVE: The objective of the present study was to assess whether the interaction of M. furfur with human DCs will result in DC maturation, cytokine production and lymphocyte proliferation. METHODS: Monocyte-derived dendritic cells (MDDCs) were generated from human peripheral blood. Immature MDDCs were cultured with or without M. furfur or plastic beads, and with or without CD40L stimulation. Interaction of yeast cells by MDDCs was studied by time-lapse photography and cytokines were detected in culture supernatants with ELISA. The ability of MDDCs pre-incubated with M. furfur to induce proliferation in autologous lymphocytes was measured by [(3)H]-thymidine incorporation. RESULTS: Time-lapse photography showed that the majority of immature MDDCs internalized whole M. furfur yeast cells within 1 h. The presence of M. furfur induced maturation (CD83 expression) of MDDCs, and up-regulation of the costimulatory molecules CD80 and CD86. Production of TNF-alpha, IL-1 beta and IL-18 by MDDCs increased significantly (P < 0.05 for TNF-alpha and IL-1 beta, and P < 0.01 for IL-18) after the addition of M. furfur, while IL-10 and IL-12p70 levels remained unaltered. The CD40L-stimulated IL12p70 production by MDDCs was decreased in the presence of M. furfur (P < 0.05). Finally, immature MDDCs pre-incubated with M. furfur induced a proliferative response in autologous CD14-depleted peripheral blood mononuclear cells, in a dose-dependent manner. CONCLUSION: The data indicate that immature MDDCs can internalize the opportunistic yeast M. furfur. This process was associated with MDDC maturation, production of pro-inflammatory and immunoregulatory cytokines, which might favour induction of a Th2-type immune response, and a capacity to stimulate lymphocyte proliferation. This chain of events most likely contributes to the inflammatory reaction in AD.  相似文献   

5.
Fimbriae are important in the adherence of many bacterial species to the surfaces they eventually colonize. Porphyromonas (Bacteroides) gingivalis fimbriae appear to mediate adherence to oral epithelial cells and the pellicle-coated tooth surface. The role and contribution of fimbriae in the binding of P. gingivalis to hydroxyapatite (HAP) coated with saliva as a model for the pellicle-coated tooth surface were investigated. 3H-labeled P. gingivalis or the radioiodinated purified fimbriae were incubated with 2 mg of HAP beads coated with whole human saliva (sHAP) and layered on 100% Percoll to separate unbound from sHAP-bound components. The radioactivity of the washed beads was a measure of the bound components. The binding of P. gingivalis 2561 (381) cells and that of purified fimbriae were concentration dependent and saturable at approximately 10(8) cells and 40 micrograms of fimbriae added, respectively. The addition of fimbriae inhibited binding of P. gingivalis to sHAP beads by 65%, while the 75-kDa protein, which is another major surface component of P. gingivalis 2561, did not show significant inhibition, suggesting that the fimbriae are important in adherence. Encapsulated and sparsely fimbriated P. gingivalis W50 did not bind to sHAP beads. On the basis of the predicted sequence of the fimbrillin, a structural subunit of fimbriae, a series of peptides were synthesized and used to localize the active fimbrillin domains involved in P. gingivalis adherence to sHAP beads. Peptides from the carboxyl-terminal one-third of the fimbrillin strongly inhibited P. gingivalis binding to sHAP beads. Active residues within the sequence of inhibitory peptide 226-245 (peptide containing residues 226 to 245) and peptide 293-306 were identified by using smaller fragments prepared either by trypsin cleavage of the peptide 226-245 or by synthesis of smaller segments of peptide 293-306. Hemagglutinin activity, lectinlike binding, and ionic interaction did not seem to be involved in this binding since lysine, arginine, carbohydrates, and calcium ions failed to affect the binding of P. gingivalis. The observation that poly-L-lysine, bovine serum albumin, and defatted bovine serum albumin, even at high concentrations, only partially blocked the binding of P. gingivalis indicates that hydrophobic interactions are not the major forces involved in P. gingivalis binding to sHAP beads. Protease inhibitors such as EDTA, leupeptin, pepstatin, 1,10-phenanthroline, and phenylmethylsulfonyl fluoride did not interfere with the binding of P. gingivalis. However, the binding of P. gingivalis to trypsin- or chymotrypsin-pretreated sHAP beads was reduced.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Understanding how mucosal pathogens modulate the immune response may facilitate the development of vaccines for disparate human diseases. In the present study, human monocyte-derived DC (MDDC)were pulsed with LPS of the oral pathogen Porphyromonas gingivalis and Escherichia coli 25922 and analyzed for: (i) production of Th-biasing/inflammatory cytokines; (ii) maturation/costimulatory molecules; and (iii) induction of allogeneic CD4+ and naive CD45RA+ T cell proliferation and release of Th1 or Th2 cytokines. We show that E. coli LPS-pulsed MDDC released Th1-biasing cytokines - consisting of high levels of IL-12 p70, IFN-gamma-inducible protein 10 (IP-10) - but also TNF-alpha, IL-10, IL-6 and IL-1beta. In contrast, no IL-12 p70 or IP-10, and lower levels of TNF-alpha and IL-10 were induced by P. gingivalis LPS. These differences were sustained at LPS doses that yielded nearly equivalent maturation of MDDC; moreover the T cell response was consistent: E. coli LPS-pulsed MDDC induced higher T cell proliferation, and T cells released more IFN-gamma and IL-2, but less IL-5 than T cells co-cultured with P. gingivalis LPS pulsed-MDDC. IL-13 was secreted by naive CD45RA+CD45RO-CD4+ T cells in response to P. gingivalisLPS-pulsed MDDC. These results suggest that human MDDC can be polarized by LPS from the mucosal pathogen P. gingivalis to induce a Th2 effector response in vitro.  相似文献   

7.
Interleukin 12 (IL-12) is an efficient inducer and enhancer of gamma interferon (IFN-gamma) production by both resting and activated T cells. There is evidence that human monocytes exposed to IFN-gamma have enhanced ability to produce IL-12 when stimulated with lipopolysaccharide (LPS). In this study, it was demonstrated that LPS from the oral periodontal pathogen Porphyromonas gingivalis stimulated monocytes primed with IFN-gamma to release IL-12, thereby enhancing IFN-gamma accumulation in T-cell populations. P. gingivalis LPS was shown to enhance IL-12 induction of IFN-gamma in T cells in a manner independent from TNF-alpha contribution. The levels of T-cell IL-12 receptors were not affected by P. gingivalis LPS and played only a minor role in the magnitude of the IFN-gamma response. These data suggest that LPS from P. gingivalis establishes an activation loop with IL-12 and IFN-gamma with potential to augment the production of inflammatory cytokines in relation to the immunopathology of periodontitis. We previously reported that the major cysteine proteinases (gingipains) copurifying with LPS in this organism were responsible for reduced IFN-gamma accumulation in the presence of IL-12. However, the addition of the gingipains in the presence of LPS resulted in partial restoration of the IFN-gamma levels. In the destructive periodontitis lesion, release of gingipains from the outer membrane (OM) of P. gingivalis could lead to the downregulation of Th1 responses, while gingipain associated with LPS in the OM or in OM vesicles released from the organism could have net stimulatory effects.  相似文献   

8.
Porphyromonas gingivalis (P.g) is the primary bacterial agent in many forms of chronic periodontitis. Since polymorphonuclear leukocytes (PMNs) are first-line responders to P.g.- induced inflammation, and fibrinogen is important for in vivo PMN in this disease, we have studied the effect of N-formyl-methionyl-leucyl-phenylalanine (fMLP) (an inflammatory stimulus), P.g. fimbriae and fimbrial peptides (based on FimA, the main structural protein of P.g. fimbriae) on PMN-fibrinogen interactions. Freshly isolated human PMNs were allowed to react with FITC-Fibrinogen and various fimbrial peptides (denoted as FimA followed by amino acid number within whole FimA protein), and FITC-Fibrinogen binding was measured using flow cytometry. Freshly isolated neutrophils were also challenged with Fibrinogen and/or fimbrial peptides to measure IL-8 secretion using ELISA. Our studies show that fibrinogen binding to PMNs is enhanced (p < 0.01) in response to fMLP as well as fimbrial peptides (FimA 61-80) containing the motif LTTE (p < 0.01) in a dose dependent manner but not in response to peptides without that motif. We also observed that fMLP and FimA 61-80 have an additive effect on fibrinogen binding to PMNs (p < 0.05), and fMLP and FimA 171-185 significantly inhibit fMLP-induced fibrinogen binding (p < 0.01). To determine of the role of inflammatory cytokines, we examined IL-8 release from PMNs in response to combinations of P. gingivalis fimbriae, fMLP and fibrinogen. In all cases, IL-8 release increased in a dose-dependent manner (p < 0.05). fMLP-fibrinogen effect on IL-8 release from PMNs was synergistic while fimbriae-fibrinogen effect was additive. In summary, PMN priming by fimbrial peptides facilitates fibrinogen-PMN interaction and may increase inflammation.  相似文献   

9.
The Porphyromonas gingivalis fimbria is an important virulence factor involved in the adherence and colonization of the organism in the oral cavity. In this study, we transformed this organism with a gene, fimA381, encoding the fimbrial subunit of P. gingivalis 381 (fimbrillin) by using the host-vector system that we developed previously and examined expression of the cloned fimA381 gene. The recombinant plasmid pYHF2 was constructed by ligating a fragment containing the fimA381 gene into the plasmid vector pYH420 and transformed into the restriction-deficient P. gingivalis host YH522. pYHF2 was autonomously maintained in YH522 cells, and the fimbrillin polypeptide (recombinant fimbrillin) was fully expressed. The molecular mass of the recombinant fimbrillin was evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis as 41 kDa, which was identical to that of the native fimbrillin of strain 381. The amino acid sequences of the 20 amino-terminal residues of the recombinant fimbrillin and the native fimbrillin of the strain 381 were identical. In addition, characteristic long and thin fimbrial structures (recombinant fimbriae) that were distinguishable from the host's native fimbriae when examined by immunogold electron microscopy were observed around the cell surface of the transformants containing the fimA381 gene. These results suggested that transformation of fimA gene from a different strain of P. gingivalis followed by accumulation of the mature fimbrial subunit protein was sufficient for production of fimbrial structures that were observable by electron microscopy.  相似文献   

10.
Toll-like receptors (TLRs) and other pattern-recognition receptors (PRRs) of the innate immune system form functional receptor complexes that recognize and respond to pathogen-associated molecular patterns (PAMPs). Porphyromonas gingivalis is an important pathogen in human periodontitis and has also been implicated in atherosclerosis. A major virulence factor of this pathogen is the fimbriae, which function as a surface adhesin. Here we present evidence that fimbriae also constitute a predominant P. gingivalis proinflammatory molecule which activates the TLR signaling pathway resulting in induction of proinflammatory cytokines (IL-1beta, IL-6, and TNF-alpha) and chemokines (IL-8) in monocytic cells. Although TLR2 and TLR4 mediate cellular activation in response to fimbriae, other PRRs, namely CD14 and CD11b/CD18, are involved in the recognition of fimbriae. We thus propose that fimbriae function as a PAMP which interacts with a PRR multi-receptor complex, where CD14 and CD11b/CD18 function as recruiting receptors and TLRs function as signaling receptors. In addition to cytokine induction, TLR activation by fimbriae also results in upregulation of the CD40, CD80, and CD86 costimulatory molecules in antigen-presenting cells, suggesting that fimbriae are sensed as a potential "danger" to the host immune system. Moreover, proinflammatory cytokine induction is attenuated upon repeated cellular stimulation with P. gingivalis fimbriae. This mechanism of tolerance induction which serves to mitigate excessive and potentially harmful inflammatory reactions appears to be due partly to fimbria-induced downregulation of the expression of interleukin-1 receptor-associated kinase-1 (IRAK-1), an important signaling intermediate of the TLR pathway. Understanding the molecular basis of how the host recognizes and responds to P. gingivalis fimbriae is essential for developing molecular approaches to control P. gingivalis-induced inflammatory responses in periodontal disease and perhaps atherosclerosis.  相似文献   

11.
Porphyromonas gingivalis, a gram-negative anaerobe, is implicated in the etiology of adult periodontitis. P. gingivalis fimbriae are one of several critical surface virulence factors involved in both bacterial adherence and inflammation. P. gingivalis fimbrillin (FimA), the major subunit protein of fimbriae, is considered an important antigen for vaccine development against P. gingivalis-associated periodontitis. We have previously shown that biologically active domains of P. gingivalis fimbrillin can be expressed on the surface of the human commensal bacterium Streptococcus gordonii. In this study, we examined the effects of oral coimmunization of germfree rats with two S. gordonii recombinants expressing N (residues 55 to 145)- and C (residues 226 to 337)-terminal epitopes of P. gingivalis FimA to elicit FimA-specific immune responses. The effectiveness of immunization in protecting against alveolar bone loss following P. gingivalis infection was also evaluated. The results of this study show that the oral delivery of P. gingivalis FimA epitopes via S. gordonii vectors resulted in the induction of FimA-specific serum (immunoglobulin G [IgG] and IgA) and salivary (IgA) antibody responses and that the immune responses were protective against subsequent P. gingivalis-induced alveolar bone loss. These results support the potential usefulness of the S. gordonii vectors expressing P. gingivalis fimbrillin as a mucosal vaccine against adult periodontitis.  相似文献   

12.
Bacterial fimbriae mediate cell adhesion and are important in colonization. Fimbrial proteins from strains of Porphyromonas (Bacteroides) gingivalis isolated from different individuals were compared for their size, amino-terminal sequence, and antigenic diversity. Two major protein components of the crude fimbrial preparations differed in apparent molecular mass, ranging from 41 to 49 kDa for the fimbrillin monomer and from 61 to 78 kDa for the other major protein. The amino-terminal sequence of the antigenically related group of proteins of the fimbrillin monomer in the 41- to 49-kDa range showed significant homology; however, minor sequence heterogeneity was observed, mainly in residues 4 to 6. One of the observed amino-terminal sequences, AFGVGDDESKVAKLTVMVYNG, resembled the deduced sequence of P. gingivalis 381 (D.P. Dickinson, M. K. Kubiniec, F. Yoshimura, and R.J. Genco, J. Bacteriol. 170:1658-1665, 1988). Fimbriae from all the strains of P. gingivalis showing this sequence contained a fimbrillin monomer of 43 kDa and showed a strong reaction with both polyclonal and monoclonal antibodies directed to the fimbriae from P. gingivalis 2561 (381). Fimbriae from strains showing amino-terminal sequence variations in residues 4 to 6 (i.e., substitution of VGD with either E or NAG) were more diverse in their molecular sizes. Most of these variant fimbriae showed weak reactions with the polyclonal antibodies and no reaction with the monoclonal antibodies induced to the fimbriae of strain 2561. No correlation could be established between the molecular size and immunological reactivity of the fimbrillin monomer of P. gingivalis strains. Strains 9-14K-1 and HG 564 not only showed markedly different sequences from the other three amino-terminal sequences but also did not react with either polyclonal or monoclonal antibodies to the fimbriae of strain 2561. Strains W50, W83, and AJW 5 failed to show any immunological reactivity with the antibodies to fimbrillin or fimbriae of strain 2561. Fimbriae from different strains revealed different immunologic reactions with rabbit antisera to each of the synthetic peptides of residues 59-78 (peptide I), 79-100 (peptide J), and 91-108 (peptide E) of strain 381. These results suggest that P. gingivalis fimbrillin subunits have size, sequence, and antigenic heterogeneity among the strains and that these differences may be important in the function and immune reactivities of the fimbriae.  相似文献   

13.
Interaction between different bacterial plaque pathogens and dendritic cells may induce different types of T helper (Th) cell response, which is critical in the pathogenesis of periodontitis. In this study we investigated the effects of lipopolysaccharide (LPS) from Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans on human monocyte-derived dendritic cells (Mo-DCs) with respect to co-stimulatory molecule expression, cytokine production and Th cell differentiation. Unlike Escherichia coli and A. actinomycetemcomitans LPS, P. gingivalis LPS induced only low levels of CD40, CD80, HLA-DR and CD83 expression on Mo-DCs. LPS from both bacteria induced considerably lower TNF-alpha and IL-10 than did E. coli LPS. LPS from all three bacteria induced only negligible IL-12 production. In a human mixed-leukocyte reaction, and in an ovalbumin-specific T cell response assay in mice, both types of LPS suppressed IFN-gamma production. In conclusion, stimulation by P. gingivalis LPS and A. actinomycetemcomitans LPS appears to bias Mo-DCs towards Th2 production.  相似文献   

14.
Porphyromonas gingivalis is a Gram-negative anaerobic oral black-pigmented bacterium closely associated with chronic periodontitis. Lipopolysaccharide (LPS) derived from P. gingivalis is shown to be unusual because the LPS contains a greater number of lipid A species, such as tri-, tetra-, and/or penta-acylated lipid As. In this study, a lipid A possessing penta-fatty acyl chains derived from P. gingivalis strain 381 (compound PG-381-5FA) was synthesized, and examined for its immunobiological activities, compared with a tri-acylated lipid A (compound PG-381-3FA) synthesized previously. Compound PG-381-5FA, similar to compound PG-381-3FA, demonstrated weaker activity in a Limulus test as compared with Escherichia coli-type synthetic lipid A (compound 506). Compound PG-381-5FA, followed by compound PG-381-3FA, induced KC, interleukin-6, and tumour necrosis factor-alpha production in peritoneal macrophages from LPS-responsive C3H/HeN mice, but not in those from LPS-hyporesponsive C3H/HeJ mice. Furthermore, compound PG-381-5FA, as well as compound PG-381-3FA, activated nuclear factor-kappaB via Toll-like receptor (TLR)4/mD-2, but not TLR2, in a manner similar to compound 506, and worked as an antagonist for compound 506-induced cell activation. In the case of human peripheral blood mononuclear cells, compound PG-381-5FA showed much stronger IL-6-inducing activity than compound PG-381-3FA. The present results demonstrate that the chemical synthesis of a penta-acylated lipid A, mimicking the natural lipid A portion of LPS from P. gingivalis, is attributable to immune cell activation through TLR4, similar to that of compound 506.  相似文献   

15.
HLA class II-restricted proliferative and cytotoxic T cell (CTL) responses to B cell chronic lymphocytic leukaemia (B-CLL) can be generated using autologous dendritic cells (DCs) pulsed with tumour cell lysate. In this study a number of different approaches were used to optimize further the in vitro system. First, the effects of a variety of maturation agents were studied. The addition of TNF-alpha, polyriboinosinic polyribocytidylic acid (Poly(I:C)) and LPS to autologous DCs resulted in the emergence of only a small percentage of CD83+ DCs, IFN-alpha having no demonstrable effect. Only the addition of Poly(I:C) to DCs resulted in modestly increased specific cytotoxicity to B-CLL targets, IFN-alpha and LPS having no effect. Secondly, T cells were pretreated with IL-15, prior to culturing with lysate-pulsed autologous DCs. A significant increase in T cell activation (P = 0.038), IFN-gamma secretion (P = 0.030) and specific cytotoxicity to B-CLL targets (P = 0.006) was demonstrated compared to untreated T cells. Thirdly, monocyte derived DCs electrofused with B-CLL B cells were compared with lysate-pulsed DCs. T cells stimulated by fused DCs generated higher levels of specific cytotoxicity to autologous B-CLL B cell targets than those stimulated by lysate pulsed DCs (P = 0.013). Blocking studies demonstrated inhibition of this cytotoxicity by both anti-CD4 (P = 0.062) and anti-CD8 monoclonal antibodies (P = 0.018), suggesting the generation of both HLA class I- and HLA class II-restricted CTL responses. In summary, in vitro B-CLL-specific T cell responses can be enhanced further by preincubating T cells with IL-15 and using autologous fused DC-B-CLL hybrids instead of autologous lysate-pulsed DCs. These preliminary data require confirmation with larger numbers of patients. Such an approach, however, may eventually provide effective immunotherapy for treatment of B-CLL.  相似文献   

16.
Malassezia enhances natural killer cell-induced dendritic cell maturation   总被引:5,自引:0,他引:5  
Human natural killer (NK) cells can induce cell death in autologous dendritic cells (DCs), though an interaction between these two cell types can also lead to a reciprocal activation. We have recently shown cell contact between NK cells and DCs in vivo, in Malassezia-induced lesional skin of patients with atopic eczema, where the yeast acts as an allergen although it is part of the normal skin microflora. Here we characterize the interaction of human NK cells and monocyte-derived DCs (MDDCs) by using an in vitro system where short-term activated polyclonal NK cells are cocultured with autologous, immature, Malassezia-stimulated or lipopolysaccharide-matured MDDCs. We found that the number of CD83(+) MDDCs increased in the immature and Malassezia-stimulated MDDCs upon coculture with NK cells, while an increased number of CD86(+) cells was detected in the Malassezia-stimulated MDDCs. NK cell-MDDC interaction induced the production of interleukin-8 (IL-8). In conclusion, our results imply that NK cells provide maturation signals and may play a role in inducing IL-8 production in DCs. Furthermore, the increased expression of CD86 on Malassezia-stimulated MDDCs might have a function in subsequent T-cell activation by DCs, and indicate a role for NK cell-DC interaction in modulating the immune responses to microbial stimuli.  相似文献   

17.
Porphyromonas gingivalis, one of the causative agents of adult periodontitis, attaches and forms biofilms on substrata of Streptococcus gordonii. Coadhesion and biofilm development between these organisms requires the interaction of the short fimbriae of P. gingivalis with the SspB streptococcal surface polypeptide. In this study we investigated the structure and binding activities of the short fimbriae of P. gingivalis. Electron microscopy showed that isolated short fimbriae have an average length of 103 nm and exhibit a helical structure with a pitch of ca. 27 nm. Mfa1, the major protein subunit of the short fimbriae, bound to SspB protein, and this reaction was inhibited by purified recombinant Mfa1 and monospecifc anti-Mfa1 serum in a dose-dependent manner. Complementation of a polar Mfa1 mutant with the mfa1 gene restored the coadhesion phenotype of P. gingivalis. Hence, the Mfa1 structural fimbrial subunit does not require accessory proteins for binding to SspB. Furthermore, the interaction of Mfa1 with SspB is necessary for optimal coadhesion between P. gingivalis and S. gordonii.  相似文献   

18.
Guo H  Wang X  Jiang G  Yang P 《Immunology letters》2006,107(1):71-75
Porphyromonas gingivalis is implicated in the etiology of chronic periodontitis. Fimbriae are one of several critical surface virulence factors of P. gingivalis. Interleukin 15 (IL-15) is a critical important cytokine for the differentiation of B-1 cells into IgA-inducing cells in mucosal tissues and the proliferation of B cells. The present study constructed a co-expression plasmid pIRES-fimA:IL-15 encoding fimbrinllin (FimA), a subunit of fimbriae and IL-15 as a sIgA-enhancing anti-P. gingivalis FimA vaccine. The plasmid pIRES-fimA:IL-15 was transfected to CHO cells. The expressions of FimA and IL-15 in CHO cells were verified by Western blot and ELISA. Mice were immunized with pIRES-fimA:IL-15 via nasal or intramucusal route. The results showed that nasal immunization was capable of promoting Ag-specific immune responses in the oral region as well as systemic immunity. When immunized via nasal route, IL-15 expressed by the plasmid enhanced FimA-specific sIgA antibody response. In conclusion, a co-expression plasmid pIRES-fimA:IL-15 has been constructed, and when immunized via nasal route, antigen-specific sIgA antibody response could be modulated positively in immunized mice.  相似文献   

19.
The humoral immune responses of patients with periodontitis were evaluated to characterize the host response to Porphyromonas gingivalis. A sonic extract of P. gingivalis 381 from whole cells was fractionated by gel chromatography and ion-exchange chromatography. The fractionated extracts were evaluated by Western blot (immunoblot) analyses with patient sera. A dominant antigen was identified from the sonic extract with an apparent molecular mass of 53 kDa. The 53-kDa protein antigen (Ag53) was purified by affinity chromatography by using a monoclonal antibody. Ag53 was detected on the vesicle surface of P. gingivalis 381 by immunoelectron microscopy by using the monoclonal antibody and was detected as a major protein in the outer membrane and in vesicles by Western blot analysis. Monoclonal antibody cross-reactivity to Ag53 in the sonic extracts of P. gingivalis ATCC 33277, P. gingivalis 1021, and Porphyromonas endodontalis ATCC 35406 was revealed. Seventy-seven patients with periodontitis were examined for their responses to Ag53. Serum immunoglobulin G (IgG) from 54 patients reacted strongly to Ag53; however, serum IgG from the remaining 23 patients did not exhibit detectable reactivity at all to Ag53, even though the patients had high serum IgG titers to the sonic extract. Ag53 is a new marker that represents an interesting aspect of the humoral immune response to P. gingivalis in patients with periodontitis.  相似文献   

20.
It has been shown that Porphyromonas gingivalis 381, a suspected periodontopathogen, possesses fimbriae on its cell surface. The organism is also known to produce proteases which can degrade the host cell surface matrix proteins. In this study, we investigated the effect of protease on the binding of the purified P. gingivalis fimbriae to cultured fibroblasts or matrix proteins. A protease that can hydrolyze benzoyl-L-arginine p-nitroanilide was obtained from P. gingivalis 381 cells by sonication in phosphate-buffered 0.2% Triton X-100 and was purified by column chromatography. The molecular size of the protease was estimated to be 55 kDa by gel filtration or 47 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The enzyme activity was markedly inhibited by sulfhydryl reagents, antipain, and leupeptin. The protease degraded various host proteins, including collagen and fibronectin, and cleaved the COOH terminus of the arginine residue in peptides such as benzoyl-L-arginine p-nitroanilide. However, P. gingivalis fimbriae were not degraded by protease activity. The enzyme activity was enhanced in the presence of reducing agents or CaCl2. When cultured fibroblasts were partially treated with the protease, the binding of the purified P. gingivalis fimbriae to the fibroblast monolayer was increased significantly. However, this enhancing effect was suppressed upon the addition of antipain and leupeptin. Similarly, binding of the fimbriae to the collagen or fibronectin immobilized on the microtiter wells was also enhanced. Addition of these host matrix proteins efficiently inhibited the binding of fimbriae to the fibroblast monolayer. The binding assay of fimbriae using dipeptidyl ligand affinity column chromatography demonstrated a clear interaction between fimbriae and the arginine residue. Taken together, these results indicate that the P. gingivalis protease at least partially degrades the host matrix proteins, which, in turn, may lead to an increased exposure of the cryptic ligands that can result in enhanced fimbria-mediated binding of this organism to periodontal tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号