首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One subtype of maturity-onset diabetes of the young (MODY)-3 results from mutations in the gene encoding hepatocyte nuclear factor (HNF)-1 alpha. We generated transgenic mice expressing a naturally occurring dominant-negative form of human HNF-1 alpha (P291fsinsC) in pancreatic beta-cells. A progressive hyperglycemia with age was seen in these transgenic mice, and the mice developed diabetes with impaired glucose-stimulated insulin secretion. The pancreatic islets exhibited abnormal architecture with reduced expression of glucose transporter (GLUT2) and E-cadherin. Blockade of E-cadherin-mediated cell adhesion in pancreatic islets abolished the glucose-stimulated increases in intracellular Ca(2+) levels and insulin secretion, suggesting that loss of E-cadherin in beta-cells is associated with impaired insulin secretion. There was also a reduction in beta-cell number (50%), proliferation rate (15%), and pancreatic insulin content (45%) in 2-day-old transgenic mice and a further reduction in 4-week-old animals. Our findings suggest various roles for HNF-1 alpha in normal glucose metabolism, including the regulation of glucose transport, beta-cell growth, and beta-cell-to-beta-cell communication.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
Päth G  Opel A  Knoll A  Seufert J 《Diabetes》2004,53(Z1):S82-S85
On its own, glucose is a major factor for proliferation of pancreatic beta-cells and is also an essential prerequisite for IGF-I and growth hormone-induced growth of these cells. p8 was originally identified as an emergency gene product upregulated in pancreatic acinar cells in response to acute pancreatitis. p8 was further shown to be involved in a broad range of biological functions, including cell growth, growth arrest, apoptosis, and tumor development. These in part opposite actions may be related to distinct stimuli and pathways in certain conditions and cell types. Here we demonstrate that p8 is widely expressed in human pancreatic islets in vivo and in several beta-cell lines in vitro. Based on this observation, we tested the hypothesis that p8 production in pancreatic beta-cells is regulated by glucose. Incubation of rat INS-1 beta-cells with 25 mmol/l glucose resulted in a continuous increase of proliferating cell numbers. This was accompanied by a strong upregulation of p8 mRNA and protein expression, indicating that p8 is a physiological mediator of glucose-induced pancreatic beta-cell growth. Binding of glucose-activated protein kinase C (PKC) to two PKC sites within a highly conserved region of the p8 protein may be a possible mechanism linking glucose and p8 pathways leading to proliferation.  相似文献   

10.
11.
12.
13.
Transforming growth factor (TGF)-alpha- and epidermal growth factor (EGF)-induced signal transduction was directly compared with that of glucose and insulin-like growth factor-1 (IGF-1) in INS-1 cells. TGF-alpha/EGF transiently (<20 min) induced phosphorylation of extracellular-regulated kinase (Erk)-1/2 (>20-fold), glycogen synthase kinase (GSK)-3 (>10-fold), and protein kinase B (PKB) (Ser(473) and Thr(308)), but did not increase [(3)H]thymidine incorporation. In contrast, phosphorylation of Erk1/2, GSK-3, and PKB in response to glucose and IGF-1 was more prolonged (>24 h) and, though not as robust as TGF-alpha/EGF, did increase beta-cell proliferation. Phosphorylation of p70(S6K) was also increased by IGF-1/glucose, but not by TGF-alpha/EGF, despite upstream PKB activation. It was found that IGF-1 induced phosphatidylinositol 3-kinase (PI3K) association with insulin receptor substrate (IRS)-1 and -2 in a glucose-dependent manner, whereas TGF-alpha/EGF did not. The importance of specific IRS-2-mediated signaling events was emphasized in that adenoviral-mediated overexpression of IRS-2 further increased glucose/IGF-1-induced beta-cell proliferation (more than twofold; P < 0.05) compared with control or adenoviral-mediated IRS-1 overexpressing INS-1 cells. Neither IRS-1 nor IRS-2 overexpression induced a beta-cell proliferative response to TGF-alpha/EGF. Thus, a prolonged activation of Erk1/2 and PI3K signaling pathways is important in committing a beta-cell to a mitogenic event, and it is likely that this sustained activation is instigated by signal transduction occurring specifically through IRS-2.  相似文献   

14.
15.
To test the hypothesis that c-Myc plays an important role in beta-cell growth and differentiation, we generated transgenic mice overexpressing c-Myc in beta-cells under control of the rat insulin II promoter. F(1) transgenic mice from two founders developed neonatal diabetes (associated with reduced plasma insulin levels) and died of hyperglycemia 3 days after birth. In pancreata of transgenic mice, marked hyperplasia of cells with an altered phenotype and amorphous islet organization was displayed: islet volume was increased threefold versus wild-type littermates. Apoptotic nuclei were increased fourfold in transgenic versus wild-type mice, suggesting an increased turnover of beta-cells. Very few cells immunostained for insulin; pancreatic insulin mRNA and content were markedly reduced. GLUT2 mRNA was decreased, but other beta-cell-associated genes (IAPP [islet amyloid pancreatic polypeptide], PDX-1 [pancreatic and duodenal homeobox-1], and BETA2/NeuroD) were expressed at near-normal levels. Immunostaining for both GLUT2 and Nkx6.1 was mainly cytoplasmic. The defect in beta-cell phenotype in transgenic embryos (embryonic days 17-18) and neonates (days 1-2) was similar and, therefore, was not secondary to overt hyperglycemia. When pancreata were transplanted under the kidney capsules of athymic mice to analyze the long-term effects of c-Myc activation, beta-cell depletion was found, suggesting that, ultimately, apoptosis predominates over proliferation. In conclusion, these studies demonstrate that activation of c-Myc in beta-cells leads to 1) increased proliferation and apoptosis, 2) initial hyperplasia with amorphous islet organization, and 3) selective downregulation of insulin gene expression and the development of overt diabetes.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号