首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
1. The effect of a selective mu opioid agonist, [N-MePhe3-D-Pro4]morphiceptin (PL017), on synaptic transmission in the dentate gyrus was examined in hippocampal slices. Synaptic currents were evoked by stimulation of the outer molecular layer and recorded from granule cells using whole-cell voltage-clamp techniques. 2. Monosynaptic inhibitory postsynaptic currents (IPSCs) were evoked in the presence of D(-)-2-amino-5-phosphonovaleric acid (D-APV), and N-methyl-D-aspartate (NMDA) receptor antagonist, and 6,7-dinitroquinoxaline-2,3-dione (DNQX), a non-NMDA type of glutamate receptor antagonist. The IPSCs consisted of a gamma-aminobutyric acid (GABA)A receptor-mediated early component and a GABAB receptor-mediated late component. 3. Bath application of PL017 (0.3-3 microM) induced a dose-dependent reduction in the amplitude of both early IPSCs (21-56%) and late IPSCs (43-81%). These effects could be reversed by the opiate antagonist naloxone (1 microM) or prevented by the selective mu antagonist beta-funaltrexamine hydrochloride (10 microM). 4. NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) were revealed in the presence of DNQX and the GABAA antagonist bicuculline methiodide. PL017 (3 microM) caused a 35% reduction in the amplitude of NMDA EPSCs. NMDA receptor-mediated population EPSPs recorded extracellularly were also inhibited by 3 microM PL017 to a similar degree. 5. Non-NMDA receptor-mediated EPSCs were demonstrated in the presence of D-APV and bicuculline methiodide. The amplitude of non-NMDA EPSCs was not affected by PL017.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Excitatory pathways from the dorsal commissure (DCM) to L(6)-S(1) parasympathetic preganglionic neurons (PGN) were examined using whole-cell patch-clamp recording techniques in spinal cord slices from neonatal rats. PGN were identified by retrograde axonal transport of a fluorescent dye injected into the intraperitoneal space. Excitatory postsynaptic currents (EPSCs) were evoked in PGN by stimulation of DCM in the presence of bicuculline methiodide (10 microM) and strychnine (1 microM) to block inhibitory pathways. Electrical stimulation of DCM evoked two types of inward currents. In the majority of PGN (n = 66), currents (mean amplitude, 47.9 +/- 4.7 pA) occurred at a short and relatively constant latency (3.8 +/- 0.1 ms) and presumably represent monosynaptic EPSCs (Type 1). However, in other neurons (n = 20), a different type of EPSC (Type 2) was noted, consisting of a fast monosynaptic component followed by a prolonged inward current with superimposed fast transients presumably representing excitatory inputs mediated by polysynaptic pathways. Type 1 EPSCs were pharmacologically dissected into two components. A fast component was blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 5 microM) and a slowly decaying component was blocked by 2-amino-5-phosphonovalerate (APV, 50 microM). The fast component of Type 1 EPSCs had a linear current-voltage relationship and reversed at a membrane potential of -7.6 +/- 1.3 mV (n = 5). The fast component of Type 2 EPSCs was also blocked by 5 microM CNQX and the remaining slower component was blocked by 50 microM APV. When the DCM was stimulated in the presence of 50 microM APV, the time to peak and decay time constant in Type 1 EPSCs were 1.9 +/- 0.2 and 4.1 +/- 0.8 ms, respectively. Examination of the NMDA receptor-mediated component of the EPSCs in the presence of 5 microM CNQX revealed a current-voltage relationship that had a region of negative slope conductance (from -20 to -80 mV), which was abolished in Mg(2+)-free external solution. The time to peak and decay time constant of this component were 14.2 +/- 2.0 and 91.0 +/- 12.4 ms, respectively. Type 1 EPSCs in some PGN responded in an all-or-none manner and presumably represented unitary synaptic responses; whereas Type 2 EPSCs always exhibited a graded stimulus intensity-response relationship. Paired-pulse facilitation (50-ms interstimulus intervals; 141 +/- 5.6% increase, n = 8) of EPSCs was observed. These results indicate that PGN receive monosynaptic and polysynaptic glutamatergic excitatory inputs from neurons and/or axonal pathways in the DCM.  相似文献   

3.
Li Q  Kuhn CM  Wilson WA  Lewis DV 《Neuroscience》2007,150(1):82-92
The mechanism by which the sedative and amnestic recreational drug gamma hydroxybutyric acid (GHB) acts is controversial. Some studies indicate that it acts at its unique receptor, while others demonstrate effects mediated through the GABAB receptor. We examined the effect of GHB on evoked GABAA receptor-mediated mono- and polysynaptic inhibitory postsynaptic currents (IPSCs) as well as on N-methyl-d-aspartate (NMDA) and AMPA-mediated excitatory postsynaptic currents (EPSCs) in layers II/III pyramidal cells of the frontal cortex of rat brain. One millimolar (mM) GHB suppressed monosynaptic IPSCs by 20%, whereas polysynaptic IPSCs were reduced by 56%. GHB (1 mM) also produced a significant suppression of NMDA-mediated EPSCs by 53% compared with 27% suppression of AMPA-mediated EPSCs. All effects of GHB on IPSCs and EPSCs were reversed by the specific GABAB antagonist CGP 62349, but not by the GHB receptor antagonist (2E)-5-hydroxy-5,7,8,9-tetrahydro-6H-benzo[a][7]annulen-6-ylidene ethanoic acid. Consistent with a presynaptic site of action, GHB reduced the frequency but not the amplitude of AMPA receptor-mediated mEPSCs and had no effect on postsynaptic currents evoked by direct application of NMDA. Finally, even though GHB appeared to be acting at presynaptic GABAB receptors, GHB and the GABAB agonist baclofen appeared to have opposite potencies for depression of NMDA- vs. AMPA-mediated EPSCs. GHB showed a preference for depressing NMDA responses while baclofen more potently suppressed AMPA responses. The suppression of NMDA more than AMPA responses by GHB at intoxicating doses may make it attractive as a recreational drug and may explain why GHB is abused and baclofen is not.  相似文献   

4.
Moxonidine is an antihypertensive drug that lowers sympathetic vasomotor tone by stimulating either alpha2-adrenergic (alpha2-AR) or imidazoline I1 receptors within the rostral ventrolateral medulla (RVL). In this study, we investigated the effects of moxonidine (10 microM) on RVL neurons in brain stem slices of neonatal rats. We recorded mainly from retrogradely labeled RVL bulbospinal neurons (putative presympathetic neurons) except for some extracellular recordings. Prazosin was used to block alpha1-adrenoceptors. Moxonidine inhibited the extracellularly recorded discharges of all spontaneously active RVL neurons tested (bulbospinal and unidentified). This effect was reversed or blocked by the selective alpha2-AR antagonist SKF 86466 (10 microM). In contrast, the I1 imidazoline ligand AGN 192403 (10 microM) had no effect on the spontaneous activity. In whole cell recordings (holding potential -70 mV), moxonidine produced a small and variable outward current (mean 7 pA). This current was observed in both tyrosine hydroxylase-immunoreactive and other bulbospinal neurons and was blocked by SKF 86466. Excitatory postsynaptic currents (EPSCs) evoked by focal electrical stimulation were isolated by incubation with gabazine and strychnine, and inhibitory postsynaptic currents (IPSCs) were isolated with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Moxonidine reduced the amplitude of the evoked EPSCs (EC(50) = 1 microM; 53% inhibition at 10 microM) but not their decay time constant (5.6 ms). The effect of moxonidine on EPSCs persisted in barium (300 microM) and was reduced approximately 80% by SKF 86466. Moxonidine also reduced the amplitude of evoked IPSCs by 63%. In conclusion, moxonidine inhibits putative RVL presympathetic neurons both presynaptically and postsynaptically. All observed effects in the present study are consistent with an alpha2-AR agonist activity of moxonidine.  相似文献   

5.
Whole cell patch-clamp recordings were obtained from projection neurons and interneurons of the rat basolateral amygdala (BLA) to understand local network interactions in morphologically identified neurons and their modulation by serotonin. Projection neurons and interneurons were characterized morphologically and electrophysiologically according to their intrinsic membrane properties and synaptic characteristics. Synaptic activity in projection neurons was dominated by spontaneous inhibitory postsynaptic currents (IPSCs) that were multiphasic, reached 181 +/- 38 pA in amplitude, lasted 296 +/- 27 mS, and were blocked by the GABAA receptor antagonist, bicuculline methiodide (30 microM). In interneurons, spontaneous synaptic activity was characterized by a burst-firing discharge patterns (200 +/- 40 Hz) that correlated with the occurrence of 6-cyano-7-nitroquinoxaline-2,3-dione-sensitive, high-amplitude (260 +/- 42 pA), long-duration (139 +/- 19 mS) inward excitatory postsynaptic currents (EPSCs). The interevent interval of 831 +/- 344 mS for compound inhibitory postsynaptic potentials (IPSPs), and 916 +/- 270 mS for EPSC bursts, suggested that spontaneous IPSP/Cs in projection neurons are driven by burst of action potentials in interneurons. Hence, BLA interneurons may regulate the excitability of projection neurons and thus determine the degree of synchrony within ensembles of BLA neurons. In interneurons 5-hydroxytryptamine oxalate (5-HT) evoked a direct, dose-dependent, membrane depolarization mediated by a 45 +/- 6.9 pA inward current, which had a reversal potential of -90 mV. The effect of 5-HT was mimicked by the 5-HT2 receptor agonist, alpha-methyl-5-hydroxytryptamine (alpha-methyl-5-HT), but not by the 5-HT1A receptor agonist, (+/-) 8-hydroxydipropylaminotetralin hydrobromide (8-OH-DPAT), or the 5-HT1B agonist, CGS 12066A. In projection neurons, 5-HT evoked an indirect membrane hyperpolarization ( approximately 2 mV) that was associated with a 75 +/- 42 pA outward current and had a reversal potential of -70 mV. The response was independent of 5-HT concentration, blocked by TTX, mimicked by alpha-methyl-5-HT but not by 8-OH-DPAT. In interneurons, 5-HT reduced the amplitude of the evoked EPSC and in the presence of TTX (0.6 microM) reduced the frequency of miniature EPSCs but not their quantal content. In projection neurons, 5-HT also caused a dose-dependent reduction in the amplitude of stimulus evoked EPSCs and IPSCs. These results suggest that acute serotonin release would directly activate GABAergic interneurons of the BLA, via an activation of 5-HT2 receptors, and increase the frequency of inhibitory synaptic events in projection neurons. Chronic serotonin release, or high levels of serotonin, would reduce the excitatory drive onto interneurons and may act as a feedback mechanism to prevent excess inhibition within the nucleus.  相似文献   

6.
1. Crayfish exposed to 434 mM ethanol (EtOH) showed signs of hyperactivity within 0.5-2 h, at which times crayfish hemolymph EtOH concentration had reached 60-90 mM. 2. A 10-min exposure to 60-90 mM EtOH reduced presynaptic inhibition of excitatory postsynaptic currents (EPSCs) at the crayfish opener neuromuscular junction (NMJ) in vitro but did not significantly alter excitatory neurotransmission. The same concentrations of EtOH did not alter other potentials or currents associated with inhibition at this synapse, such as presynaptic inhibitory potentials (PIPs), inhibitory postsynaptic potentials (IPSPs), and inhibitory postsynaptic currents (IPSCs). 3. Intermediate EtOH concentrations (120-180 mM) applied for 10 min in vitro reduced the amplitude of excitatory postsynaptic potentials (EPSPs) by decreasing the membrane resistance of opener muscle fibers and by reducing the amplitude of EPSCs. 4. High EtOH concentrations (434 mM) applied for 10 min in vitro had yet greater depressive effects on measures of postsynaptic properties described above. The time course of EPSCs was also significantly reduced. In addition, presynaptic properties such as action-potential (AP) amplitude and frequency of spontaneous release of neurotransmitter were reduced by 434 mM EtOH. 5. Presynaptic inhibition, gamma-aminobutyric acid (GABA; 250-500 microM), muscimol (50 microM), and baclofen (75 microM) all reduced the depolarizing afterpotential of APs in the excitor axon and reduced EPSPs in opener muscle fibers. GABA (500 microM) and baclofen (75 microM) significantly reduced presynaptic AP amplitudes, whereas presynaptic inhibition, GABA (250 microM), and muscimol (50 microM) had no effect on AP amplitude. Bicuculline (250-500 microM), a GABAA antagonist, did not entirely eliminate presynaptic inhibition, whereas picrotoxin (50 microM), another GABAA antagonist, completely removed presynaptic inhibition. Thus presynaptic inhibitory mechanisms may involve both GABAA and GABAB receptors on the opener excitor axon. 6. Our data suggest that the behavioral hyperactivity seen at hemolymph EtOH concentrations of 60-90 mM is not accompanied by a change in excitatory synaptic transmission observed at the opener NMJ. Rather, crayfish hyperactivity may be due to depressive effects of EtOH on inhibitory synapses in the CNS similar to the disinhibition evoked by EtOH at the opener NMJ.  相似文献   

7.
Retinal amacrine cells have abundant dendro-dendritic synapses between neighboring amacrine cells. Therefore an amacrine cell has both presynaptic and postsynaptic aspects. To understand these synaptic interactions in the amacrine cell, we recorded from amacrine cells in the goldfish retinal slice preparation with perforated- and whole cell-patch clamp techniques. As the presynaptic element, 19% of the cells recorded (15 of 78 cells) showed spontaneous tetrodotoxin (TTX)-sensitive action potentials. As the postsynaptic element, all amacrine cells (n = 9) were found to have GABA-evoked responses and, under perforated patch clamp, 50 microM GABA hyperpolarized amacrine cells by activating a Cl(-) conductance. Bicuculline-sensitive spontaneous postsynaptic currents, carried by Cl(-), were observed in 82% of the cells (64 of 78 cells). Since the source of GABA in the inner plexiform layer is amacrine cells alone, these events are likely to be inhibitory postsynaptic currents (IPSCs) caused by GABA spontaneously released from neighboring amacrine cells. IPSCs were classified into three groups. Large amplitude IPSCs were suppressed by TTX (1 microM), indicating that presynaptic action potentials triggered GABA release. Medium amplitude IPSCs were also TTX sensitive. Small amplitude IPSCs were TTX insensitive (miniature IPSCs; n = 26). All of spike-induced, medium amplitude, and miniature IPSCs were Ca(2+) dependent and blocked by Co(2+). Blocking of glutamatergic inputs by DL-2-amino-phosphonoheptanoate (AP7; 30 microM) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 2 microM) had almost no effect on spontaneous GABA release from presynaptic amacrine cells. We suggest that these dendro-dendrotic inhibitory networks contribute to receptive field spatiotemporal properties.  相似文献   

8.
Neurons in the paraventricular nucleus (PVN) that project to the brain stem and spinal cord are important for autonomic regulation. The excitability of preautonomic PVN neurons is controlled by the noradrenergic input from the brain stem. In this study, we determined the role of alpha(2) adrenergic receptors in the regulation of excitatory and inhibitory synaptic inputs to spinally projecting PVN neurons. Excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) were recorded using whole cell voltage-clamp techniques on PVN neurons labeled by a retrograde fluorescence tracer injected into the thoracic spinal cord of rats. Bath application of 5-20 muM clonidine, an alpha(2) receptor agonist, significantly reduced the amplitude of evoked GABAergic IPSCs in a dose-dependent manner. Also, 10 microM clonidine significantly decreased the frequency (from 2.68 +/- 0.41 to 1.22 +/- 0.40 Hz) but not the amplitude of miniature IPSCs (mIPSCs), and this effect was blocked by the alpha(2) receptor antagonist yohimbine. Furthermore, clonidine increased the paired-pulse ratio of evoked IPSCs from 1.25 +/- 0.05 to 1.61 +/- 0.08 (P < 0.05). On the other hand, clonidine had little effect on evoked glutamatergic EPSCs, mEPSCs, and the paired-pulse ratio of evoked EPSCs in most labeled cells examined. Additionally, immunofluorescence labeling revealed that the alpha(2A) receptor and GABA immunoreactivities were co-localized in close apposition to labeled PVN neurons. Collectively, these data suggest that stimulation of alpha(2) adrenergic receptors primarily attenuates GABAergic inputs to PVN output neurons to the spinal cord. The presynaptic alpha(2) receptors function as heteroreceptors to modulate synaptic GABA release and contribute to the hypothalamic regulation of sympathetic outflow.  相似文献   

9.
Shen KZ  Johnson SW 《Neuroscience》2008,151(4):1029-1033
The subthalamic nucleus (STN) plays a pivotal role in normal and abnormal motor function. We used patch pipettes to study effects of 5-HT on synaptic currents evoked in STN neurons by focal electrical stimulation of rat brain slices. 5-HT (10 microM) reduced glutamate-mediated excitatory postsynaptic currents (EPSCs) by 35+/-4%. However, a much higher concentration of 5-HT (100 microM) was required to inhibit GABA-mediated inhibitory postsynaptic currents (IPSCs) to a comparable extent. Concentration-response curves showed that the 5-HT inhibitory concentration 50% (IC50) for inhibition of IPSCs (20.2 microM) was more than fivefold greater than the IC50 for inhibition of EPSCs (3.4 microM). The 5-HT-induced reductions in EPSCs and IPSCs were accompanied by increases in paired-pulse ratios, indicating that 5-HT acts presynaptically to inhibit synaptic transmission. The 5-HT1B receptor antagonist NAS-181 significantly antagonized 5-HT-induced inhibitions of EPSCs and IPSCs. These studies show that 5-HT inhibits synaptic transmission in the STN by activating presynaptic 5-HT1B receptors.  相似文献   

10.
To know a functional role of inhibitory synaptic responses in transmitting noxious and innoxious information from the periphery to the rat spinal dorsal horn, we examined inhibitory postsynaptic currents (IPSCs) elicited in substantia gelatinosa (SG) neurons by mechanical stimuli applied to the skin using the newly developed in vivo patch-clamp technique. In the majority (80%) of SG neurons examined, a brush stimulus applied to the ipsilateral hind limb produced a barrage of IPSCs that persisted during the stimulus, while a pinch stimulus evoked IPSCs only at its beginning and end. The pinch-evoked IPSCs may have been caused by a touch that occurs at the on/off time of the pinch. The evoked IPSCs were blocked by either a glycine-receptor antagonist, strychnine (4 microM), or a GABA(A)-receptor antagonist, bicuculline (20 microM). All SG neurons examined received inhibitory inputs from a wide area throughout the thigh and lower leg. When IPSCs were examined together with excitatory postsynaptic currents (EPSCs) in the same neurons, a brush evoked a persistent activity of both IPSCs and EPSCs during the stimulus while a pinch evoked such an activity of EPSCs but not IPSCs. It is suggested that innoxious mechanical stimuli activate a GABAergic or glycinergic circuitry in the spinal dorsal horn. This inhibitory transmission may play an important role in the modulation of noxious information in the SG.  相似文献   

11.
The mechanisms underlying the depression of evoked fast excitatory postsynaptic currents (EPSCs) following superfusion with medium deprived of oxygen and glucose (in vitro ischemia) for a 4-min period in hippocampal CA1 neurons were investigated in rat brain slices. The amplitude of evoked fast EPSCs decreased by 85 +/- 7% of the control 4 min after the onset of in vitro ischemia. In contrast, the exogenous glutamate-induced inward currents were augmented, while the spontaneous miniature EPSCs obtained in the presence of tetrodotoxin (TTX, 1 microM) did not change in amplitude during in vitro ischemia. In a normoxic medium, a pair of fast EPSCs was elicited by paired-pulse stimulation (40-ms interval), and the amplitude of the second fast EPSC increased to 156 +/- 24% of the first EPSC amplitude. The ratio of paired-pulse facilitation (PPF ratio) increased during in vitro ischemia. Pretreatment of the slices with adenosine 1 (A1) receptor antagonist, 8-cyclopenthyltheophiline (8-CPT) antagonized the depression of the fast EPSCs, in a concentration-dependent manner: in the presence of 8-CPT (1-10 microM), the amplitude of the fast EPSCs decreased by only 20% of the control during in vitro ischemia. In addition, 8-CPT antagonized the enhancement of the PPF ratio during in vitro ischemia. A pair of presynaptic volleys and excitatory postsynaptic field potentials (fEPSPs) were extracellularly recorded in a proximal part of the stratum radiatum in the CA1 region. The PPF ratio for the fEPSPs also increased during in vitro ischemia. On the other hand, the amplitudes of the first and second presynaptic volley, which were abolished by TTX (0.5 microM), did not change during in vitro ischemia. The maximal slope of the Ca(2+)-dependent action potential of the CA3 neurons, which were evoked in the presence of 8-CPT (1 microM), nifedipine (20 microM), TTX (0.5 microM), and tetraethyl ammonium chloride (20 mM), decreased by 12 +/- 6% of the control 4 min after the onset of in vitro ischemia. These results suggest that in vitro ischemia depresses the evoked fast EPSCs mainly via the presynaptic A1 receptors, and the remaining 8-CPT-resistant depression of the fast EPSCs is probably due to a direct inhibition of the Ca(2+) influx to the axon terminals.  相似文献   

12.
Excitatory postsynaptic currents (EPSCs) in parasympathetic preganglionic neurons (PGNs) were examined using the whole cell patch-clamp recording technique in L6 and S1 spinal cord slices from neonatal rats (6-16 days old). PGNs were identified by labeling with retrograde axonal transport of a fluorescent dye (Fast Blue) injected into the intraperitoneal space 3-7 days before the experiment. Synaptic responses were evoked in PGNs by field stimulation of the lateral funiculus (LF) in the presence of bicuculline methiodide (10 microM) and strychnine (1 microM). In approximately 40% of the cells (total, 100), single-shock electrical stimulation of the LF elicited short, relatively constant latency [3.0 +/- 0.1 (SE) ms] fast EPSCs consistent with a monosynaptic pathway. The remainder of the cells did not respond to stimulation. At low intensities of stimulation, the EPSCs often occurred in an all-or-none manner, indicating that they were mediated by a single axonal input. Most cells (n = 33) exhibited only fast EPSCs (type 1), but some cells (n = 8) had fast EPSCs with longer, more variable latency polysynaptic EPSCs superimposed on a slow inward current (type 2). Type 1 fast synaptic EPSCs were pharmacologically dissected into two components: a transient component that was blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 5 microM), a non-NMDA glutamatergic antagonist, and a slow decaying component that was blocked by 2-amino-5-phosphonovalerate (APV, 50 microM), a NMDA antagonist. Type 2 polysynaptic currents were reduced by 5 microM CNQX and completely blocked by combined application of 5 microM CNQX and 50 microM APV. The fast monosynaptic component of type 1 EPSCs had a linear current-voltage relationship and reversed at a membrane potential of 5.0 +/- 5.9 mV (n = 5), whereas the slow component exhibited a negative slope conductance at holding potentials greater than -20 mV. The type 1, fast synaptic EPSCs had a time to peak of 1.4 +/- 0.1 ms and exhibited a biexponential decay (time constants, 5.7 +/- 0.6 and 38.8 +/- 4.0 ms). In the majority of PGNs (n = 11 of 15 cells), EPSCs evoked by electrical stimulation of LF exhibited paired-pulse inhibition (range; 25-33% depression) at interstimulus intervals ranging from 50 to 120 ms. These results indicate that PGNs receive monosynaptic and polysynaptic glutamatergic excitatory inputs from axons in the lateral funiculus.  相似文献   

13.
Activation of opioid receptors in the periphery and centrally in the brain results in inhibition of gastric and other vagally mediated functions. The aim of this study was to examine the role of the endogenous opioid agonist endomorphin 1 (EM-1) in regulating synaptic transmission within the nucleus tractus solitarius (NTS), an integration site for autonomic functions. We performed whole cell patch-clamp recordings from coronal brain slices of the rat medulla. A subset of the neurons studied was prelabeled with a stomach injection of the transsynaptic retrograde virus expressing EGFP, PRV-152. Solitary tract stimulation resulted in constant latency excitatory postsynaptic currents (EPSCs) that were decreased in amplitude by EM-1 (0.01-10 microM). The paired-pulse ratio was increased with little change in input resistance, suggesting a presynaptic mechanism. Spontaneous EPSCs were decreased in both frequency and amplitude by EM-1, and miniature EPSCs were reduced in frequency but not amplitude, suggesting a presynaptic mechanism for the effect. Spontaneous inhibitory postsynaptic currents (IPSCs) were also reduced in frequency by EM-1, but the effect was blocked by TTX, suggesting activity at receptors on the somata of local inhibitory neurons. Synaptic input arising from local NTS neurons, which were activated by focal photolysis of caged glutamate, was inhibited by EM-1. The actions of EM-1 were similar to those of D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) and were blocked by naltrexone, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), or D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP). These results suggest that EM-1 acts at mu-opioid receptors to modulate viscerosensory input and specific components of local synaptic circuitry in the NTS.  相似文献   

14.
Opioid peptides have profound inhibitory effects on the production of oxytocin and vasopressin, but their direct effects on magnocellular neuroendocrine neurons appear to be relatively weak. We tested whether a presynaptic mechanism is involved in this inhibition. The effects of mu-opioid receptor agonist D-Ala(2), N-CH(3)-Phe(4), Gly(5)-ol-enkephalin (DAGO) on excitatory and inhibitory transmission were studied in supraoptic nucleus (SON) neurons from rat hypothalamic slices using whole cell recording. DAGO reduced the amplitude of evoked glutamatergic excitatory postsynaptic currents (EPSCs) in a dose-dependent manner. In the presence of tetrodotoxin (TTX) to block spike activity, DAGO also reduced the frequency of spontaneous miniature EPSCs without altering their amplitude distribution, rising time, or decaying time constant. The above effects of DAGO were reversed by wash out, or by addition of opioid receptor antagonist naloxone or selective mu-antagonist Cys(2)-Tyr(3)-Orn(5)-Pen(7)-NH(2) (CTOP). In contrast, DAGO had no significant effect on the evoked and spontaneous miniature GABAergic inhibitory postsynaptic currents (IPSCs) in most SON neurons. A direct membrane hyperpolarization of SON neurons was not detected in the presence of DAGO. These results indicate that mu-opioid receptor activation selectively inhibits excitatory activity in SON neurons via a presynaptic mechanism.  相似文献   

15.
Developmental cortical malformations are common in patients with intractable epilepsy; however, mechanisms contributing to this epileptogenesis are currently poorly understood. We previously characterized hyperexcitability in a rat model that mimics the histopathology of human 4-layered microgyria. Here we examined inhibitory and excitatory postsynaptic currents in this model to identify functional alterations that might contribute to epileptogenesis associated with microgyria. We recorded isolated whole cell excitatory postsynaptic currents and GABA(A) receptor-mediated inhibitory currents (EPSCs and IPSCs) from layer V pyramidal neurons in the region previously shown to be epileptogenic (paramicrogyral area) and in homotopic control cortex. Epileptiform-like activity could be evoked in 60% of paramicrogyral (PMG) cells by local stimulation. The peak conductance of both spontaneous and evoked IPSCs was significantly larger in all PMG cells compared with controls. This difference in amplitude was not present after blockade of ionotropic glutamatergic currents or for miniature (m)IPSCs, suggesting that it was due to the excitatory afferent activity driving inhibitory neurons. This conclusion was supported by the finding that glutamate receptor antagonist application resulted in a significantly greater reduction in spontaneous IPSC frequency in one PMG cell group (PMG(E)) compared with control cells. The frequency of both spontaneous and miniature EPSCs was significantly greater in all PMG cells, suggesting that pyramidal neurons adjacent to a microgyrus receive more excitatory input than do those in control cortex. These findings suggest that there is an increase in numbers of functional excitatory synapses on both interneurons and pyramidal cells in the PMG cortex perhaps due to hyperinnervation by cortical afferents originally destined for the microgyrus proper.  相似文献   

16.
Using the single-electrode voltage-clamp technique, we have examined the effects of a non-N-methyl-D-aspartate (NMDA) antagonist. Joro spider toxin (JSTX), and of an NMDA antagonist, zinc, on excitatory postsynaptic currents (EPSCs) evoked by stimulation of stratum radiatum in CA1 pyramidal cells of the guinea-pig hippocampal slice. Pressure application of a synthesized JSTX (JSTX-3) at 10-200 microM greatly reduced the EPSCs (14/19 cells). The block by JSTX-3 was observed in pyramidal cells where the EPSCs showed linear peak current-voltage (I-V) relations in the control. EPSCs remaining after JSTX-3 application showed non-linear peak I-V relationships (10/14 cells), and were blocked by puff application of the selective NMDA receptor antagonist DL-2-amino-5-phosphonovalerate (APV) at 200 microM (6/10 cells). In the presence of JSTX-3, the decay time constant of the EPSC was increased and was less affected by membrane potential. JSTX-3 had no detectable effects on EPSCs apparently mediated solely by NMDA receptor. These observations suggest that JSTX-3 blocks excitatory synaptic transmission mainly by suppressing non-NMDA-receptor-mediated EPSCs, and that the JSTX-3-insensitive component is mediated at least in part by NMDA receptors in the hippocampal slice. Zinc (100-200 microM) reversibly attenuated EPSCs (6/9 cells) and appeared to block a slower component of the EPSCs, suggesting that mainly NMDA receptor-mediated currents were affected.  相似文献   

17.
The excitatory amino acid receptor (EAAR) types involved in the generation of light-evoked excitatory postsynaptic currents (EPSCs) were examined in X-type retinal ganglion cells. Using isolated and sliced preparations of cat and ferret retina, the light-evoked EPSCs of X cells were isolated by adding picrotoxin and strychnine to the bath to remove synaptic inhibition. N-methyl-D-aspartate (NMDA) receptors contribute significantly to the light-evoked EPSCs of ON- and OFF-X cells at many different holding potentials. An NMDA receptor contribution to the EPSCs was observable when retinal synaptic inhibition was either normally present or pharmacologically blocked. NMDA receptors formed 80% of the peak light-evoked EPSC at a holding potential of -40 mV; however, even at -80 mV, 20% of the light-evoked EPSC was NMDA-mediated. An alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor-mediated component to the light-evoked EPSCs predominated at a holding potential of -80 mV. The light-evoked EPSC was blocked by the AMPA receptor-selective antagonist GYKI52466 (50-100 microM). The AMPA receptor-mediated EPSC component had a linear current-voltage relation. AMPA receptors form the main non-NMDA EAAR current on both ON- and OFF- X ganglion cell dendrites. When synaptic transmission was blocked by the addition of Cd(2+) to the Ringer, application of kainate directly to ganglion cells evoked excitatory currents that were strongly blocked by GYKI52466. Experiments using selective EAAR modulators showed the AMPA receptor-selective modulator cyclothiazide potentiated glutamate-evoked currents on X cells, while the kainate receptor-selective modulator concanavalin A (ConA) had no effect on kainate-evoked currents. Whereas the present study confirms the general notion that AMPA EAAR-mediated currents are transient and NMDA receptor-mediated currents are sustained, current-voltage relations of the light-evoked EPSC at different time points showed the contributions of these two receptor types significantly overlap. Both NMDA and AMPA EAARs can transmit transient and sustained visual signals in X ganglion cells, suggesting that much signal shaping occurs presynaptically in bipolar cells.  相似文献   

18.
A whole cell patch-clamp study was carried out in slices obtained from young rat brain to elucidate the roles of somatostatin in the modulation of synaptic transmission onto cholinergic neurons in the basal forebrain (BF), a region that contains cholinergic and GABAergic corticopetal neurons and somatostatin (SS)-containing local circuit neurons. Cholinergic neurons within the BF were identified by in vivo prelabeling with Cy3 IgG. Because in many cases SS is contained in GABAergic neurons in the CNS, we investigated whether exogenously applied SS can influence GABAergic transmission onto cholinergic neurons. Bath application of somatostatin (1 muM) reduced the amplitude of the evoked GABAergic inhibitory presynaptic currents (IPSCs) in cholinergic neurons. SS also reduced the frequency of miniature IPSCs (mIPSCs) without affecting their amplitude distribution. SS-induced effect on the mIPSC frequency was significantly larger in the solution containing 7.2 mM Ca(2+) than in the standard (2.4 mM Ca(2+)) external solution. Similar effects were observed in the case of non-NMDA glutamatergic excitatory postsynaptic currents (EPSCs). SS inhibited the amplitude of evoked EPSCs and reduced the frequency of miniature EPSCs dependent on the external Ca(2+) concentration with no effect on their amplitude distribution. Pharmacological analyses using SS-receptor subtype-specific drugs suggest that SS-induced action of the IPSCs is mediated mostly by the sst(2) subtype, whereas sst subtypes mediating SS-induced inhibition of EPSCs are mainly sst(1) or sst(4). These findings suggest that SS presynaptically inhibits both GABA and glutamate release onto BF cholinergic neurons in a Ca(2+)-dependent way, and that SS-induced effect on IPSCs and EPSCs are mediated by different sst subtypes.  相似文献   

19.
Sun H  Ma CL  Kelly JB  Wu SH 《Neuroscience letters》2006,399(1-2):151-156
Whole-cell patch clamp recordings were made from ICC neurons in brain slices of 9-16 day old rats. Postsynaptic currents were evoked by electrical stimulation of the lemniscal inputs. Excitatory postsynaptic currents (EPSCs) were isolated pharmacologically by blocking GABA(A) and glycine receptors. EPSCs were further dissected into AMPA and NMDA receptor-mediated responses by adding the receptor antagonists, APV and CNQX, respectively. The internal solution in the recording electrodes contained CsF and TEA to block K(+) channels that might be activated by postsynaptic GABA(B) receptors. The modulatory effects of GABA(B) receptors on EPSCs in ICC neurons were examined by bath application of the GABA(B) receptor agonist, baclofen, and the antagonist, CGP 35348. The amplitudes of EPSCs in ICC neurons were reduced to 34.4+/-3.2% of the control by baclofen (5-10 microM). The suppressive effect by baclofen was concentration-dependent. The reduction of the EPSC amplitude was reversed by CGP35348. The ratio of the 2nd to 1st EPSCs evoked by paired-pulse stimulation was significantly increased after application of baclofen. These results suggest that glutamatergic excitation in the ICC can be modulated by presynaptic GABA(B) receptors. In addition, baclofen reduced NMDA EPSCs more than AMPA EPSCs. The GABA(B) receptor-mediated modulation of glutamatergic excitation in the ICC provides a likely mechanism for preventing overstimulation and/or regulating the balance of excitation and inhibition involved in processing auditory information.  相似文献   

20.
The effect of cannabinoids on excitatory transmission in the substantia gelatinosa was investigated using intracellular recording from visually identified neurons in a transverse slice preparation of the juvenile rat spinal cord. In the presence of strychnine and bicuculline, perfusion of the cannabinoid receptor agonist WIN55,212-2 reduced the frequency and the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). Furthermore, the frequency of miniature EPSCs (mEPSCs) was also decreased by WIN55,212-2, whereas their amplitude was not affected. Similar effects were reproduced using the endogenous cannabinoid ligand anandamide. The effects of both agonists were blocked by the selective CB(1) receptor antagonist SR141716A. Electrical stimulation of high-threshold fibers in the dorsal root evoked a monosynaptic EPSC in lamina II neurons. In the presence of WIN55,212-2, the amplitude of the evoked EPSC (eEPSCs) was reduced, and the paired-pulse ratio was increased. The reduction of the eEPSC following CB(1) receptor activation was unlikely to have a postsynaptic origin because the response to AMPA, in the presence of 1 microM TTX, was unchanged. To investigate the specificity of this synaptic inhibition, we selectively activated the nociceptive C fibers with capsaicin, which induced a strong increase in the frequency of EPSCs. In the presence of WIN55,212-2, the response to capsaicin was diminished. In conclusion, these results strongly suggest a presynaptic location for CB(1) receptors whose activation results in inhibition of glutamate release in the spinal dorsal horn. The strong inhibitory effect of cannabinoids on C fibers may thereby contribute to the modulation of the spinal excitatory transmission, thus producing analgesia at the spinal level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号