首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular calcium ion concentrations ([Ca2+]i) in rat cerebral cortical synaptosomes were measured, using the calcium chelating fluorescence dye fura-2. The synaptosomes were depolarized by elevation of the extracellular K+ concentration or by addition of veratridine, which opens voltage-dependent Na+-channels and prevents their inactivation. Both enhancement of the concentration of extracellular K+ (up to 60 mM) and veratridine (1–100 μM) increased the [Ca2+]i in a concentration-dependent manner. In the absence of extracellular Ca2+, the K+- and veratridine-induced increases in [Ca2+]i were abolished, indicating that the increase in [Ca2+]i was due to an influx of extracellular Ca2+. Tetrodotoxin (TTX), a blocker of the voltage-dependent Na+ channel, inhibited the veratridine-induced (10 μM) Ca2+ influx by more than 80%, while the K+-evoked (30 mM) increase of [Ca2+]i was TTX-resistant. Both the K+- and the veratridine-induced Ca2+ influx were not reduced by nifedipine (1 μM), a blocker of L-type Ca2+ channels. Blockade of the voltage dependent N-type Ca2+ channels with ω-conotoxin GVIA (ω-CTx GVIA; 0.1 μM) and of the voltage-dependent P/Q-type channels with ω-agatoxin IVA (ω-AgaTx IVA; 0.2 μM) inhibited the K+-induced increase in [Ca2+]i by about 30 and 55%, respectively; these effects were additive. ω-Conotoxin MVIIC (ω-CTx MVIIC) at a concentration of 0.2 μM, which may be assumed to block predominantly the Q-type Ca2+ channel, inhibited the K+-induced increase in [Ca2+]i by 50%. The veratridine-induced increase in [Ca2+]i was reduced by about 25% by ω-CTx GVIA (0.1 μM), but was resistant to ω-AgaTx IVA (0.2 μM) and ω-CTx MVIIC (0.2 μM). Mibefradil (former designation Ro 40-5967), a Ca2+ antagonist which blocks all types of voltage-dependent Ca2+ channels including the T and R channels, led to a concentration-dependent inhibition of the K+- and veratridine-induced increase in [Ca2+]i (abolition at 10 μM mibefradil). Ifenprodil, another non-specific blocker of voltage-dependent Ca2+ channels, also inhibited the K+- and veratridine-induced increase in [Ca2+]i in concentration-dependent manner and abolished it at 320 μM ifenprodil. In contrast, KB-R 7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulphonate; 1 and 3 μM), a highly potent and selective inhibitor of the Na+/Ca2+ exchanger (NCX1), failed to inhibit the K+- and veratridine-induced increase in [Ca2+]i. It is concluded that the K+-induced increase in free cytosolic Ca2+ results from Ca2+ influx through voltage-dependent N- and, above all, Q-type Ca2+ channels. N-type Ca2+ channels also play a minor role in the veratridine-induced increase in [Ca2+]i, but P/Q-type channels do not appear to be involved at all. The inhibition of the veratridine-induced, ω-CTx GVIA- and ω-AgaTx IVA-resistant increase in [Ca2+]i by mibefradil and the failure of KB-R 7943 to inhibit this response are compatible with the suggestion that in rat cerebral cortical synaptosomes, Ca2+ influx via the R-type Ca2+ channel and/or another so far uncharacterized Ca2+ channel may substantially contribute to the veratridine-induced increase in [Ca2+]i. Received: 7 March 1997 / Accepted: 9 September 1997  相似文献   

2.
We examined the nature of the palytoxin (PTX)-induced channel and its relevance to the Ca2+ mobilizing effect of the toxin on smooth muscle cells isolated from rabbit portal vein using whole-cell voltage-clamp and microfluorimetric techniques. PTX (1 nM) induced a sustained, irreversible inward current at a holding potential of –40 mV. The PTX-induced current reversed at 0.5 ± 0.6 mV, and the PTX-induced channel permitted the passage of Na+, K+, Cs+ and, to a lesser extent, Li+, but not choline+ or Ca2+. During the sustained phase of the current, superfusion of Ni2+ (5 mM), La3+ (0.5 mM) or 2,4-dichlorobenzamil (2,4-DCB, 25 μM) reduced the current amplitude and decreased the slope conductance without changing the reversal potential. In 5 of 7 experiments, ouabain transiently increased the PTX-induced inward current and shifted the reversal potential in a positive direction. Subsequently, ouabain inhibited the current in every cell. PTX (10 nM) induced a sustained rise in cytosolic Ca2+ ([Ca2+]i), which was resistant to verapamil but suppressed by omission of extracellular Ca2+. When external Na+ was replaced by choline+, PTX did not increase [Ca2+]i. Pretreatment with 2,4-DCB prevented the elevation of [Ca2+]i due to PTX. These results suggest that PTX does not directly stimulate Ca2+ entry but induces entry through Na+-Ca2+ exchange as a consequence of increased cytosolic Na+. Ni2+, La3+, 2,4-DCB and ouabain were shown to act as blockers of the PTX-induced channel. Ouabain may also inhibit Na+ pump current activated by cytosolic Na+. Received: 15 May 1996 / Accepted: 28 August 1996  相似文献   

3.
The effect of 1-[β-[3-(4-methoxyphenyl)pro- poxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride (SKF 96365) on Ca2+ signaling in Madin Darby canine kidney (MDCK) cells was examined. SKF 96365 at 25–100 μM evoked a robust [Ca2+]i transient in a dose-dependent manner, measured by fura-2 fluorimetry. A concentration of 10 μM SKF 96365 did not have an effect. The transient consisted of a slow rise, a gradual decay, and a sustained plateau in physiological Ca2+ medium. Removal of extracellular Ca2+ reduced the Ca2+ signals evoked by 50–100 μM SKF 96365 by nearly half in the area under the curve, suggesting that SKF 96365 induced intracellular Ca2+ release and also extracellular Ca2+ influx. A concentration of 100 μM SKF 96365 caused significant Mn2+ quench of fura-2 fluorescence, which was partly inhibited by La3+ (1 mM) or Gd3+ (0.1 mM), indicating that the SKF 96365-induced Ca2+ influx had two components: one is sensitive to La3+ (1 mM) or Gd3+ (0.1 mM), the other is not. The internal Ca2+ source for the SKF 96365-induced [Ca2+]i transient was the endoplasmic reticulum Ca2+ store because, pretreatment with thapsigargin and cyclopiazonic acid, two inhibitors of the endoplasmic reticulum Ca2+ pump nearly abolished the SKF 96365-induced [Ca2+]i increase in Ca2+-free medium. In contrast, pretreatment with 100 μM SKF 96365 only partly depleted the thapsigargin-sensitive Ca2+ store. Addition of 10 mM Ca2+ induced a significant [Ca2+]i increase after prior incubation with 100 μM SKF 96365 in Ca2+-free medium, demonstrating that SKF 96365 induced capacitative Ca2+ entry. This capacitative Ca2+ entry was about 40% of that induced by 1 μM thapsigargin. Additional to inducing its own capacitative Ca2+ entry, 100 μM SKF 96365 partly inhibited thapsigargin- or uridine trisphos-phate (UTP)-induced capacitative Ca2+ entry. We also investigated the mechanisms underlying the decay of the SKF 96365-induced [Ca2+]i transient. Inhibition of the plasma membrane Ca2+ pump with La3+ or Gd3+, or lowering extracellular Na+ level to 0.35 mM, significantly increased the SKF 96365-induced [Ca2+]i transient. In contrast, the mitochondrial uncoupler carbonylcyanide m-chlorophenylhydrazone had little effect. In Ca2+-free medium, the thapsigargin-induced [Ca2+]i increase was greatly reduced by pretreatment with SKF 96365. Collectively, we have found that besides its well-known inhibitory action on capacitative Ca2+ entry in many cell types, in MDCK cells SKF 96365 exerted multiple and complex effects on Ca2+ signaling. It induced a considerable increase in [Ca2+]i by releasing Ca2+ from the endoplasmic reticulum store followed by capacitative Ca2+ entry. It also caused a direct Ca2+ entry. The decay of the SKF 96365 response was significantly governed by efflux via the plasma membrane Ca2+ pump or Na+/Ca2+ exchange. Sequestration by mitochondria or the endoplasmic reticulum played a minor role. We caution use of SKF 96365 as an inhibitor of capacitative Ca2+ entry. Received: 21 September 1998 / Accepted: 2 December 1998  相似文献   

4.
Palytoxin (PTX) is one of the most potent toxins isolated from marine coelenterates of the genus Palythoa. It induces depolarization in various types of cells by increasing the permeability for monovalent cations. It has been reported that PTX induces endothelium-dependent relaxation of vascular smooth muscle. In this study, we examined the effect of PTX on the cytosolic Ca2+ concentration ([Ca2+]i) in the endothelium of rabbit aortic valves loaded with fluorescent Ca2+ indicators, fura-PE3 or fluo-3. PTX (10pM-300nM) irreversibly increased endothelial [Ca2+]i in a concentration-dependent manner. ATP and thapsigargin also increased [Ca2+]i. Imaging of [Ca2+]i with a confocal microscope revealed that PTX increased [Ca2+]i in all endothelial cells studied (n=13). An inorganic Ca2+ entry blocker, La3+ (30μM), had no effect on the increase in [Ca2+]i induced by PTX whereas it inhibited the sustained phase of the increase in [Ca2+]i induced by ATP or thapsigargin. The PTX-induced increase in [Ca2+]i was partially inhibited by ouabain and was abolished by removal of external Ca2+ although decrease of Na+ concentration in the incubation medium was ineffective. Activation of protein kinase C by 1μM 12-deoxyphorbol 13-isobutyrate or inhibition of phosphatase by 10nM calyculin-A had no effect on the increase in [Ca2+]i induced by PTX, whereas both agents inhibited the sustained phase of the increase in [Ca2+]i induced by ATP or thapsigargin. Mn2+ influx, measured by the quenching of fura-PE3 fluorescence, was accelerated by ATP or thapsigargin, but not by PTX. These results suggest that PTX increases [Ca2+]i in the endothelium of the rabbit aortic valve by increasing Ca2+ influx through a pathway which is different from that activated by ATP or thapsigargin. Received: 28 February 1997  相似文献   

5.
The effect of the pesticide δ‐hexachlorocyclohexane (δ‐HCH) were examined on Ca2+ signaling in Madin Darby canine kidney (MDCK) using fura‐2 as a Ca2+ probe. δ‐HCH at concentrations of 5–200 mM increased intracellular free Ca2+ concentration ([Ca2+]i) concentration‐dependently. The [Ca2+]i increase comprised an immediate rise followed by a sustained phase within 5 min of measurement. External Ca2+ removal slightly reduced the [Ca2+]i increase. In Ca2+‐free medium, 150 μM δ‐HCH did not increase [Ca2+]i after pretreatment with carbonylcyanide m‐chlorophenylhydrazone (CCCP; 2 μM), a mitochondrial uncoupler, and two endoplasmic reticulum (ER) Ca2+ pump inhibitors, thapsigargin (1 μM) and cyclopiazonic acid (100 μM). Conversely, pretreatment with δ‐HCH prevented thapsigargin, cyclopiazonic acid, and CCCP from releasing more Ca2+, suggesting 150 μM δ‐HCH released Ca2+ from the ER and mitochondria. δ‐HCH (150 μM) activated Mn2+ quench of fura‐2 fluorescence, confirming that δ‐HCH induced Ca2+ influx. Addition of 3 mM Ca2+ induced a concentration‐dependent [Ca2+]i increase after pretreatment with 100–200 μM δ‐HCH for 870 sec in Ca2+‐free medium. The δ‐HCH (150 μM)‐induced Ca2+ release was decreased by inhibiting phospholipase C with 1 μM U73122. Collectively, we have found that δ‐HCH increased [Ca2+]i in MDCK cells by releasing Ca2+ from the ER and mitochondria, followed by capacitative Ca2+ entry. Drug Dev. Res. 50:186–192, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

6.
The Na+-Ca2+ exchange system is a carrier-mediated transport process which couples the transmembrane movement of Ca2+ ions to the movement of Na+ ions in the opposite direction. It functions primarily as a Ca2+ extrusion process in cardiac cells and is thought to be an important mechanism for altering myocardial contractility through changes in intracellular [Na+]. We khave investigated the properties of the cardiac Na+-Ca2+ exchange system using a subcellular preparation of membrane vesicles derived from the cardiac sarcolemma. Vesicle studies have been useful in investigating the kinetics of Na+-Ca2+ exchange activity and in establishin the stoichiometry of the exchange process as 3 Na+ per Ca2+. The kinetec results are most easily interpreted in terms of a model for the Na+-Ca2+ exchange carrier which features two types of cation binding sites: a divalent site for which Ca2+ and 1-2 Na+ ions compete and a second, monovalent site which binds the third Na+ involved in Na+-Ca2+ exchange. Na+-Ca2+ exchange activity in vesicles is stimulated by a variety of agents or treatments, including limited proteolysis, phospholipase treatment, redox reagents, anionic amphiphiles, and intravesicular Ca2+, all of which lower the apparent Km for Ca2+. The physiological significance of these modes of regulation of exchange activity is at present uncertain. Progress in identifying and purifying the exchange carrier has been hampered by the lack of specific high-affinity probes that could be used in labelling studies. Indirect estimates of the number of exchange carriers in sarcolemmal vesicles suggest that there are 10-20 pmol of exchanger per mg of membrane protein and that the exchange system has a maximal turnover of approximately 103 sec?1. Studies are under way in several laboratories to clone a cDNA for the exchange carrier using oocytes of Xenopus laevis as an expression system.  相似文献   

7.
N,N-dimethyl-D-erythro-sphingosine (DMS), an N-methyl derivative of sphingosine, is an inhibitor of protein kinase C (PKC) and sphingosine kinase (SK). In previous reports, DMS-induced intracellular Ca2+ increase concentration ([Ca2+]i) was studied in T lymphocytes, monocytes, astrocytes and neuronal cells. In the present study, we studied DMS-induced increase of [Ca2+]i in HCT116 human colon cancer cells. We found that the DMS-induced increase of [Ca2+]i in colon cancer cells is composed of Ca2+ release from intracellular Ca2+ stores and subsequent Ca2+ influx. The Ca2+ release is not related to modulation of inositol 1,4,5-trisphosphate (IP3) receptor or ryanodine receptor. On the other hand, the Ca2+ influx is mediated largely through Ca2+ channels sensitive to verapamil, nifedipine, Ga3+, and La3+. Furthermore, we found that the response is inhibited by bepridil and Ni2+, specific inhibitors of Na+-Ca2+-exchanger, suggesting involvement of Na+-Ca2+ exchanger in the DMS-induced [Ca2+]i increase in colon cancer cells. This inhibition was also observed in U937 monocytes, but not in 1321N1 astrocytes.  相似文献   

8.
We examined the intracellular mechanisms for endothelin-1-induced positive and negative inotropic components that coexist in the mouse ventricular myocardium using isolated ventricular tissue and myocytes from 4-week-old mice. In the presence of SEA0400, a specific inhibitor of the Na+–Ca2+ exchanger, endothelin-1 produced positive inotropy. Endothelin-1, when applied to cardiomyocytes in the presence of SEA0400, did not change the peak amplitude of the Ca2+ transient but increased intracellular pH and Ca2+ sensitivity of contractile proteins. On the other hand, in the presence of dimethylamiloride (DMA), a specific inhibitor of the Na+–H+ exchanger, endothelin-1 produced negative inotropy. In cardiomyocytes, in the presence of DMA, endothelin-1 produced a decrease in peak amplitude of the Ca2+ transient. In the presence of both DMA and SEA0400, endothelin-1 produced neither positive nor negative inotropy. Positive inotropy was blocked by BQ-123 and negative inotropy by BQ-788. These results suggested that endothelin-1-induced positive inotropy is mediated by ETA receptors, activation of the Na+–H+ exchanger and an increase in intracellular pH and Ca2+ sensitivity and that the negative inotropy is mediated by ETB receptors, activation of the Na+–Ca2+ exchanger and decrease in Ca2+ transient amplitude.  相似文献   

9.
This study was designed to clarify the mechanism of the inhibitory effect of forskolin on contraction, cytosolic Ca2+ level ([Ca2+]i), and Ca2+ sensitivity in guinea pig ileum. Forskolin (0.1 nM~10 µM) inhibited high K+ (25 mM and 40 mM)- or histamine (3 µM)-evoked contractions in a concentration-dependent manner. Histamine-evoked contractions were more sensitive to forskolin than high K+-evoked contractions. Spontaneous changes in [Ca2+]i and contractions were inhibited by forskolin (1 µM) without changing the resting [Ca2+]i. Forskoln (10 µM) inhibited muscle tension more strongly than [Ca2+]i stimulated by high K+, and thus shifted the [Ca2+]i-tension relationship to the lower-right. In histamine-stimulated contractions, forskolin (1 µM) inhibited both [Ca2+]i and muscle tension without changing the [Ca2+]i-tension relationship. In α-toxin-permeabilized tissues, forskolin (10 µM) inhibited the 0.3 µM Ca2+-evoked contractions in the presence of 0.1 mM GTP, but showed no effect on the Ca2+-tension relationship. We conclude that forskolin inhibits smooth muscle contractions by the following two mechanisms: a decrease in Ca2+ sensitivity of contractile elements in high K+-stimulated muscle and a decrease in [Ca2+]i in histamine-stimulated muscle.  相似文献   

10.
1. Alterations in intracellular Ca2+ homeostasis have frequently been implicated as underlying the contractile dysfunction of failing hearts. Contraction in cardiac muscle is due to a balance between sarcolemmal (SL) and sarcoplasmic reticulum (SR) Ca2+ transport, which has been studied in single cells and small tissue samples. However, many studies have not used physiological temperatures and pacing rates, and this could be problematic given different temperature dependencies and kinetics for transport processes. 2. Spontaneously‐hypertensive rats (SHR) and their age‐matched Wistar Kyoto controls (WKY) provide an animal model of hypertensive failure with many features in common to heart failure in humans. Steady‐state measurements of Ca2+ and force showed that peak stress was reduced in trabeculae from failing SHR hearts in comparison to WKY, although the Ca2+ transients were bigger and decayed more slowly. 3. Dynamic Ca2+ cycling was investigated by determining the recirculation fraction (RF) of activator Ca2+ through the SR between beats during recovery from experimental protocols that potentiated twitch force. No difference in RF between rat strains was found, although the RF was dependent on the potentiation protocol used. 4. Superfusion with 10 mmol/L caffeine and 0 mmol/L [Ca2+]o was used to measure SL Ca2+ extrusion. The caffeine‐induced [Ca2+]i transient decayed more slowly in SHR trabeculae, suggesting that SL Ca2+ extrusion was slower in SHR. 5. An ultrastructural immunohistochemical analysis of left ventricular free wall sections using confocal microscopy showed that t‐tubule organization was disrupted in myocytes from SHR, with reduced labelling of the SR Ca2+‐ATPase and Na+–Ca2+ exchanger in comparison to WKY, with the latter possibly related to a lower fraction of t‐tubules per unit cell volume. 6. We suggest that although Ca2+ transport is altered in the progression to heart failure, force development is not limited by the amplitude of the Ca2+ transient. Despite slower SR Ca2+ transport, the recirculation fraction and dynamic response to a change of inotropic state minimally altered changes in the SHR model because there was a similar slowing in Ca2+ extrusion across the surface membrane.  相似文献   

11.
  • 1 The Na+/Ca2+ exchanger (NCX) exchanges Na+ and Ca2+ bidirectionally through the forward mode (Ca2+ extrusion) or the reverse mode (Ca2+ influx). The present study was undertaken to clarify the role of protein kinase C (PKC) in the regulation of NCX in bovine adrenal chromaffin cells. The Na+‐loaded cells were prepared by treatment with 100 µmol/L ouabain and 50 µmol/L veratridine. Incubation of Na+‐loaded cells with Na+‐free solution in the presence of the Ca2+ channel blockers nicardipine (3 µmol/L) and ω‐conotoxin MVIIC (0.3 µmol/L) caused Ca2+ uptake and catecholamine release.
  • 2 The Na+‐dependent Ca2+ uptake and catecholamine release were inhibited by 2‐[4‐[(2,5‐difluorophenyl)methoxy]phenoxy]‐5‐ethoxyaniline (SEA0400; 1 µmol/L) and 2‐[2‐[4‐(4‐nitrobenzyloxy)phenyl]isothiourea (KB‐R7943; 10 µmol/L), both NCX inhibitors. These results indicate that the Na+‐dependent responses are mostly due to activation of the NCX working in the reverse mode.
  • 3 In addition, we examined the effects of PKC inhibitors and an activator on the NCX‐mediated Ca2+ uptake and catecholamine release. Bisindolylmaleimide I (0.3–10 µmol/L) and chelerythrine (3–100 µmol/L), both PKC inhibitors, inhibited NCX‐mediated responses. In contrast, phorbol 12,13‐dibutyrate (0.1–10 µmol/L), a PKC activator, enhanced the responses. Bisindolylmaleimide I and chelerythrine, at effective concentrations for inhibition of Na+‐dependent catecholamine release, had a little or no effect on high K+‐induced catecholamine release in intact cells or on Ca2+‐induced catecholamine release in β‐escin‐permeabilized cells.
  • 4 These results suggest that PKC is involved in the activation of NCX in bovine adrenal chromaffin cells.
  相似文献   

12.
Summary The modes by which Endothelin-1 (ET) induces Ca2+-influx and the relative functional importance of the different sources of Ca2+ for ET-induced contraction were studied using fura 2-loaded and unloaded rat aortic strips. ET caused an increase in the cytosolic free Ca2+ level ([Ca2+]i) followed by a tonic contraction in Ca2+-containing solution, and produced a transient elevation of [Ca2+]i followed by a small sustained contraction in Ca2+-free medium. ET also stimulated 45Ca influx into La2+-inaccessible fraction significantly. With the same change of [Ca2+]i, ET caused a larger tension than that induced by high K. ET-induced contraction and [Ca2+]i elevation were not significantly inhibited by 0.1–0.3 M nicardipine which nearly abolished the contraction and [Ca+]i elevation produced by high K. During treatment of the strips with high K, addition of ET induced further increases in [Ca2+]i and muscle tension, and vice versa. In Ca2+-free medium, ET-induced contraction was influenced neither by ryanodine-treatment nor by high K-treatment, although the former attenuated and the latter potentiated the [Ca2+]i transient induced by ET. Further, the ET-induced sustained contraction under Ca2+-free conditions began to develop after the [Ca2+]i level returned to the baseline. Thus, it seems that the Ca2+ released from the ryanodine-sensitive and -insensitive Ca2+ stores by ET may provide only a minor or indirect contribution, if any, to the tension development. ET might cause a contraction mainly by stimulating Ca2+-influx through Ca2+ channel(s) other than voltage-dependent Ca2+ channels in character, and by increasing the sensitivity of the contractile filaments to Ca2+ or activating them Ca2+-independently.Visiting from Zun Yi Medical College, China Send offprint requests to I. Takayanagi at the above address  相似文献   

13.
The phenolic compound 2,5-dimethylphenol is a natural product. 2,5-Dimethylphenol has been shown to affect rat hepatic and pulmonary microsomal metabolism. However, the effect of 2,5-dimethylphenol on Ca2+?signaling and cyotoxicity has never been explored in any culture cells. This study explored the effect of 2,5-dimethylphenol on cytosolic free Ca2+?levels ([Ca2+]i) and cell viability in PC3 human prostate cancer cells. 2,5-Dimethylphenol at concentrations between 500?μM and 1000?μM evoked [Ca2+]i rises in a concentration-dependent manner. This Ca2+?signal was inhibited by approximately half by the removal of extracellular Ca2+. 2,5-Dimethylphenol-induced Ca2+?influx was confirmed by Mn2+-induced quench of fura-2 fluorescence. Pretreatment with the protein kinase C (PKC) inhibitor GF109203X, nifedipine or the store-operated Ca2+?entry inhibitors (econazole or SKF96365) inhibited 2,5-dimethylphenol-induced Ca2+?signal in Ca2+-containing medium by ~30%. Treatment with the endoplasmic reticulum Ca2+?pump inhibitor thapsigargin in Ca2+-free medium abolished 2,5-dimethylphenol-induced [Ca2+]i rises. Conversely, treatment with 2,5-dimethylphenol abolished thapsigargin-induced [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 reduced 2,5-dimethylphenol-evoked [Ca2+]i rises by ~80%. 2,5-Dimethylphenol killed cells at concentrations of 350–1000?μM in a concentration-dependent fashion. Chelation of cytosolic Ca2+?with 1,2-bis(2-aminophenoxy)ethane-N, N, N′, N′-tetraacetic acid/AM (BAPTA/AM) did not prevent 2,5-dimethylphenol’s cytotoxicity. Together, in PC3 cells, 2,5-dimethylphenol induced [Ca2+]i rises that involved Ca2+?entry through PKC-regulated store-operated Ca2+?channels and PLC-dependent Ca2+?release from the endoplasmic reticulum. 2,5-Dimethylphenol induced cytotoxicity in a Ca2+-independent manner.  相似文献   

14.
15.
The effect of oleamide, a sleep‐inducing endogenous lipid in animal models, on intracellular free levels of Ca2+ ([Ca2+]i) in Madin‐Darby renal tubular cells was examined using fura‐2 as a fluorescent dye. Oleamide (5–50 μM) increased [Ca2+]i in a concentration‐dependent fashion with an EC50 value of 20 μM. The [Ca2+]i signal comprised an initial rise and an elevated phase and was reduced by removing extracellular Ca2+ by 50%. After pretreatment with 5–50 μM oleamide in Ca2+‐free medium, addition of 3 mM Ca2+ increased [Ca2+]i in a manner dependent on the concentration of oleamide. In Ca2+‐free medium, pretreatment with thapsigargin (1 μM), an endoplasmic reticulum Ca2+ pump inhibitor, abolished [Ca2+]i increases induced by 20 μM oleamide; conversely, pretreatment with 20 μM oleamide reduced 1 μM thapsigargin‐induced [Ca2+]i increases by 50%. Suppression of the activity of phospholipase C with 2 μM U73122 abolished 20 μM oleamide‐induced Ca2+ release. Collectively, these data demonstrate that oleamide induced significant [Ca2+]i increases in renal tubular cells by a phospholipase C‐dependent release of Ca2+ from thapsigargin‐sensitive stores and by inducing Ca2+ entry via store‐operated Ca2+ entry. Drug Dev. Res. 54:40–44, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

16.
The effect of BayK 8644, a chemical widely used to activate L‐type Ca2+ channels, on cytosolic free Ca2+ concentrations ([Ca2+]i) in human oral cancer cells (OC2) has not been explored to date. The present study examined whether BayK 8644 altered basal [Ca2+]i levels in suspended OC2 cells by using fura‐2. BayK 8644 (10 pM–10 µM) increased [Ca2+]i in a concentration‐dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. BayK 8644‐induced Ca2+ influx was blocked by nifedipine, but was not altered by the store‐operated Ca2+ entry inhibitors, econazole and SKF96365; protein kinase C modulators phorbol 12‐myristate 13‐acetate (PMA) and GF109203X; the protein kinase A inhibitor H89; and the phospholipase A2 inhibitor, aristolochic acid. In Ca2+‐free medium, after pretreatment with 1 µM BayK 8644, 1 µM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor)‐induced [Ca2+]i rises were abolished; and conversely, thapsigargin pretreatment abolished BayK 8644‐induced [Ca2+]i rises. Inhibition of phospholipase C with U73122 did not change BayK 8644‐induced [Ca2+]i rises. Collectively, in OC2 cells, BayK 8644 induced [Ca2+]i rises by causing phospholipase C‐independent Ca2+ release from the endoplasmic reticulum; and Ca2+ influx via L‐type Ca2+ channels. Drug Dev Res 69: 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

17.
Glyburide is an agent commonly used to treat type 2 diabetes and also affects various physiological responses in different models. However, the effect of glyburide on Ca2+ movement and its related cytotoxicity in prostate cancer cells is unclear. This study examined whether glyburide altered Ca2+ signalling and viability in PC3 human prostate cancer cells and investigated those underlying mechanisms. Intracellular Ca2+ concentrations ([Ca2+]i) in suspended cells were measured by using the fluorescent Ca2+-sensitive dye fura-2. Cell viability was examined by WST-1 assay. Glyburide at concentrations of 100–1000 μM induced [Ca2+]i rises. Ca2+ removal reduced the signal by approximately 60%. In Ca2+-containing medium, glyburide-induced Ca2+ entry was inhibited by 60% by protein kinase C (PKC) activator (phorbol 12-myristate 13 acetate, PMA) and inhibitor (GF109203X), and modulators of store-operated Ca2+ channels (nifedipine, econazole and SKF96365). Furthermore, glyburide induced Mn2+ influx suggesting of Ca2+ entry. In Ca2+-free medium, inhibition of phospholipase C (PLC) with U73122 significantly inhibited glyburide-induced [Ca2+]i rises. Treatment with the endoplasmic reticulum (ER) Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone (BHQ) abolished glyburide-evoked [Ca2+]i rises. Conversely, treatment with glyburide abolished BHQ-evoked [Ca2+]i rises. Glyburide at 100–500 μM decreased cell viability, which was not reversed by pretreatment with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Together, in PC3 cells, glyburide induced [Ca2+]i rises by Ca2+ entry via PKC-sensitive store-operated Ca2+ channels and Ca2+ release from the ER in a PLC-dependent manner. Glyburide also caused Ca2+-independent cell death. This study suggests that glyburide could serve as a potential agent for treatment of prostate cancer.  相似文献   

18.
Mistletoe lectin I (ML I) from Viscum album inhibits cell growth and induces apoptosis (programmed cell death) in several cell types. Because increases in cytosolic Ca2+ concentration ([Ca2+]i) constitute a signal for the induction of apoptosis, we studied the effects of ML I on basal [Ca2+]i, receptor-mediated rises in [Ca2+]i and cell viability, using human U-937 promonocytes as model system. Treatment of U-937 cells with ML I (30–100 ng/ml) significantly increased basal [Ca2+]i. ML I (10–30 ng/ml) enhanced histamine-induced rises in [Ca2+]i up to five-fold. The effect of histamine was inhibited by clemastine but not by famotidine, indicative for its mediation via H1-receptors. ML I additionally enhanced the stimulatory effect of complement C5a on [Ca2+]i, whereas the effect of ATP was unaffected. ML I did not induce responsiveness of U-937 cells towards a bacteria-derived chemotactic peptide. ML I up to 10 ng/ml did not affect cell viability and growth of U-937 cells. ML I at 30 ng/ml moderately inhibited cell growth and reduced cell viability. At 100 ng/ml, ML I was strongly cytotoxic. Our data support the view that Ca2+ plays a role as intracellular signal molecule in the induction of apoptosis and point to an accelerating role of H1- and C5a-receptors in the regulation of this process. Received: 1 July 1996 / Accepted: 11 October 1996  相似文献   

19.
The effect of the cardiovascular drug carvedilol on cytosolic free Ca2+ concentrations ([Ca2+]i) and viability has not been explored in human hepatoma cells. This study examined whether carvedilol altered [Ca2+]i and caused cell death in HA59T cells. [Ca2+]i and cell viability were measured using the fluorescent dyes fura-2 and WST-1, respectively. Carvedilol at concentrations ≥1 μM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 20 μM. The Ca2+ signal was reduced partly by removing extracellular Ca2+. Carvedilol induced Mn2+ quench of fura-2 fluorescence, implicating Ca2+ influx. The Ca2+ influx was sensitive to La3+, econazole, nifedipine, and SKF96365. In Ca2+-free medium, after pretreatment with 1 μM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), carvedilol-induced [Ca2+]i rises were abolished; and conversely, carvedilol pretreatment inhibited a major part of thapsigargin-induced [Ca2+]i rises. Inhibition of phospholipase C with 2 μM U73122 did not change carvedilol-induced [Ca2+]i rises. At concentrations between 1 and 50 μM, carvedilol killed cells in a concentration-dependent manner. The cytotoxic effect of 1 μM (but not 30 μM) carvedilol was fully reversed by prechelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Apoptosis was induced by 30 (but not 1) μM carvedilol. Collectively, in HA59T hepatoma cells, carvedilol induced [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum in a phospholipase-C-independent manner and Ca2+ influx via store-operated Ca2+ channels. Carvedilol-caused cytotoxicity was mediated by Ca2+ and apoptosis in a concentration-dependent manner.  相似文献   

20.
 We have recently reported inhibitory effects of carbamazepine (CBZ) on ion channel-mediated secretion of catecholamines in bovine adrenal medullary cells. Here, we report the effects of carbamazepine-10,11-epoxide (CBZ-E), an active metabolite of CBZ, and carbamazepine-10,11-diol (CBZ-D), a non-active metabolite, on 22Na+ influx, 45Ca2+ influx and catecholamine secretion in cultured adrenal medullary cells. CBZ-E, but not CBZ-D inhibited 22Na+ influx, 45Ca2+ influx and catecholamine secretion induced by carbachol or veratridine with a half-maximal inhibitory concentration (IC50) of 0.26 or 0.68 μg/ml, respectively. CBZ-E also inhibited high K+-evoked 45Ca2+ influx and catecholamine secretion (IC50 = 0.3 μg/ml), but CBZ-D did not. These findings suggest that CBZ-E, but not CBZ-D, attenuates catecholamine secretion by inhibiting nicotinic acetylcholine receptor-associated ion channels, voltage-dependent Na+ channels and voltage-dependent Ca2+ channels in the cells. This inhibition of CBZ-E as well as CBZ may be related to the clinical effects in neuropsychiatric disorders. Received: 13 May 1997 /Final version: 4 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号