首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Arai A  Kannari K  Shen H  Maeda T  Suda T  Matsunaga M 《Brain research》2003,972(1-2):229-234
We investigated the effect of amantadine on L-DOPA-derived extracellular dopamine (DA) levels and aromatic L-amino acid decarboxylase (AADC) activity in the striatum of rats with nigrostriatal dopaminergic denervation by 6-hydroxydopamine (6-OHDA). Pretreatment with 30 mg/kg amantadine increased the cumulative amount of extracellular DA in the striatum of 6-OHDA-lesioned rats treated with 10 mg/kg benserazide and 50 mg/kg L-DOPA to 250% of that without amantadine (P<0.01). Under pretreatment with 10 mg/kg benserazide, AADC activity after 30 mg/kg amantadine administration was reduced to 43% of controls (P<0.01). Amantadine-induced increase in L-DOPA-derived extracellular DA provides the basis for the clinical usefulness of amantadine in combination with L-DOPA. However, the effect of amantadine on L-DOPA-derived extracellular DA may not be caused by changes in AADC activity.  相似文献   

2.
In order to assess the role of striatal dopamine (DA) afferents in L-DOPA-induced dyskinesia, we have studied a large series of rats sustaining 2, 3, or 4 unilateral injections of 6-hydroxydopamine (6-OHDA) in the lateral striatum. This type of lesion produced a dose-dependent depletion of DA fibers in the caudate-putamen, which was most pronounced in the lateral aspects of this structure. An additional group of rats was injected with 6-OHDA in the medial forebrain bundle to obtain complete DA denervation on one side of the brain. During a course of chronic L-DOPA treatment, rats with intrastriatal 6-OHDA lesions developed abnormal involuntary movements (AIMs), which mapped onto striatal domains exhibiting at least approximately 90% denervation, as judged by DA transporter autoradiography. The denervated areas showed local upregulation of preproenkephalin and prodynorphin mRNA, and FosB-like immunoreactivity, which were highly correlated with the rats' AIM scores. When compared to completely DA-denervated animals, the rats with intrastriatal 6-OHDA lesions showed an overall lower incidence, lower severity and different topographic distribution of AIMs. The involvement of proximal limb and axial muscles in the abnormal movements was proportional to the spreading of the lesion from lateral towards medial aspects of the caudate-putamen. Locomotive AIMs were only seen in rats with complete lesions, but not in any of the animals with intrastriatal 6-OHDA (which showed > 5% DA fiber sparing in the medial striatum). Intrastriatally 6-OHDA-lesioned rats had a larger therapeutic window for L-DOPA than did rats with complete bundle lesions, since they exhibited an overall lower predisposition to dyskinesia but a similar degree of drug-induced motor improvement in a test of forelimb stepping. Our results are the first to demonstrate that selective and partial DA denervation in the sensorimotor part of the striatum can confer cellular and behavioral supersensitivity to L-DOPA, and that the phenomenology of L-DOPA-induced rat AIMs can be accounted for by the topography of DA denervation within the caudate-putamen.  相似文献   

3.
The centrally acting aromatic amino acid dopa decarboxylase (AADC) inhibitor, 3-hydroxybenzyl hydrazine (NSD-1015), is widely used to study the neurotransmitter-like actions of L-DOPA. However, the effects of NSD-1015 on L-DOPA-induced motor activity are unclear as both increases and decreases have been reported. We now investigate the effects of NSD-1015 on L-DOPA-induced contralateral circling behaviour in 6-OHDA-lesioned rats and on striatal levels of L-DOPA, 3-O-methyl-DOPA (3-OMD), dopamine, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) using microdialysis techniques. NSD-1015 (50-200 mg/kg i.p.) inhibited AADC activity both in the liver and striatum of normal rats. Administration of NSD-1015 (50-200 mg/kg i.p.), delayed the onset of circling produced by administration of L-DOPA (25 mg/kg i.p.) and carbidopa (12.5 mg/kg i. p.), suggesting blockade of central AADC activity. However, the duration of the L-DOPA-induced circling was prolonged and overall no inhibition of circling behaviour occurred. L-DOPA (25 mg/kg i.p.) plus carbidopa (12.5 mg/kg i.p.) increased extracellular levels of L-DOPA, 3-OMD, dopamine, DOPAC and HVA in the 6-OHDA-lesioned striatum. Pretreatment of rats with the central AADC inhibitor, NSD-1015 (100 mg/kg i.p.), potentiated the increase in dialysate levels of L-DOPA and 3-OMD. However, it did not reduce striatal dopamine levels in the 6-OHDA-lesioned hemisphere, which were elevated following L-DOPA administration. The increases in DOPAC and HVA levels were abolished by NSD-1015 pretreatment. These results suggest that, while NSD-1015 blocks central AADC activity, it also acts as a monoamine oxidase inhibitor so maintaining striatal dopamine concentration by reducing dopamine metabolism. NSD-1015, therefore, may not be an appropriate tool for the study of brain AADC activity and for assessing the neuromodulatory role of L-DOPA.  相似文献   

4.
To determine whether the adenosine A2A receptor might play a role in L-DOPA-induced dyskinesia in Parkinson's disease, we analyzed changes in the expression of A2A receptor mRNA in response to intermittent treatment with L-DOPA in rats with dopaminergic denervation by 6-hydroxydopamine (OHDA) infusion into the medial forebrain bundle. Intermittent treatment with L-DOPA increased A2A receptor mRNA levels in the dopamine-depleted striatum of 6-OHDA-lesioned rats exhibiting behavioral sensitization to L-DOPA. These results suggest that A2A receptor activation is associated with the development of motor complications induced by L-DOPA treatment.  相似文献   

5.
The aim of this study was to assess changes in L-3, 4-dihydroxyphenylalanine (L-DOPA) biotransformation in response to two-pulse infusion of L-DOPA into the striatum of freely-moving young (3-4 month) and old (21-26 month) male Wistar rats. In addition, the effects of L-DOPA infusion on the vesicular dopamine (DA) store in young rats were also studied. Both L-DOPA-induced DA overflow and uptake of the perfused L-DOPA by the striatum were used to study L-DOPA biotransformation during microdialysis. High potassium-induced DA depletion was performed to assess the dynamics of the vesicular DA store following L-DOPA infusion. Concentric microdialysis probes were stereotaxically implanted in the lateral striatum of rats of both age groups and microdialysis was begun 24 h later. All rats received 2x20 min infusions of 3 mgr L-DOPA separated by an interval of 60 min. In the striatum of both groups, L-DOPA-induced DA overflow and uptake of exogenous L-DOPA were both significantly enhanced during the second infusion compared to the first. In young rats, when a 20-min infusion of 3 mgr L-DOPA was given between 2x20 min infusions of 100 mM potassium, no increased DA release was seen at the second high potassium challenge compared with the first. Our results suggest that the enhancement of DA overflow induced by the second L-DOPA infusion is, at least partially, due to an increase in L-DOPA biotransformation, and not simply to an enlarged DA pool. In contrast to the in vitro results, our own in vivo results show that L-DOPA utilization in the aging striatum does not deteriorate with age.  相似文献   

6.
Dyskinesia is a major side effect of chronic levodopa (L-DOPA) administration, the reference treatment for Parkinson's disease (PD). High-frequency stimulation of the subthalamic nucleus (STN-HFS) alleviates parkinsonian motor symptoms and indirectly improves dyskinesia by decreasing L-DOPA requirement. However, inadequate stimulation can also trigger dyskinetic movements in PD patients and animal models. Here, we investigated the possible association between L-DOPA- and STN-HFS-induced dyskinesia and regulation of the NR2B subunit of NMDA receptors in the rodent model of PD. We subjected 6-OHDA-lesioned rats to HFS for 1h, at an intensity triggering forelimb dyskinesia. Other 6-OHDA-lesioned rats were treated with chronic high doses of L-DOPA for ten days, to induce abnormal involuntary movements. The 6-OHDA lesion regulated NR2B only in the SNr, where the activation of NR2B was observed (as assessed by phosphorylation of the Tyr(1472) residue). Both STN-HFS and L-DOPA dyskinesiogenic treatments induced NR2B activation in the STN and EP, but only L-DOPA triggered NR2B hyperphosphorylation in the striatum. Finally, the use of CP-101,606 exacerbated L-DOPA-induced motor behavior and associated NR2B hyperphosphorylation in the striatum, STN and EP. Thus, NR2B activation in basal ganglia structures is correlated with dyskinesia.  相似文献   

7.
The therapeutic benefit of L-DOPA is commonly attributed to restoration of dopamine (DA) extracellular levels in the striatum of Parkinsonian patients. However, the loss of efficacy of L-DOPA after chronic use is paradoxically associated with a similar or enhanced striatal DA response. Release of L-DOPA-derived DA depends on the widespread serotonergic (5-HT) innervation in the brain. Chronic exposure of 5-HT neurons to L-DOPA could lead to aberrant neurochemical responses beyond the striatum. Using multi-site intracerebral microdialysis in a rat model of Parkinson's disease, we showed that chronic L-DOPA treatment at a therapeutic dose (12 mg/kg/day for 10 days) homogeneously reduced basal 5-HT release and metabolism. These effects were paralleled by a decrease in tissue content of 5-HT and its metabolite. Chronic L-DOPA treatment severely altered the brain pattern of 5-HT and DA release responses to L-DOPA (3-12 mg/kg) with an overall loss of efficacy of L-DOPA to increase DA release. Our data demonstrate for the first time in vivo that the impairment of 5-HT neuronal function induced by chronic L-DOPA alters in a region-dependent manner L-DOPA-induced DA release. Changes in neurochemical pattern of L-DOPA in the brain may favour the occurrence of both motor and non-motor side effects.  相似文献   

8.
In vivo microdialysis was used to examine the effect of L-3,4-dihydroxyphenylalanine (L-DOPA) administration upon dopamine (DA) in extracellular fluid both in intact striatum and in striatum of rats treated with the catecholaminergic neurotoxin 6-hydroxydopamine (6-HDA). Basal extracellular levels of DA were not significantly altered by 6-HDA unless the DA content of striatal tissue was reduced to less than 20% of control. Peripheral aromatic amino acid decarboxylase (AADC) inhibition (RO4-4602, 50 mg/kg i.p.) followed by L-DOPA treatment (100 mg/kg i.p.) elevated extracellular DA in striatum of control rats from 37 +/- 5 to 68 +/- 11 pg/sample (n = 7; values corrected for recovery of the dialysis probe). In animals with severe bilateral depletions of DA in striatal tissue (mean depletion 87%; n = 6), L-DOPA increased extracellular DA in striatum from 8 +/- 3 to 266 +/- 60 pg/sample. In animals with large unilateral depletions of DA in striatal tissue (mean depletion 96%; n = 6), the increase in extracellular DA in striatum after L-DOPA was greater on the lesion side (from 7 +/- 4 to 245 +/- 67 pg/sample) than on the intact side (from 28 +/- 11 to 61 +/- 8 pg/sample). Animals with unilateral DA depletions showed contralateral circling behavior after L-DOPA. Increases in extracellular DA approaching the magnitude of those occurring in DA-depleted striata were observed when intact animals were treated with nomifensine (5 mg/kg i.p.; n = 5), an inhibitor of high-affinity DA uptake, in addition to L-DOPA.  相似文献   

9.
The dopamine precursor, L-3,4-dihydroxyphenylalanine (L-DOPA), remains the most common treatment for Parkinson's disease. However, following long-term treatment, disabling side effects, particularly L-DOPA-induced dyskinesias, are encountered. Conversely, D2/D3 dopamine receptor agonists, such as ropinirole, exert an anti-parkinsonian effect while eliciting less dyskinesia when administered de novo in Parkinson's disease patients. Parkinson's disease and L-DOPA-induced dyskinesia are both associated with changes in mRNA and peptide levels of the opioid peptide precursors preproenkephalin-A (PPE-A) and preproenkephalin-B (PPE-B). Furthermore, a potential role of abnormal opioid peptide transmission in dyskinesia is suggested due to the ability of opioid receptor antagonists to reduce the L-DOPA-induced dyskinesia in animal models of Parkinson's disease. In this study, the behavioural response, striatal topography and levels of expression of the opioid peptide precursors PPE-A and PPE-B were assessed, following repeated vehicle, ropinirole, or L-DOPA administration in the 6-OHDA-lesioned rat model of Parkinson's disease. While repeated administration of L-DOPA significantly elevated PPE-B mRNA levels (313% cf. vehicle, 6-OHDA-lesioned rostral striatum; 189% cf. vehicle, 6-OHDA-lesioned caudal striatum) in the unilaterally 6-OHDA-lesioned rat model of Parkinson's disease, ropinirole did not. These data and previous studies suggest the involvement of enhanced opioid transmission in L-DOPA-induced dyskinesia and that part of the reason why D2/D3 dopamine receptor agonists have a reduced propensity to elicit dyskinesia may reside in their reduced ability to elevate opioid transmission.  相似文献   

10.
Chronic dopamine (DA) replacement therapy with L-3,4-dihydroxyphenylalanine (L-DOPA) in Parkinson's disease (PD) often leads to abnormal involuntary movements (AIMs) known as L-DOPA-induced dyskinesia (LID), mediated by DA receptors. However, mechanisms underlying LID occurrence are still unclear. Regulator of G-protein signaling RGS9, a member of the RGS family of GTPase accelerating proteins, is expressed specifically in the striatum, has been reported participated in LID. L-DOPA-induced AIMs can be modeled in rats with 6-hydroxydopamine (6-OHDA) lesions by chronic injection of L-DOPA. Herein, we compared the rotational responses and AIMs in 6-OHDA lesioned rats with L-DOPA/benserazide (10/2.5 mg/kg, once per day, i.p.) administration for 14 days whereas control animals received injections of saline. Furthermore, whether sub-chronic L-DOPA treatment impact RGS9 mRNA or protein expression in 6-OHDA lesion rats were also evaluated. As results shown, rotational behavior was not increased significantly, while an obvious AIMs were observed in rats with L-DOPA/benserazide (10/2.5mg/kg, i.p.) administration sub-chronically. In addition, expressions of RGS9 protein or mRNA analyzed by Western blot or real-time PCR with striatal extracts increased significantly after L-DOPA/benserazide. These data demonstrate that RGS9 expression can be modulated by sub-chronic L-DOPA/benserazide administration and increased RGS9 expression in striatum may be one of the reasons for the side effects such as dyskinesia induced by L-DOPA therapy.  相似文献   

11.
Pentobarbital is reported to inhibit ketamine-induced dopamine (DA) release in the rat nucleus accumbens. The accumbens is a part of the limbic dopaminergic system in the brain, and the dopaminergic neural activity of other components may also be sensitive to pentobarbital. We investigated the effect of pentobarbital administration on DA release in the striatum known as DA-rich basal ganglia, and the interaction between pentobarbital and L-DOPA, using in vivo microdialysis techniques. Male SD rats were implanted microdialysis probe into the right striatum. The probe was perfused with modified Ringer's solution and dialysate was directly injected to an HPLC. Every group of rats was consisted of six to seven animals. In the first experiment, rats were given saline, 25 and 50 mg kg(-1) pentobarbital. The second, each rat was given a local administration of 2 and 5 microg ml(-1) of L-DOPA with perfusate. Finally, other sets of rats were given 5 microg ml(-1) of L-DOPA and 25, 50, or 100 mg kg(-1) pentobarbital. Pentobarbital anaesthesia decreased the extracellular concentration of DA, and local administration of L-DOPA significantly increased DA concentration. Pretreatment with pentobarbital diminished the L-DOPA-induced DA increase. The results of the present investigation demonstrate that administration of pentobarbital might inhibit dopaminergic neural activity not only in the nucleus accumbens but also in the rat striatum. Pentobarbital anaesthesia antagonizes DA increase induced by L-DOPA and suggests the inhibition of metabolism of L-DOPA. The results of some animal experiments on dopaminergic activity under pentobarbital anaesthesia should be reconsidered.  相似文献   

12.
In vivo microdialysis in freely moving rats was used to investigate the influence of the indirect dopamine receptor agonist levodopa (L-DOPA), alone and combined with the N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine (MK801), on extracellular glutamate levels in the striatum of intact and 6-hydroxydopamine-lesioned rats. L-DOPA (25 mg/kg i.p. after benserazide 10 mg/kg i.p.) increased extracellular glutamate levels in the striatum of both intact and dopamine-depleted rats. A prior injection of MK801 (0.1 and 1.0 mg/kg i.p.) did not alter the L-DOPA-induced glutamate release in the striatum of intact rats. In contrast, the L-DOPA-induced increase in glutamate in the striatum of 6-hydroxydopamine-lesioned rats was suppressed by MK801 (0.1 mg/kg i.p.). The data presented here suggest that NMDA receptors do not play a role in the L-DOPA-induced increase in striatal glutamate in intact rats but are involved in the glutamate release in the dopamine-depleted striatum. The suppression of this increase by prior administration of MK801 could represent a neuroprotective effect.  相似文献   

13.
Degeneration of serotonergic fibers in the rat striatum was produced by local administration of the serotonergic neurotoxin 5, 7-dihydroxytryptamine (5,7-DHT) or the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)), which is also toxic to serotonergic neurons. One week before neurotoxin administration, fibroblasts engineered to express the human BDNF gene were grafted into the mesencephalon, dorsal to the substantia nigra. Rats implanted with fibroblasts expressing the LacZ gene were used as controls, as well as sham-operated animals (not injected with any neurotoxin). After a survival period of 1 week, the serotonergic innervation of the striatum was assessed by measuring serotonin (5-HT) content and by immunohistochemical detection of 5-HT positive fibers. BDNF-producing cells prevented the striatal 5-HT loss induced by local administration of either 5,7-DHT or MPP(+), as well as the striatal dopamine (DA) loss induced by the latter neurotoxin. Grafting of fibroblasts carrying the BDNF or the Lac-Z gene did not modify striatal 5-HT or DA content in sham-operated animals. In 5, 7-DHT-lesioned rats, implanted or not with control Lac-Z fibroblasts, a striking reduction in the density of 5-HT immunoreactive fibers was observed. By contrast, the density of 5-HT fibers was similar in rats implanted with BDNF-producing fibroblasts as compared to sham-operated controls. The protective effect of BDNF on the damage to serotonergic terminals induced by the two neurotoxins suggests the interest of this neurotrophin in the treatment of behavioral disorders associated to neurodegenerative diseases.  相似文献   

14.
Motor complications induced through repeated L-DOPA treatment in patients with Parkinson's disease are thought to be the consequence of molecular adaptations that occur in response to repeated dopamine receptors stimulation. Here, we studied the molecular changes taking place in the denervated striatum of unilaterally 6-OHDA-lesioned rats repeatedly treated with L-DOPA alone or combined to the D1 receptor antagonist SCH23390. We looked at the territorial patterns of expression of neurotensin (NT), dynorphin (DYN), enkephalin (ENK) and Nur77 (also known as NGFI-B) mRNA expression in the striatum and contrasted these with markers of glutamatergic transport and dopaminergic receptor functions. The denervation process induced NT and Nur77 mRNA expression in ENK-positive cells. Subsequent repeated L-DOPA treatment led to a sensitization of L-DOPA-induced rotational response and produced a second surge of NT induction, this time limited to DYN-positive cells and preferentially restricted to the lateral striatum. In this specific territory, the number of Nur77-positive cells was decreased, in response to L-DOPA, when compared to the medial part of the lesioned striatum. L-DOPA treatment increased dopamine D3 receptor and glutamate transporter 1 (GLT1) mRNA expression in the lesioned striatum and that, specifically in an area overlapping one of Nur77 decrease and of NT/DYN induction. The concomitant administration of SCH23390 with repeated L-DOPA treatment blocked the development of behavioral sensitization and the appearance of all L-DOPA-induced molecular reorganizations reported above. Our results showed that repeated L-DOPA treatment produces, in a denervated striatum, a complex pattern of genes regulation in both the direct and the indirect striatal output pathways. This phenomenon is located preferentially in a striatal area receiving converging inputs from the thalamus and sensorimotor cortex and is dependent upon D1 receptor stimulation.  相似文献   

15.
To explore a recently established association between histaminergic and dopaminergic neuronal phenotypic systems in brain, we determined the effect of the respective histaminergic H(3) receptor agonist and antagonist/inverse agonist, imetit and thioperamide, on L-DOPA - derived tissue and extracellular DA and metabolite levels in the striatum of 6-hydroxydopamine (6-OHDA) - lesioned rats (i.e., parkinsonian rats). We also examined the influence of histamine H(3) ligands on L-DOPA evoked behavioral responses (locomotor activity, number of rearings, stereotyped behavior and motor coordination). Using HPLC/ED and in vivo microdialysis technique imetit (5 mg/kg, i.p.) but not thioperamide (5 mg/kg, i.p.) was shown to attenuate an L-DOPA-evoked (15 mg/kg, i.p.; carbidopa, 30 min pretreatment) increase in extracellular DA in the neostriatum of 6-OHDA-lesioned rats. However, both imetit and thioperamide increased microdialysate levels of DOPAC and HVA, probably by enhancing intraneuronal DA utilization. As indicated by neurochemical analysis of the striatum imetit produced a decrease in tissue DA content. These findings support the hypothesis that central H(3) histaminergic receptors have a modulatory role in the storage, metabolism and release of DA derived from exogenous L-DOPA challenge. Furthermore, evidence from behavioral studies indicate that histamine H3 receptor blockade markedly improved motor coordination. Conversely, histamine H(3) receptor stimulation, being without effect on motor coordination, enhanced vertical activity in rats. From the above we conclude that the histamine H(3) agonism may augment motor dyskinesia in Parkinson's disease (PD) patients and presumably worsen L-DOPA therapy. Consequently, the histaminergic system represents a viable target for modulating the effectiveness of L-DOPA therapy in Parkinson's disease.  相似文献   

16.
L-DOPA-induced motor complications can be modelled in rats with 6-hydroxydopamine (6-OHDA) lesions by chronic injections of L-DOPA. We have compared the sensitisation and duration of rotational responses, and the occurrence of dose-failure episodes and abnormal involuntary movements (AIMs) in 6-OHDA-lesioned rats with regard to the dose and route of administration of L-DOPA. Rats were treated with either low (6mg/kg) or high (25mg/kg) doses of L-DOPA twice daily for 21 days whereas control animals received injections of either saline or bromocriptine (2.5mg/kg). A dose-dependent and gradual development of AIMs and contralateral turning was observed in rats treated chronically with l-DOPA. Rats treated with bromocriptine exhibited rotational sensitisation but no AIMs. A shortening of motor response duration was not seen in any of the drug-treated groups. In contrast, dose-failure episodes occurred frequently in both L-DOPA- and bromocriptine-treated animals. Changing the route of L-DOPA administration from intraperitoneal to subcutaneous completely abolished failures in motor response without affecting the development of dyskinesia. Based on the hypothesis that higher doses of L-DOPA may be toxic to dopaminoceptive structures, we compared the total number of neurons and the levels of activated microglia in the striatum. No signs of neurodegenerative changes could be seen in any of the treatment groups. In conclusion, both body AIMs and rotations were dose-dependently evoked by L-DOPA. Only AIMs, however, provided a specific measure of dyskinesia since rotations also were induced by bromocriptine, a drug with low dyskinesiogenic potential. Dose-failure episodes were not specific to L-DOPA treatment and could be attributed to erratic drug absorption from the peritoneal route.  相似文献   

17.
L-DOPA is frequently used to relieve symptoms of Parkinson's disease (PD), but its use in patients with more advanced PD is complicated by on-off phenomena. We used simultaneous microdialysis of striatum and ipsilateral substantia nigra to characterize changes in extracellular fluid (ecf) levels of dopamine (DA) following systemic treatment with L-DOPA (25 mg/kg as methylester) in awake, normal rats and those with partial (less than 99%) or complete (greater than 99%) DA depleting unilateral lesions of the nigrostriatal pathway (nsp). In normal rats, nigral ecf DA rose 17-fold above baseline after L-DOPA, compared to a 2.6-fold increase in normal striata. Striatal ecf DA rose equally after L-DOPA in all three groups, whereas peak nigral ecf DA in completely lesioned rats was three times that in normal or partially lesioned animals. Peak nigral ecf DA in completely lesioned rats exceeded striatal ecf DA in all groups by almost 2-fold. Activity after L-DOPA was biphasic ("hyperkinetic/bradykinetic") in completely lesioned but not in normal or partially lesioned animals, and the reduced activity occurred 2.5-4 h after L-DOPA at a time when both nigral and striatal ecf DA levels were still elevated. L-DOPA-induced increases in activity were predictable by greater elevations in nigral compared to striatal ecf DA in animals with complete lesions of the nigrostriatal pathway. Post-DOPA reduced activity might result from desensitization of synaptic events mediated by DA receptors; this may underlie DOPA-related on-off phenomena in patients with advanced PD.  相似文献   

18.
S.P. Sivam   《Brain research》1989,500(1-2):119-130
The present study examined the influences of dopamine (DA) receptor stimulation on enkephalin (Met5-enkephalin; ME) and tachykinin (substance P; SP) systems of basal ganglia of Sprague-Dawley rats, lesioned as neonates with 6-hydroxydopamine (6-OHDA). It has been proposed that the neonatal 6-OHDA-lesioned rat could serve as a model for the DA deficiency and self-injurious behavior (SIB) observed in the childhood neurological disorder. Lesch-Nyhan syndrome. In agreement with earlier work, the present study found that the neonatal 6-OHDA treatment at 3 days of age, reduced DA and caused an increase in ME and a decrease in SP content in the striatum and substantia nigra, when tested as adults. Administration of the DA precursor, L-dihydroxyphenylalanine (L-DOPA), to lesioned animals, induced SIB; increased DA and DOPAC levels; produced a greater decrease (-64%) in SP levels in the striatum and substantia nigra than was observed with lesion alone (-28%). The L-DOPA-induced decrease in SP levels and the SIB observed in the lesioned animals were blocked by pretreatment with the D1 receptor antagonist, SCH-23390. Moreover, administration of the D1 receptor agonist, SKF-38393, but not the D2 agonist, LY-171555, to lesioned animals mimicked the L-DOPA responses in all respects, except that the agonists did not alter DA or DOPAC levels. None of the DA agonists or antagonists treatments affected lesion-induced increase in ME levels in the striatum. These results indicate for the first time, that SIB precipitated by DA agonists in neonatal dopaminergic denervated animals, is associated with a marked and selective decrease in SP in the striatonigral SP neurons. This process has two components: (a) a retarded development of the SP system due to neonatal dopaminergic denervation: and (b) a depletion of the remaining SP, presumably by enhanced release due to D1 DA receptor-mediated activation of striatonigral SP neurons.  相似文献   

19.
This study assessed behavioural and neurochemical effects of i.c.v. injections of both the cholinergic toxin 192 IgG-saporin (2 microgram) and the serotonergic toxin 5,7-dihydroxytryptamine (5,7-DHT; 150 microgram) in Long-Evans female rats. Dependent behavioural variables were locomotor activity, forced T-maze alternation, beam walking, Morris water-maze (working and reference memory) and radial-maze performances. After killing by microwave irradiation, the concentrations of acetylcholine, monoamines and 5-hydroxyindoleacetic acid (5-HIAA) were measured in the hippocampus, frontoparietal cortex and striatum. 192 IgG-saporin reduced the concentration of acetylcholine by approximately 40% in the frontoparietal cortex and hippocampus, but had no effect in the striatum. 5,7-DHT lesions reduced the concentration of serotonin by 60% in the frontoparietal cortex and 80% in the hippocampus and striatum. Noradrenaline was unchanged in all structures except the ventral hippocampus where it was slightly increased in rats given 192 IgG-saporin. Cholinergic lesions induced severe motor deficits but had no other effect. Serotonergic lesions produced diurnal and nocturnal hyperactivity but had no other effect. Rats with combined lesions were more active than those with only serotonergic lesions, showed motor dysfunctions similar to those found in rats with cholinergic lesions alone, and exhibited impaired performances in the T-maze alternation test, the water-maze working memory test and the radial-maze. Taken together and although cholinergic lesions were not maximal, these data show that 192 IgG-saporin and 5,7-DHT lesions can be combined to selectively damage cholinergic and serotonergic neurons, and confirm that cholinergic-serotonergic interactions play an important role in some aspects of memory, particularly in spatial working memory.  相似文献   

20.
In the present study, we investigated effects of the new selective adenosine A2A receptor antagonist 8-(3-chlorostyryl)caffeine (CSC) on L-DOPA-induced dopamine (DA) release in the striatum of intact and reserpine-treated rats. CSC given in a pharmacologically effective dose of 5 mg/kg i.p. significantly increased striatal DA release after joint administration of L-DOPA (100 mg/kg, i.p.) and benserazide (50 mg/kg, i.p.) to intact and reserpine (2.5 mg/kg, s.c.)-injected rats. CSC did not change the elevated level of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in intact rats, but raised it in DA-depleted animals. The availability of exogenous L-DOPA in the extracellular space was similar and equally increased by CSC in both intact and reserpinized rats. Our results suggest that the observed effects may be mediated by striatal adenosine A2A receptors, and are probably related to the CSC action on DA metabolism and the increased transport of exogenous L-DOPA into the brain. These observations might be of relevance, considering the use of selective A2A antagonists as potential supplements to L-DOPA therapy of Parkinson's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号