首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
J C Pounsford  M J Birch    K B Saunders 《Thorax》1985,40(9):662-667
Coughing was induced in seven normal and eight asthmatic subjects by giving successive inhalations of citric acid aerosols of progressively higher concentration (range 0.5-32%). A baseline cough response was obtained on each of four experimental days, and there was no significant difference between days in this respect. Then the subjects received by inhalation either a bronchodilator (salbutamol 5 mg or ipratropium 1 mg) or placebo, in a paired double blind crossover design. A second citric acid run followed and was used for paired drug-placebo comparisons. In the asthmatic subjects the cough response was diminished by both bronchodilators (p less than 0.05), and the cough threshold was significantly higher after ipratropium but not salbutamol. In normal subjects no significant effects were found. Airways calibre was assessed, by an oscillatory technique that measures the resistance of the respiratory system (Siemens Siregnost FD 5), in four of the seven normal and all eight asthmatic subjects. The mean respiratory resistance was higher in asthmatic than in normal subjects, and fell significantly after both bronchodilators. In normal subjects smaller decreases in respiratory resistance occurred, significant only with salbutamol. The simplest hypothesis which explains the results relates change in cough response to altered neuroreceptor sensitivity associated with rapid changes in bronchial calibre.  相似文献   

2.
C Rusznak  J L Devalia    R J Davies 《Thorax》1996,51(11):1105-1108
BACKGROUND: Recent studies have suggested that air pollutants resulting from vehicle exhaust emissions and burning of fossil fuels, either in combination or individually, may enhance the airway response of asthmatic subjects to inhaled allergen. It was hypothesised that the airway response to inhaled allergen after exposure to a combination of 400 ppb nitrogen dioxide (NO2) and 200 ppb sulphur dioxide (SO2) is increased 24-48 hours after exposure. METHODS: Thirteen mild atopic asthmatic volunteers were exposed for six hours to a single exposure of air and three exposures of the combination of 400 ppb NO2 + 200 ppb SO2 in randomised order, and then challenged with increasing concentrations of Dermatophagoides pteronyssinus allergen either immediately after exposure to air, or immediately, 24 hours or 48 hours after exposure to the combination of the two pollutants, until a 20% fall in forced expiratory volume in one second (FEV1) was recorded. RESULTS: Exposure to 400 ppb NO2 + 200 ppb SO2 significantly decreased the dose of D pteronyssinus allergen required to produce a 20% fall in FEV1 (PD20FEV1) at all times after exposure when compared with air. The mean percentage changes in allergen PD20FEV1 immediately, 24 hours, and 48 hours after exposure to 400 ppb NO2 + 200 ppb SO2 were -37% (95% confidence intervals (CI) -50 to -23), -63% (CI -75 to -51), and -49% (CI -75 to -28.8), respectively, when compared with the PD20FEV1 after air exposure and were significant at all time points studied. The allergen PD20FEV1 at 24 hours after exposure to the combination of the two pollutants was also found to be significantly lower when compared with that immediately after exposure to the two pollutants. CONCLUSION: These results demonstrate that exposure to a combination of NO2 and SO2, at concentrations which can be encountered during episodes of increased outdoor and indoor air pollution, enhances the airway response to inhaled allergen in asthmatic subjects. This effect persists over a period of 24-48 hours and is maximal 24 hours after exposure to these air pollutants.  相似文献   

3.
4.
L T Rodwell  S D Anderson  J I du Toit    J P Seale 《Thorax》1993,48(3):208-213
BACKGROUND: Frusemide inhaled by asthmatic subjects before a variety of indirect bronchial challenges inhibits the airway response to these challenges. Since inhalation of hyperosmolar saline is an indirect bronchial challenge, the effect of inhaled frusemide and its vehicle on airway sensitivity to a 4.5% sodium chloride (NaCl) aerosol challenge was investigated. METHODS: Eleven asthmatic subjects (five females, six males) who had a 20% fall in forced expiratory volume in one second after 4.5% NaCl challenge were enrolled in this double blind controlled crossover trial. Sensitivity was measured as the dose of aerosol required to provoke a 20% fall in FEV1. Frusemide (33.2 mg) or its vehicle was delivered through a Fisoneb ultrasonic nebuliser and inhaled 10 minutes before challenge with 4.5% NaCl. A Mistogen ultrasonic nebuliser was used to generate the 4.5% NaCl aerosol and FEV1 was measured before and one minute after each challenge period of 0.5, one, two, four, eight, eight and eight minutes. The doubling dose difference for PD20 was calculated. RESULTS: Frusemide or vehicle had no effect on baseline lung function. The geometric mean PD20 after vehicle was 1.3 ml with a 95% confidence interval of 0.7-2.3 and after frusemide was 8.2 ml with a 95% confidence interval of 4.7-14.1. This represented a 2.6 doubling dose increase in PD20 after frusemide inhalation. In five of the 11 subjects an increase from baseline FEV1 occurred after exposure to 4.5% NaCl challenge in the presence of frusemide. This transient bronchodilatation may be caused by the release of prostaglandin E2. CONCLUSION: Inhalation of frusemide is very effective in delaying airway narrowing induced by an aerosol of 4.5% NaCl in asthmatic subjects.  相似文献   

5.
Vascularity in asthmatic airways: relation to inhaled steroid dose   总被引:15,自引:2,他引:13       下载免费PDF全文
Orsida BE  Li X  Hickey B  Thien F  Wilson JW  Walters EH 《Thorax》1999,54(4):283-295
BACKGROUND: There is an increase in vascularity in the asthmatic airway. Although inhaled corticosteroids (ICS) are an effective anti-inflammatory treatment in asthma, there are few data on any effects on structural changes. METHODS: Endobronchial biopsy specimens from seven asthmatic subjects not receiving ICS and 15 receiving 200-1500 microg/day beclomethasone dipropionate (BDP) were immunohistochemically stained with an anti-collagen type IV antibody to outline the endothelial basement membrane of the vessels. These were compared with biopsy tissue from 11 non-asthmatic controls (four atopic and seven non-atopic). RESULTS: There was a significant increase in the density of vessels (number of vessels/mm2 of lamina propria) in the asthmatic subjects not on ICS compared with non-asthmatic controls (mean 485 (interquartile range (IQR) 390-597) versus 329 (IQR 248-376) vessels/mm2, p<0.05; 95% CI for the difference 48 to 286). There was no significant difference between asthmatic subjects on ICS and those not on ICS or control subjects in the number of vessels/mm2 (mean 421 (IQR 281-534)). However, patients who received >/=800 microg/day BDP tended to have a reduced number of vessels/mm2 compared with patients not on ICS and those receiving 相似文献   

6.
S Myou  M Fujimura  K Nishi  M Matsuda  T Ohka    T Matsuda 《Thorax》1994,49(7):644-648
BACKGROUND--It has recently been reported that acetaldehyde induces bronchoconstriction indirectly via histamine release. However, no study has been performed to assess whether acetaldehyde worsens bronchial responsiveness in asthmatic subjects so this hypothesis was tested. METHODS--Methacholine provocation was performed on three occasions: (1) after pretreatment with oral placebo and inhaled saline (P-S day), (2) after placebo and inhaled acetaldehyde (P-A day), and (3) after a potent histamine H1 receptor antagonist terfenadine and acetaldehyde (T-A day) in a double blind, randomised, crossover fashion. Nine asthmatic subjects inhaled 0.8 mg/ml acetaldehyde or saline for four minutes. After each inhalation a methacholine provocation test was performed. RESULTS--Methacholine concentrations producing a 20% fall in FEV1 (PC20-MCh) on the P-A day (0.48 mg/ml, 95% CI 0.21 to 1.08) and T-A day (0.41 mg/ml, 95% CI 0.22 to 0.77) were lower than those on the P-S day (0.85 mg/ml, 95% CI 0.47 to 1.54). There was no change in the PC20-MCh between the P-A and T-A days. A correlation was observed between the logarithmic values of PC20-MCh (log PC20-MCh) on the P-S day and the potentiating effect of acetaldehyde on the methacholine responsiveness [(log PC20-MCh on P-A day)-(log PC20-MCh on P-S day)] (rho = 0.82). CONCLUSIONS--Acetaldehyde induces bronchial hyperresponsiveness in patients with asthma by mechanisms other than histamine release.  相似文献   

7.
8.
BACKGROUND: Inhaled frusemide inhibits airway narrowing and causes a transient increase in forced expiratory volume in one second (FEV1) during hypertonic saline challenge. This inhibitory effect could be secondary to prostaglandin release during challenge. The involvement of prostaglandins in the inhibitory action of frusemide during challenge with 4.5% NaCl was investigated by premedicating with indomethacin, a prostaglandin synthetase inhibitor. METHODS: Fourteen asthmatic subjects (eight women) aged 26.6 (range 18-56) years participated in a double blind, placebo controlled, crossover study. The subjects attended five times and inhaled 4.5% NaCl for 0.5, 0.75, 1, 1.5, 2, 4, 8, 8, and 8 minutes, or part thereof, or until a provocative dose causing a 20% fall in FEV1 (PD20 FEV1) was recorded. Indomethacin (100 mg/day) or placebo were taken three days before all visits, except control day. The FEV1 was measured and frusemide (38.0 (6.4) mg, pH = 9) or vehicle (0.9% NaCl, pH = 9) were inhaled 10 minutes before the challenge. Bronchodilation was calculated as the percentage rise in FEV1 from the prechallenge FEV1 to the highest FEV1 recorded during the challenge. RESULTS: Frusemide caused a fold increase in PD20 FEV1 compared with the vehicle which was similar in the presence of both indomethacin and placebo (3.7 (95% CI 2.0 to 7.3) versus 3.3 (2.0 to 5.4)). Frusemide, but not vehicle, also caused a transient percentage rise in FEV1 during challenge with 4.5% NaCl which was not blocked by indomethacin (3.6% (1.2 to 6.0)) or placebo (3.1% (1.0 to 5.2)). CONCLUSIONS: Inhaled frusemide inhibited airway narrowing and caused a transient increase in FEV1 during challenge with 4.5% NaCl. These effects were not blocked by indomethacin, which suggests that the inhibitory action of frusemide is not secondary to prostaglandin release.


  相似文献   

9.
To evaluate the effect of negative ionisation of inspired air on bronchial reactivity, 11 asthmatic children were challenged twice by exercise and 10 were challenged twice by histamine inhalation. The children breathed negatively ionised air (4 X 10(5) - 10 X 10(5) ions/cm3) or control room air in random order in a double-blind fashion. All challenges were matched in terms of basal lung function and the exercise tests were matched in terms of ventilation and respiratory heat loss. Exercise-induced asthma was significantly attenuated by exposure to negatively ionised air, the mean postexercise fall in one-second forced expiratory volume (FEV1) being 29% (SE 5%) of the initial value after the control and 21% (3%) after the ionised air test (p less than 0.02). Ten of the 11 subjects developed less exercise-induced asthma while breathing ionised air. Although the median dose of histamine (cumulative breath units) which caused a constant fall in FEV1 for each individual was higher with the ionised air challenge than with the control challenge the difference was not significant. Five of the 10 subjects were less sensitive to histamine and the other five more sensitive when breathing ionised air. It is concluded that negative ionisation of inspired air can modulate the bronchial response to exercise but the effect on the response to histamine is much more variable.  相似文献   

10.
In order to investigate the effect of pH on bronchial responsiveness to inhaled histamine, 15 subjects with non-specific bronchial hyperreactivity performed two histamine inhalation tests, one with unbuffered, and the other with buffered histamine acid phosphate solutions. The unbuffered histamine solutions were prepared with 0.9% sterile saline and had a pH range from 4.3 to 7.3, while the buffered histamine solutions were prepared with a phosphate buffer and had a pH range of 6.5 to 7.4. The two histamine inhalation tests were similar in all other regards. The geometric mean histamine provocation concentration required to produce a 20% reduction in FEV1 (PC20) was significantly lower for the unbuffered histamine (1.33 mg/ml) than for the buffered histamine (1.67 mg/ml), p less than 0.05. The two PC20s differed by less than one doubling dilution, the range of reproducibility of the test, in 12 of the 15 subjects. The pH effect was only noted when the pH of the histamine solutions was below five (histamine concentrations from one to eight mg/ml). We conclude that the acid pH of higher concentrations of histamine acid phosphate solutions has a slight but significant enhancing effect on the bronchial responsiveness to inhaled histamine.  相似文献   

11.
N M Wilson  S B Phagoo    M Silverman 《Thorax》1991,46(6):433-437
Respiratory resistance (Rrs6), transcutaneous oxygen tension (PtcO2), and oxygen saturation (SaO2) were measured during methacholine challenge in 15 asthmatic children and six normal adults. During bronchoconstriction, induced by a wide range of inhaled methacholine concentrations (0.5-256 g/l), the rise in Rrs6 was reflected by a fall in PtcO2 in all subjects. Although there was a significant mean fall in SaO2 at maximum bronchoconstriction there was no consistent relation between changes in SaO2 and Rrs6. The inhaled dose of methacholine causing a 40% increase in Rrs6 (PD40Rrs6) and a 20% fall in PtCO2 (PD20PtcO2) was calculated for each subject. There was no significant difference in mean PD40Rrs6 and PD20PtcO2, and the relation between the two was similar in the asthmatic children and the normal adults. It was therefore concluded that the measurement of PtcO2, but not SaO2, during methacholine challenge can be used for the assessment of bronchial responsiveness, and that it could prove particularly useful for children too young to cooperate with lung function tests.  相似文献   

12.
D. J. Clark  R. A. Clark    B. J. Lipworth 《Thorax》1996,51(9):941-943
BACKGROUND: The aim of this study was to compare the systemic bioactivity of inhaled budesonide (B) and fluticasone propionate (F), each given by large volume spacer, on a microgram equivalent basis in asthmatic children. METHODS: Ten stable asthmatic children of mean age 11 years and forced expiratory volume in one second (FEV1) 81.6% predicted, who were receiving treatment with < or = 400 micrograms/day of inhaled corticosteroid, were studied in a placebo controlled single blind (investigator blind) randomised crossover design comparing single doses of inhaled budesonide and fluticasone propionate 400 micrograms, 800 micrograms, and 1250 micrograms. Doses were given at 20.00 hours with mouth rinsing and an overnight 12 hour urine sample was collected for estimation of free cortisol and creatinine excretion. RESULTS: The results of overnight 12 hour urinary cortisol output (nmol/12 hours) showed suppression with all doses of fluticasone propionate (as geometric means): F400 micrograms (11.99), F800 micrograms (6.49), F1250 micrograms (7.00) compared with placebo (24.43), whereas budesonide caused no suppression at any dose. A comparison of the drugs showed that there were differences at 800 micrograms and 1250 micrograms levels for urinary cortisol: B800 micrograms versus F800 micrograms (2.65-fold, 95% CI 1.26 to 5.58), B1250 micrograms versus F1250 micrograms (2.94-fold, 95% CI 1.67 to 5.15). The results for the cortisol/creatinine ratio were similar to that of urinary cortisol, with fluticasone causing suppression at all doses and with differences between the drugs at 800 micrograms and 1250 micrograms. CONCLUSIONS: Single doses of inhaled fluticasone produce greater systemic bioactivity than budesonide when given by large volume spacer on a microgram equivalent basis in asthmatic children. The systemic bioactivity of fluticasone, like budesonide, is due mainly to lung bioavailability.  相似文献   

13.
BACKGROUND: The rebound increase in bronchial reactivity and fall in forced expiratory volume in one second (FEV1) following treatment with beta agonists seen in several studies has occurred regardless of concurrent steroid therapy. Little is known about the effect of adding beta agonists to corticosteroids, but in a recent study regular treatment with terbutaline appeared to reduce some of the beneficial effects of budesonide. The effects of budesonide alone and in combination with regular terbutaline treatment on lung function, symptom scores, and bronchial reactivity were therefore examined. METHODS: Sixteen subjects with mild stable asthma inhaled budesonide 800 micrograms twice daily for two periods of 14 days with terbutaline 1000 micrograms three times daily or placebo in a double blind crossover fashion. FEV1 and the dose of histamine or adenosine monophosphate (AMP) causing a 20% fall in FEV1 (PD20) were measured before and 12 hours after the final dose of treatment, and changes from baseline were compared. Seven day mean values for daily morning and evening peak expiratory flow (PEF) values, symptom scores, and rescue medication were compared before and during treatment. RESULTS: Morning and evening PEF rose more with budesonide plus terbutaline than with budesonide alone, with a mean difference of 19 l/min occurring in the evening (95% confidence interval (CI) 2 to 36). There was no difference in symptom scores during treatment. Following treatment the mean increase in FEV1 was 150 ml higher with budesonide alone (95% CI-10 to 300). There was no difference between treatments in change in histamine and AMP PD20. CONCLUSIONS: Evening PEF was greater when budesonide was combined with regular terbutaline. There was no evidence of a difference in bronchial reactivity following the two treatment regimens. The findings of a previous study were not confirmed as the reduction in FEV1 after budesonide and terbutaline was smaller and not statistically significant. Further work is needed to determine whether this disparity in findings in the two studies is due to a type 2 statistical error in this study or a spurious finding in the previous study.  相似文献   

14.
J M Ramsey 《Thorax》1977,32(1):26-28
Thirteen young adults with bronchial asthma and a like number of controls were subjected for 45 minutes to a temperature of 2 degrees C after leaving a temperature of 24 degrees C to which they subsequently returned. Pre-exposure examination included VC, FEV1, MMEF, FEV1/VC%, and urinary catecholamines. The pulmonary measurements were repeated at 15, 80, and 200 minutes after exposure. Catecholamines were measured from a second urine sample, the collection of which corresponded to the period during and after the stress. Controls showed no significant pulmonary changes throughout the time of study, but 15 minutes after exposure the asthmatic subjects showed a significant mean decrease of all pulmonary measurements from pre-exposure values. The controls showed a significant mean increase in urinary catecholamines after the stress, whereas those with asthma showed no significant increase.  相似文献   

15.
Preoperative and postoperative response to inhaled nitric oxide   总被引:2,自引:0,他引:2  
The preoperative dose response to inhaled nitric oxide (NO) was compared with the need for and response to NO after cardiac surgery in patients with congenital heart defect and secondary pulmonary hypertension. In a preoperative vasodilator test with inhaled NO 20, 40 and 80 ppm and oxygen, mean pulmonary artery pressure (PAP) was at least 40 mmHg and/or the pulmonary vascular resistance index (PVRI) 4 Wood units. Preoperatively, NO 40 ppm and FiO2 0.9 reduced systolic pulmonary/systemic arterial pressure (PAPs/SAPs) from 0.89 (SD 0.10) to 0.80 (0.18) and pulmonary/systemic vascular resistance (PVR/SVR) from 0.26 (0.13) to 0.13 (0.08). Haemodynamic assessment was repeated in 11 patients postoperatively. NO treatment was started if PAPs/SAPs rose to 0.8 or the pulmonary oximetry fell below 40%. Postoperatively, eight of 11 patients, including 6 patients with Down's syndrome, needed NO. PAPs/SAPs decreased more than preoperatively: 48.5% vs 11.2, p = 0.0045. Pulmonary oximetry increased by 15.7%, p = 0.02. The degree of preoperative response to NO did not differ between the patients with postoperative pulmonary hypertension and the other children. Patients with early pulmonary hypertensive crisis (first 24 h; n = 6) had a higher PVRI (7.6 vs 4.4 Um2; p = 0.003) and PVR/SVR (0.34 VS 0.17; p = 0.02) preoperatively. Two patients died in pulmonary hypertensive crisis.  相似文献   

16.
D J Clark  A Grove  R I Cargill    B J Lipworth 《Thorax》1996,51(3):262-266
BACKGROUND: A study was performed to compare the adrenal suppression caused by inhaled fluticasone propionate and budesonide on a microgram equivalent basis, each given by metered dose inhaler to asthmatic patients. METHODS: Twelve asthmatic patients of mean age 29.9 years, with a forced expiratory volume in one second (FEV1) 92.9% predicted and forced expiratory flow 25-75% (FEF25-75) 69.5% predicted, on less than or equal to 400 micrograms/day inhaled corticosteroid, were studied in a double blind placebo controlled crossover design comparing single doses of inhaled budesonide 400, 1000, 1600, 2000 micrograms and fluticasone propionate 500, 1000, 1500, 2000 micrograms. Doses were administered at 22.00 hours by metered dose inhaler with mouth rinsing and measurements were made in the laboratory 10 hours later. RESULTS: Serum cortisol levels compared with placebo (mean 325.2 nmol/l) were suppressed by fluticasone at doses of 1500 micrograms (211.6 nmol/l) and 2000 micrograms (112.3 nmol/l) and by budesonide at 2000 micrograms (243.4 nmol/l). Fluticasone propionate 2000 micrograms produced lower absolute serum cortisol levels than budesonide 2000 micrograms (95% CI for difference 42.9 to 219.2). The dose ratio (geometric mean) for the relative potency was 2.89 fold (95% CI 1.19 to 7.07). In terms of percentage suppression versus placebo, fluticasone propionate also produced greater effects (means and 95% CI for difference): budesonide 1600 micrograms (16.0) versus fluticasone propionate 1500 micrograms (40.9) (95% CI -0.6 to 50.6), budesonide 2000 micrograms (26.0) versus fluticasone 2000 micrograms (65.2) (95% CI 10.5 to 67.8). Individual serum cortisol levels at the two highest doses showed 15 of 24 patients below the normal limit of the reference range (150 nmol/l) for fluticasone and five of 24 for budesonide. Fluticasone propionate also caused greater ACTH suppression than budesonide (as % versus placebo): budesonide 1600 micrograms (12.0) versus fluticasone propionate 1500 micrograms (31.9) (95% CI 7.6 to 32.1), budesonide 2000 micrograms (13.5) versus fluticasone propionate 2000 micrograms (44.4) (95% CI 13.2 to 48.7). For overnight 10 hour urinary cortisol (nmol/10 hours) there was a difference between the lowest doses of the two drugs: budesonide 400 micrograms (37.2) versus fluticasone propionate 500 micrograms (19.9) (95% CI 6.9 to 27.8). CONCLUSIONS: Like budesonide the systemic bioactivity of fluticasone propionate is mainly due to lung vascular absorption. Fluticasone propionate exhibited at least twofold greater adrenal suppression than budesonide on a microgram equivalent basis in asthmatic patients.  相似文献   

17.
BACKGROUND: Beta-2 adrenoceptor agonists have been associated with sudden death in asthma patients but the cause and underlying mechanism are unclear. Animal experiments indicate that the combination of hypoxia and beta2 agonists may result in detrimental cardiovascular effects. A study was undertaken to investigate the effect of hypoxia on the systemic vascular effects of salbutamol in patients with asthma who are hypoxic by assessing forearm blood flow (FBF) as a measure of peripheral vasodilatation. METHODS: Eight men with mild asthma underwent the following treatments: normoxia + placebo (NP), normoxia + salbutamol (NS), hypoxia + placebo (HP), and hypoxia + salbutamol (HS). The period of mask breathing started at t=0 minutes, lasted for 60 minutes, and at 30 minutes 800 microg salbutamol was inhaled. The experiment was completed 30 minutes after the inhalation (t=60 minutes). For the hypoxia treatment the SpO2 level was 82%. Differences between treatments were sought using factorial ANOVA on percentage change from the pretreatment value. RESULTS: There were no significant differences in blood pressure and potassium levels between the treatments. After 60 minutes the increase in FBF was 13% (95% CI -12 to 39) more for HP treatment than for NP, 21% (95% CI -5 to 46) more for NS than for NP, and 32% (95% CI 7 to 58) more for HS than for HP (p=0.016). The inhalation of salbutamol during hypoxia resulted in a significant increase in FBF of 45% (95% CI 20 to 71) compared with NP (p=0.001). CONCLUSION: Patients with asthma who are hypoxic and inhale beta2 agonists have serious systemic vascular side effects which may be an additional explanation for the association between asthma treatment and sudden death.  相似文献   

18.
O Michel  R Ginanni    R Sergysels 《Thorax》1992,47(4):288-291
BACKGROUND: Bronchoconstriction has developed after inhalation of lipopolysaccharide in a dose of 20 micrograms in asthmatic patients and of 200 micrograms in normal subjects. This study set out to determine whether the bronchial response to lipopolysaccharide was related to non-specific bronchial responsiveness and atopy. METHODS: Sixteen subjects with a fall in specific airway conductance of 40% (PD40sGaw) after inhaling up to 900 micrograms histamine inhaled 20 micrograms lipopolysaccharide (from Escherichia coli type 026:B6) a week after bronchial challenge with a control solution of saline. The bronchial response over five hours was measured as change in FEV1 and area under the FEV1-time curve. RESULTS: FEV1 fell significantly more after lipopolysaccharide than after diluent inhalation, the difference in mean (SE) FEV1 being 4.6% (5.4%); response was maximal 60 minutes after lipopolysaccharide inhalation and lasted more than five hours. Histamine PD20FEV1 and PD40sGaw correlated with the fall in FEV1 after lipopolysaccharide inhalation. There was no difference in the proportions of responders and non-responders to lipopolysaccharide who were atopic. CONCLUSION: Lipopolysaccharide induced bronchial obstruction is associated with non-specific responsiveness but not with atopy.  相似文献   

19.
Sildenafil can increase the response to inhaled nitric oxide   总被引:6,自引:0,他引:6  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号