共查询到20条相似文献,搜索用时 0 毫秒
1.
Cortes-Bratti X Chaves-Olarte E Lagergård T Thelestam M 《Infection and immunity》2000,68(12):6903-6911
The chancroid bacterium Haemophilus ducreyi produces a toxin (HdCDT) which is a member of the recently discovered family of cytolethal distending toxins (CDTs). These protein toxins prevent the cyclin-dependent kinase cdc2 from being activated, thus blocking the transition of cells from the G(2) phase into mitosis, with the consequent arrest of intoxicated cells in G(2). It is not known whether these toxins act by signaling from the cell surface or intracellularly only. Here we report that HdCDT has to undergo at least internalization before being able to act. Cellular intoxication was inhibited (i) by removal of clathrin coats via K(+) depletion, (ii) by treatment with drugs that inhibit receptor clustering into coated pits, and (iii) in cells genetically manipulated to fail in clathrin-dependent endocytosis. Intoxication was also completely inhibited in cells treated with bafilomycin A1 or nocodazole and in cells incubated at 18 degrees C, i.e., under conditions known to block the fusion of early endosomes with downstream compartments. Moreover, disruption of the Golgi complex by treatment with brefeldin A or ilimaquinone blocked intoxication. In conclusion, our data indicate that HdCDT enters cells via clathrin-coated pits and has to be transported via the Golgi complex in order to intoxicate cells. This is the first member of the family of CDTs for which cellular internalization and some details of the pathway have been demonstrated. 相似文献
2.
Shima A Hinenoya A Asakura M Sugimoto N Tsukamoto T Ito H Nagita A Faruque SM Yamasaki S 《Infection and immunity》2012,80(4):1323-1332
Cytolethal distending toxins (CDTs), which block eukaryotic cell proliferation by acting as inhibitory cyclomodulins, are produced by diverse groups of Gram-negative bacteria. Active CDT is composed of three polypeptides--CdtA, CdtB, and CdtC--encoded by the genes cdtA, cdtB, and cdtC, respectively. We developed a PCR-restriction fragment length polymorphism assay for the detection and differentiation of five alleles of cdtB (Cdt-I through Cdt-V) in Escherichia coli and used the assay to investigate the prevalence and characteristic of CDT-producing E. coli in children with diarrhea (A. Hinenoya et al., Microbiol. Immunol. 53:206-215, 2009). In these assays, two untypable cdtB genes were detected and the organisms harboring the cdtB gene were identified as Providencia alcalifaciens (strains AH-31 and AS-1). Nucleotide sequence analysis of the cdt gene cluster revealed that the cdtA, cdtB, and cdtC genes of P. alcalifaciens are of 750, 810, and 549 bp, respectively. To understand the possible horizontal transfer of the cdt genes among closely related species, the presence of cdt genes was screened in various Providencia spp. by colony hybridization assay, and the cdt gene cluster was found in only limited strains of P. alcalifaciens. Genome walking revealed that the cdt gene cluster of P. alcalifaciens is located adjacent to a putative transposase gene, suggesting the locus might be horizontally transferable. Interestingly, the CDT of P. alcalifaciens (PaCDT) showed some homology with the CDT of Shigella boydii. Whereas filter-sterilized lysates of strains AH-31 and AS-1 showed distention of CHO but not of HeLa cells, E. coli CDT-I exhibited distention of both cells. This activity of PaCDT was confirmed by generating recombinant PaCDT protein, which could also be neutralized by rabbit anti-PaCdtB antibody. Furthermore, recombinant PaCDT was found to induce G(2)/M cell cycle arrest and phosphorylation of host histone H2AX, a sensitive marker of DNA double-strand breaks. To our knowledge, this is the first report showing that certain clinical P. alcalifaciens strains could produce variants of the CDTs compared. 相似文献
3.
Biogenesis of the Actinobacillus actinomycetemcomitans cytolethal distending toxin holotoxin 下载免费PDF全文
Ueno Y Ohara M Kawamoto T Fujiwara T Komatsuzawa H Oswald E Sugai M 《Infection and immunity》2006,74(6):3480-3487
The cell cycle G2/M specific inhibitor cytolethal distending toxin (CDT) from Actinobacillus actinomycetemcomitans is composed of CdtA, CdtB, and CdtC coded on the cdtA, cdtB, and cdtC genes that are tandem on the chromosomal cdt locus. A. actinomycetemcomitans CdtA has the lipid binding consensus domain, the so-called "lipobox", at the N-terminal signal sequence. Using Escherichia coli carrying plasmid pTK3022, we show that the 16th residue, cysteine, of CdtA bound [3H]palmitate or [)H]glycerol. Further, posttranslational processing of the signal peptide, CdtA, was inhibited using globomycin, an inhibitor of lipoprotein-specific signal peptidase II. Fractionation and immunoblotting show the lipid-modified CdtA is present in the outer membrane. Immunoprecipitation and the pull-down assay of the CDT complex from E. coli carrying a plasmid containing cdtABC demonstrated that the CDT complex in the periplasm is composed of CdtA, CdtB, and CdtC and that the CDT complex in culture supernatant is an N-terminally truncated (36 to 43 amino acids) form of CdtA (CdtA'), CdtB, and CdtC. This suggests that CDT is present as a complex both in the periplasm and the supernatant where CdtA undergoes posttranslation processing to CdtA' in the process of biogenesis and secretion of CDT holotoxin into the culture supernatant. Site-directed mutagenesis of the 16th cysteine residue to glycine in CdtA altered localization of CdtA in the cell and reduced the amount of CDT activity in the culture supernatant. This suggests that CDT forms a complex inside the periplasm for lipid modification where posttranslational processing of CdtA plays an important role for the efficient production of CDT holotoxin into the culture supernatant. 相似文献
4.
Cytolethal distending toxin (CDT) is a bacterial toxin that initiates a eukaryotic cell cycle block at the G2 stage prior to mitosis. CDT is produced by a number of bacterial pathogens including: Campylobacter species, Escherichia coli, Salmonella enterica serovar Typhi, Shigella dystenteriae, enterohepatic Helicobacter species, Actinobacillus actinomycetemcomitans (the cause of aggressive periodontitis), and Haemophilus ducreyi (the cause of chancroid). The functional toxin is composed of three proteins; CdtB potentiates a cascade leading to cell cycle block, and CdtA and CdtC function as dimeric subunits, which bind CdtB and delivers it to the mammalian cell interior. Once inside the cell, CdtB enters the nucleus and exhibits a DNase I-like activity that results in DNA double-strand breaks. The eukaryotic cell responds to the DNA double-strand breaks by initiating a regulatory cascade that results in cell cycle arrest, cellular distension, and cell death. Mutations in CdtABC that cause any of the three subunits to lose function prevent the bacterial cell from inducing cytotoxicity. The result of CDT activity can differ somewhat depending on the eukaryotic cell types affected. Epithelial cells, endothelial cells, and keratinocytes undergo G2 cell cycle arrest, cellular distension, and death; fibroblasts undergo G1 and G2 arrest, cellular distension, and death; and immune cells undergo G2 arrest followed by apoptosis. CDT contributes to pathogenesis by inhibiting both cellular and humoral immunity via apoptosis of immune response cells, and by generating necrosis of epithelial-type cells and fibroblasts involved in the repair of lesions produced by pathogens resulting in slow healing and production of disease symptoms. Thus, CDT may function as a virulence factor in pathogens that produce the toxin. 相似文献
5.
Yamano R Ohara M Nishikubo S Fujiwara T Kawamoto T Ueno Y Komatsuzawa H Okuda K Kurihara H Suginaka H Oswald E Tanne K Sugai M 《Journal of clinical microbiology》2003,41(4):1391-1398
Cytolethal distending toxin (CDT) is a newly identified virulence factor produced by several pathogenic bacteria implicated in chronic infection. Seventy three strains of periodontopathogenic bacteria were examined for the production of CDT by a HeLa cell bioassay and for the presence of the cdt gene by PCR with degenerative oligonucleotide primers, which were designed based on various regions of the Escherichia coli and Campylobacter cdtB genes, which have been successfully used for the identification and cloning of cdtABC genes from Actinobacillus actinomycetemcomitans Y4 (M. Sugai et al., Infect. Immun. 66:5008-5019, 1998). CDT activity was found in culture supernatants of 40 of 45 tested A. actinomycetemcomintans strains, but the titer of the toxin varied considerably among these strains. PCR experiments indicated the presence of Y4-type cdt sequences in these strains, but the rest of A. actinomycetemcomitans were negative by PCR amplification and also by Southern blot analysis for the cdtABC gene. In the 40 CDT-positive strains, Southern hybridization with HindIII-digested genomic DNA revealed that there are at least 6 restriction fragment length polymorphism types. This suggests that the cdtABC flanking region is highly polymorphic, which may partly explain the variability of the CDT activity in the culture supernatants. The rest of tested strains of periodontopathogenic bacteria did not have detectable CDT production by the HeLa cell assay and for cdtB sequences by PCR analysis under our experimental conditions. These results strongly suggested that CDT is a unique toxin predominantly produced by A. actinomycetemcomitans among periodontopathogenic bacteria. 相似文献
6.
Avibacterium paragallinarum is the causative agent of infectious coryza, an important respiratory disease of chickens. Cytolethal distending toxins (CDTs) are a family of protein cytotoxins that cause cell cycle arrest and apoptosis in eukaryotic cells. Whole-genome sequencing analysis showed that Av. paragallinarum contains cdtABC genes. Filter-sterilized lysates prepared from Av. paragallinarum or from recombinant Escherichia coli expressing cdtABC genes exhibited CDT activity on HeLa cells and chicken embryo fibroblast (DF-1) cells. In vitro DNase assays showed that purified recombinant CdtB has DNase activity. Polymerase chain reaction and sequencing analysis revealed that the cdtABC genes are present in all strains of Av. paragallinarum examined in this study. This is the first report of the identification and functional analysis of cdtABC genes from Av. paragallinarum. The gene products of cdtABC genes may be involved in the pathogenesis of the disease caused by Av. paragallinarum. 相似文献
7.
Escherichia coli CdtB mediates cytolethal distending toxin cell cycle arrest 总被引:6,自引:0,他引:6 下载免费PDF全文
We previously reported that the CdtB polypeptide of Escherichia coli cytolethal distending toxin (CDT) shares significant pattern-specific homology with mammalian type I DNases. In addition, the DNase-related residues of CdtB are required for cellular toxicity. Here we demonstrate that purified CdtB converts supercoiled plasmid DNA to relaxed and linear forms and promotes cell cycle arrest when combined with an E. coli extract containing CdtA and CdtC. CdtB alone had no effect on HeLa cells, however; introduction of the polypeptide into HeLa cells by electroporation resulted in cellular distension, chromatin fragmentation, and cell cycle arrest, all of which are consequences of CDT action. In contrast to these findings, purified CdtB(H154A) lacked both DNA-nicking and cell cycle arrest activities. These results suggest a functional relationship between DNase-related residues in CdtB and CDT biological activity. 相似文献
8.
Cytolethal distending toxin (Cdt) is produced by a variety of pathogenic bacteria, including pathogenic serotypes of Shiga toxin-producing Escherichia coli (STEC). The Cdt family comprises five variants (Cdt-I to Cdt-V) encoded by three genes located within the chromosome or plasmids or, in the case of Cdt-I, within bacteriophages. In this study, we evaluated the occurrence of the cdt gene in a collection of 140 environmental STEC isolates. cdt was detected in 12.1% of strains, of which five strains carried inducible bacteriophages containing the Cdt-V variant. Two Cdt-V phages of the Siphoviridae morphology lysogenized Shigella sonnei, generating two lysogens: a single Cdt phage lysogen and a double lysogen, containing a Cdt phage and an Stx phage, both from the wild-type strain. The rates of induction of Cdt phages were evaluated by quantitative PCR, and spontaneous induction of Cdt-V phage was observed, whereas induction of Stx phage in the double lysogen was mitomycin C dependent. The Cdt distending effect was observed in HeLa cells inoculated with the supernatant of the Cdt-V phage lysogen. A ClaI fragment containing the cdt-V gene of one phage was cloned, and sequencing confirmed the presence of Cdt-V, as well as a fragment downstream from the cdt homolog to gpA, encoding a replication protein of bacteriophage P2. Evaluation of Cdt-V phages in nonclinical water samples showed densities of 10(2) to 10(9) gene copies in 100 ml, suggesting the high prevalence of Cdt phages in nonclinical environments. 相似文献
9.
The cytolethal distending toxin of Haemophilus ducreyi inhibits endothelial cell proliferation 下载免费PDF全文
Haemophilus ducreyi, the etiologic agent of the sexually transmitted disease chancroid, produces a cytolethal distending toxin (HdCDT) that inhibits mammalian cell proliferation. We investigated the effects of HdCDT on normal human endothelial cells and on tubule formation in an in vitro model of angiogenesis. Endothelial cells were arrested in the G2 phase of the cell cycle, and tubule formation was inhibited in a dose-dependent manner. The antiproliferative activities of HdCDT on endothelial cells might contribute to the characteristic slow healing and persistence of chancroid ulcers. 相似文献
10.
Campylobacter jejuni cytolethal distending toxin mediates release of interleukin-8 from intestinal epithelial cells 下载免费PDF全文
Hickey TE McVeigh AL Scott DA Michielutti RE Bixby A Carroll SA Bourgeois AL Guerry P 《Infection and immunity》2000,68(12):6535-6541
Live cells of Campylobacter jejuni and Campylobacter coli can induce release of interleukin-8 (IL-8) from INT407 cells. Additionally, membrane fractions of C. jejuni 81-176, but not membrane fractions of C. coli strains, can also induce release of IL-8. Membrane preparations from 81-176 mutants defective in any of the three membrane-associated protein subunits of cytolethal distending toxin (CDT) were unable to induce IL-8. The presence of the three cdt genes on a shuttle plasmid in trans restored both CDT activity and the ability to release IL-8 to membrane fractions. However, CDT mutations did not affect the ability of 81-176 to induce IL-8 during adherence to or invasion of INT407 cells. When C. jejuni cdt genes were transferred on a shuttle plasmid into a C. coli strain lacking CDT, membrane preparations became positive in both CDT and IL-8 assays. Growth of C. jejuni in physiological levels of sodium deoxycholate released all three CDT proteins, as well as CDT activity and IL-8 activity, from membranes into supernatants. Antibodies against recombinant forms of each of the three CDT subunit proteins neutralized both CDT activity and the activity responsible for IL-8 release. The data suggest that C. jejuni can induce IL-8 release from INT407 cells by two independent mechanisms, one of which requires adherence and/or invasion and the second of which requires CDT. 相似文献
11.
Characterisation of cytolethal distending toxin (CDT) mutants of Campylobacter jejuni 总被引:3,自引:0,他引:3
Purdy D Buswell CM Hodgson AE McAlpine K Henderson I Leach SA 《Journal of medical microbiology》2000,49(5):473-479
In order to assess the contribution of cytolethal distending toxin (CDT) to the toxigenicity and pathogenicity of Campylobacter jejuni, the C. jejuni 81-176 and C. jejuni NCTC 11168 CDTs were inactivated by insertional mutation of the cdtB toxin subunit. Cell-free sonicates from isogenic C. jejuni 81-176 cdtB- strains were found to be greatly attenuated in HeLa cytotoxicity assays, whilst still retaining some toxigenicity. Sonicates from a C. jejuni NCTC 11168 cdtB- strain produced no detectable cytotoxicity. When orally administered to adult severe combined immunodeficient (SCID) mice, C. jejuni cdtB mutant strains were unaffected in enteric colonisation abilities but demonstrated impaired invasiveness into blood, spleen and liver tissues. These data suggest that CDT may be the principal toxin produced by this species and that some C. jejuni strains may generate additional toxigenic factor(s) distinct from CDT. 相似文献
12.
Persistent murine infection with Helicobacter hepaticus leads to chronic gastrointestinal inflammation and neoplasia in susceptible strains. To determine the role of the virulence factor cytolethal distending toxin (CDT) in the pathogenesis of this organism, interleukin-10-deficient (IL-10-/-) mice were experimentally infected with wild-type H. hepaticus and a CDT-deficient isogenic mutant. Both wild-type H. hepaticus and the CDT-deficient mutant successfully colonized IL-10-/- mice, and they reached similar tissue levels by 6 weeks after infection. Only animals infected with wild-type type H. hepaticus developed significant typhlocolitis. However, by 4 months after infection, the CDT-deficient mutant was no longer detectable in IL-10-/- mice, whereas wild-type H. hepaticus persisted for the 8-month duration of the experiment. Animals infected with wild-type H. hepaticus exhibited severe typhlocolitis at 8 months after infection, while animals originally challenged with the CDT-deficient mutant had minimal cecal inflammation at this time point. In follow-up experiments, animals that cleared infection with the CDT-deficient mutant were protected from rechallenge with either mutant or wild-type H. hepaticus. Animals infected with wild-type H. hepaticus developed serum immunoglobulin G1 (IgG1) and IgG2c responses against H. hepaticus, while animals challenged with the CDT-deficient mutant developed significantly lower IgG2c responses and failed to mount IgG1 responses against H. hepaticus. These results suggest that CDT plays a key immunomodulatory role that allows persistence of H. hepaticus and that in IL-10-/- mice this alteration of the host immune response results in the development of colitis. 相似文献
13.
Characterization of cytolethal distending toxin genes and expression in shiga toxin-producing Escherichia coli strains of non-O157 serogroups 下载免费PDF全文
Bielaszewska M Fell M Greune L Prager R Fruth A Tschäpe H Schmidt MA Karch H 《Infection and immunity》2004,72(3):1812-1816
We identified cytolethal distending toxin and its gene (cdt) in 17 of 340 non-O157 Shiga toxin-producing Escherichia coli (STEC) strains (serotypes O73:H18, O91:H21, O113:H21, and O153:H18), all of which were eae negative. cdt is either chromosomal and homologous to cdt-V (serotypes O73:H18, O91:H21, and O113:H21) or plasmidborne and identical to cdt-III (serotype O153:H18). Among eae-negative STEC, cdt was associated with disease (P = 0.003). 相似文献
14.
Carbohydrate-binding specificity of the Escherichia coli cytolethal distending toxin CdtA-II and CdtC-II subunits 下载免费PDF全文
Intoxication by cytolethal distending toxin depends on assembly of CdtB, the active A component of this AB toxin, with the cell surface-binding (B) component, composed of the CdtA-CdtC heterodimer, to form the active holotoxin. Here we examine the cell surface binding properties of Escherichia coli-derived CdtA-II (CdtA-II(Ec)) and CdtC-II(Ec) and their capacity to provide a binding platform for CdtB-II(Ec). Using a flow cytometry-based binding assay, we demonstrate that CdtB-II(Ec) binds to the HeLa cell surface in a CdtA-II(Ec)- and CdtC-II(Ec)-dependent manner and that CdtA-II(Ec) and CdtC-II(Ec) compete for the same structure on the HeLa cell surface. Preincubation of cells with glycoproteins (thyroglobulin and fetuin), but not simple sugars, blocks surface binding of CdtA-II(Ec) and CdtC-II(Ec). Moreover, CdtA-II(Ec) and CdtC-II(Ec) bind immobilized fetuin and thyroglobulin as well as fucose and to a lesser degree N-acetylgalactoseamine and N-acetylglucoseamine. Removal of N- but not O-linked carbohydrates from fetuin and thyroglobulin prevents binding of CdtA-II(Ec) and CdtC-II(Ec) to these glycoproteins. In addition, removal of N- but not O-linked surface sugar attachments prevents CDT-II(Ec) intoxication. To characterize the cell surface ligand recognized by CdtA-II(Ec) and CdtC-II(Ec), lectins having various carbohydrate specificities were used to block CDT activity and the cell surface binding of CdtA-II(Ec) and CdtC-II(Ec). Pretreatment of cells with AAA, SNA-I, STA, UEA-I, GNA, and NPA partially or completely blocked CDT activity. AAA, EEA, and UEA-I lectins, all having specificity for fucose, blocked surface binding of CdtA-II(Ec) and CdtC-II(Ec). Together, our data indicate that CdtA-II(Ec) and CdtC-II(Ec) bind an N-linked fucose-containing structure on HeLa cells. 相似文献
15.
Pickett CL Lee RB Eyigor A Elitzur B Fox EM Strockbine NA 《Infection and immunity》2004,72(2):684-690
A collection of 20 Escherichia coli strains that produce cytolethal distending toxin (CDT) were analyzed for their virulence-associated genes. All of these strains were serotyped, and multiplex PCR analysis was used to ascertain the presence of genes encoding other virulence factors, including Shiga toxin, intimin, enterohemolysin, cytotoxic necrotizing factor type 1 (CNF1) and CNF2, heat-stable toxin, and heat-labile toxin. These CDT-producing strains possessed various combinations of known virulence genes, some of which have not been noted before. Partial cdtB sequences were obtained from 10 of these strains, and their predicted CdtB sequences were compared to known E. coli CdtB sequences; some of the sequences were identical to known CdtB sequences, but two were not. PCR primers based on sequence differences between the known cdt sequences were tested for their ability to detect CDT producers and to determine CDT type. Correlations between the type of CDT produced, the presence of other virulence properties, and overall strain relatedness revealed that the CDT producers studied here can be divided into three general groups, with distinct differences in CDT type and in their complement of virulence-associated genes. 相似文献
16.
Rompikuntal PK Thay B Khan MK Alanko J Penttinen AM Asikainen S Wai SN Oscarsson J 《Infection and immunity》2012,80(1):31-42
Aggregatibacter actinomycetemcomitans is implicated in aggressive forms of periodontitis. Similarly to several other Gram-negative species, this organism produces and excretes a cytolethal distending toxin (CDT), a genotoxin associated with cell distention, G2 cell cycle arrest, and/or apoptosis in many mammalian cell types. In this study, we have identified A. actinomycetemcomitans outer membrane vesicles (OMVs) as a vehicle for simultaneous delivery of multiple proteins, including CDT, into human cells. The OMV proteins were internalized in both HeLa cells and human gingival fibroblasts (HGF) via a mechanism of OMV fusion with lipid rafts in the plasma membrane. The active toxin unit, CdtB, was localized inside the nucleus of the intoxicated cells, whereas OmpA and proteins detected using an antibody specific to whole A. actinomycetemcomitans serotype a cells had a perinuclear distribution. In accordance with a tight association of CdtB with OMVs, vesicles isolated from A. actinomycetemcomitans strain D7SS (serotype a), in contrast to OMVs from a D7SS cdtABC mutant, induced a cytolethal distending effect on HeLa and HGF cells, indicating that OMV-associated CDT was biologically active. Association of CDT with OMVs was also observed in A. actinomycetemcomitans isolates belonging to serotypes b and c, indicating that OMV-mediated release of CDT may be conserved in A. actinomycetemcomitans. Although the role of A. actinomycetemcomitans OMVs in periodontal disease has not yet been elucidated, our present data suggest that OMVs could deliver biologically active CDT and additional virulence factors into susceptible cells of the periodontium. 相似文献
17.
Damek-Poprawa M Jang JY Volgina A Korostoff J DiRienzo JM 《Infection and immunity》2012,80(8):2761-2770
The cytolethal distending toxin (Cdt), produced by some clinically important Gram-negative bacterial species, is related to the family of AB-type toxins. Three heterologous proteins (CdtA, CdtB, and CdtC) and a genotoxin mode of action distinguish the Cdt from others in this toxin class. Crystal structures of several species-specific Cdts have provided a basis for predicting subunit interactions and functions. In addition, empirical studies have yielded significant insights into the in vivo interactions of the Cdt subunits. However, there are still critical gaps in information about the intoxication process. In this study, a novel protein tagging technology was used to localize the subunits in Chinese hamster ovary cells (CHO-K1). A tetracysteine motif was engineered in each subunit, and in subunits with mutations in predicted functional domains, to permit detection with the fluorescein arsenical hairpin binding (FlAsH) dye Lumio green. Live-cell imaging, in conjunction with confocal microscopy, was used to capture the locations of the individual subunits in cells intoxicated, under various conditions, with hybrid heterotrimers. Using this approach, we observed the following. (i) The CdtA subunit remains on the cell surface of CHO cells in association with cholesterol-containing and cholesterol-depleted membrane. (ii) The CdtB subunit is exclusively in the cytosol and, after longer exposure times, localizes to the nucleus. (iii) The CdtC subunit is present on the cell surface and, to a greater extent, in the cytosol. These observations suggest that CdtC, but not CdtA, functions as a chaperone for CdtB entry into cells. 相似文献
18.
D D Bang F Scheutz P Ahrens K Pedersen J Blom M Madsen 《Journal of medical microbiology》2001,50(12):1087-1094
The pathogenesis of campylobacter infection in man is largely unknown, although cytolethal distending toxin (CDT) has been incriminated as a virulence factor. However, little is known about the cdt genes in Campylobacter spp. isolated from broiler chickens. A total of 350 cloacal swabs was collected and tested by conventional culture and PCR. Of the 114 Campylobacter isolates obtained, 101 (88.6%) were identified as C. jejuni and 13 (11.4%) as C. coli by conventional methods. cdt genes were detected by PCR in all the isolates except one C. jejuni isolate. Cytotoxic effects were produced in a Vero cell line, by 100 of the C. jejuni isolates. In contrast, 10 C. coli isolates produced much lower levels of toxin and 3 produced no detectable toxin. These results confirm the common occurrence of campylobacter infection in chickens and indicate that cdt genes are commonly present in both C. jejuni and C. coli isolates from broilers, but that there are distinct differences in CDT production in these two closely related species. 相似文献
19.
Association of cytolethal distending toxin locus cdtB with enteropathogenic Escherichia coli isolated from patients with acute diarrhea in Calcutta, India 下载免费PDF全文
Pandey M Khan A Das SC Sarkar B Kahali S Chakraborty S Chattopadhyay S Yamasaki S Takeda Y Nair GB Ramamurthy T 《Journal of clinical microbiology》2003,41(11):5277-5281
Among Escherichia coli strains isolated from stool specimens from patients with acute diarrhea, 1.4% were found to harbor cdtB by use of enrichment cytolethal distending toxin (CDT) PCR. These isolates were identified as being enteropathogenic E. coli (EPEC). In a retrospective study using a probe hybridization assay, 6 of 138 EPEC strains were found to harbor the cdtB locus. cdtB-positive isolates mostly belong to the O86a and O127a serogroups, with the former being associated with higher expression of CDT. Pulsed-field gel electrophoresis profiles showed that the EPEC strains harboring cdtB strains are genetically diverse. 相似文献
20.
Chien CC Taylor NS Ge Z Schauer DB Young VB Fox JG 《Journal of medical microbiology》2000,49(6):525-534
A bacterial toxin that causes progressive distension and death of Chinese hamster ovary (CHO) cells and HeLa cells, termed cytolethal distending toxin (Cdt), has been identified in several diarrhoeagenic bacteria, including Campylobacter spp. (C. jejuni and Cq coli), some pathogenic strains of Escherichia coli and Shigella spp. Genes encoding this toxin were identified as a cluster of three adjacent genes cdtA, cdtB and cdtC. Homologues of cdtB from five species of enterohepatic helicobacters (Helicobacter hepaticus, H. bilis, H. canis and two novel Helicobacter spp. isolated from mice and woodchuck, respectively) were identified by means of degenerative PCR primers, cloned and sequenced. The similarities of these partial cdtB nucleotide sequences from these Helicobacter spp. to those of cdtB genes known to be present in other bacteria were: C. jejuni, 58.3-64.8%; E. coli, 52.3-57.8%, Haemophilus ducreyi, 53.4-58.4% and Actinobacillus actinomycetemcomitans, 52.7-58.1%. Bacterial lysates from four of these helicobacters caused characteristic cytolethal distension of HeLa cells. Cdt caused cell cycle arrest at G2/M phase as measured by flow cytometry. The results demonstrated the presence of a toxin in these Helicobacter spp. belonging to the family of Cdt. 相似文献