首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anterograde and retrograde transport of horseradish peroxidase conjugated to wheat germ agglutinin (WGA-HRP) was used to study the anatomical organization of descending projections from the mamillary body (MB) to the mesencephalon and pons at light and electron microscopic levels. Injections of WGA-HRP into the medial mamillary nucleus resulted in dense anterograde and retrograde labeling in the ventral tegmental nucleus, while injections in the lateral mamillary nucleus resulted in dense anterograde labeling in the dorsal tegmental nucleus pars dorsalis and dense anterograde and retrograde labeling in the pars ventralis of the dorsal tegmental nucleus. Anterogradely labeled fibers in the mamillotegmental tract diverged from the principal mamillary tract in an extensive dorsocaudally oriented swath of axons which extended to the dorsal and ventral tegmental nuclei, and numerous axons turned sharply ventrally and rostrally to terminate topographically in the dorsomedial nucleus reticularis tegmenti pontis and rostromedial pontine nuclei. The anterograde labeling in these two precerebellar relay nuclei was distributed near the midline such that projections from the lateral mamillary nucleus terminated mainly dorsomedial to the terminal fields of projections from the medial mamillary nucleus. In the dorsal and ventral tegmental nuclei, labeled axon terminals contained round synaptic vesicles and formed asymmetric synaptic junctions primarily with small diameter dendrites and to a lesser extent with neuronal somata. A few labeled terminals contained pleomorphic vesicles and formed symmetric synaptic junctions with dendrites and neuronal somata. Labeled axon terminals were also frequently found in synaptic contact with retrogradely labeled dendrites and neuronal somata in the dorsal and ventral tegmental nuclei. These findings indicate that neurons in the dorsal and ventral tegmental nuclei are reciprocally connected with MB projection neurons. In the nucleus reticularis tegmenti pontis and medial pontine nuclei, labeled axon terminals contained round synaptic vesicles and formed asymmetric synaptic junctions primarily with small diameter dendrites. The present study demonstrates that projections from the medial and lateral nuclei of the MB are topographically organized in the mesencephalon and pons. The synaptic morphology of mamillotegmental projections suggests that they may have excitatory influences primarily on the distal dendrites of neurons in these brain regions.  相似文献   

2.
The present study provides a comprehensive light and electron microscopic analysis of the anatomical organization of the rat mamillary body. The cytoarchitecture and morphology of mamillary neurons were investigated with the aid of Nissl-stained and Golgi-impregnated sections cut in transverse, horizontal, and sagittal planes. The ultrastructural features of the mamillary nuclei were correlated with observations made on Golgi material. The mamillary body is comprised of a lateral and a medial nucleus, the latter being subdivided into five major subnuclei: pars lateralis, pars basalis, pars medialis, pars medianus, and pars posterior. The perikarya are medium-sized or small with the proportions of each differing among subnuclei. The largest perikarya are found in the lateral mamillary nucleus (cell area 257.0 microns2) and have 2-5 radially oriented aspiny dendrites that are often beaded. Small cells predominate in the pars lateralis (cell area 116.3 microns2) and pars basalis (cell area 118.3 microns2), whereas the pars medialis (cell area 196.7 microns2), pars medianus (cell area 136.5 microns2), and pars posterior (cell area 154.6 microns2) contain mainly medium-sized cells. The dendrites of most cells in the medial nucleus are radially oriented and exhibit a variety of spines including numerous short stubby spines, spines with thin necks that end in spherical swellings, and long thin spines. Neuronal somata are often closely apposed with no intervening glial processes and contain eccentrically located nuclei with one or more invaginations of the nuclear envelope. Two main classes of axon terminals were identified in the mamillary body. One type contains round vesicles and forms asymmetric synaptic junctions (RA) with dendrites and dendritic spines. RA terminals rarely contact neuronal somata and proximal dendrites in the MB. The second type contains pleomorphic vesicles and forms mainly symmetric synaptic junctions (PS) with neuronal somata as well as dendrites and spinous processes. Dense-cored vesicles were frequently seen in both types of terminals. Both types of terminals often synapse with two adjacent dendrites and are also found near or adjacent to each other on the same dendrite. A quantitative analysis indicated that the numbers of RA terminals in the medial nucleus almost equals the numbers of PS terminals, whereas the lateral mamillary nucleus contains considerably more PS (64%) than RA terminals (36%).  相似文献   

3.
To study the convergence of medial prefrontal cortex and mamillary body projections to the medial pontine nuclei, light and electron microscopic, neuroanatomical, tract-tracing experiments were performed. Injections of horseradish peroxidase conjugated to wheat germ agglutinin (WGA-HRP), biotin conjugated to dextran (BD), or rhodamine conjugated to dextran (RD) were made individually or in combinations into the cerebral cortex, hypothalamus, or pons. In addition, injections of WGA-HRP into the medial prefrontal cortex and electrolytic lesions of the mamillary body were made to study the synaptology of afferent projections to the pontine nuclei. In the light microscopic studies, injections of WGA-HRP into the rostromedial pontine nuclei produced dense, retrograde labeling both in the dorsal peduncular area of the medial prefrontal cortex and in the medial mamillary nucleus, pars medialis. Injections of the anterograde tracers BD and RD into the medial prefrontal cortex and the medial mamillary nuclei, respectively, resulted in partially overlapping terminal fields in the rostromedial pontine nuclei. In the electron microscopic studies, injections of WGA-HRP into the dorsal peduncular area and electrolytic lesions of the mamillary body produced anterogradely labeled axon terminals and degenerating axon terminals that synapsed on the same dendrites or neuronal somata in the rostromedial pontine nuclei. The results demonstrate that the medial prefrontal cortex and the medial mamillary nuclei have partially overlapping projections to the rostromedial pontine nuclei and implicate precerebellar relay nuclei in the integration of limbic and/or autonomic functions mediated by convergent projections from the cerebral cortex and the hypothalamus. J. Comp. Neurol. 398:347–358, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
The ultrastructural characteristics and synaptic organization of afferent terminals from the brainstem to the mediodorsal thalamic nucleus (MD) of the rat have been studied with the electron microscope, by means of anterograde transport of wheat germ agglutinin-horseradish peroxidase (WGA-HRP). Labeled fibers were seen predominantly in the lateral portion of MD after the injections of WGA-HRP into the substantia nigra pars reticulata (SNr), the superior colliculus (SC), and the dorsal tegmental region (DT). The boutons arising from the SC were relatively small (less than 1.5 microns in diameter), formed asymmetric synaptic contacts with small dendrites and dendritic spines, and contained round synaptic vesicles. The axon terminals from the DT were mostly large boutons (2-4.5 microns) with asymmetric synaptic specializations and round vesicles. These boutons and their postsynaptic targets formed synaptic glomeruli that were entirely or partially ensheathed by glial lamellae. The ultrastructural features are almost identical to those of boutons in the medial and central segments of MD that were previously shown to originate from the basal amygdaloid nucleus and the piriform cortex. The boutons from the SNr had a wide range in size, but the majority were medium-sized to large (1.5-4 microns). The nigral boutons established symmetric synaptic contacts with dendritic shafts and occasionally with somata, and contained pleomorphic vesicles. However, like the DT terminals, they participated in glomerular formations. The nigral terminals closely resemble previously described terminals in the medial part of MD from the ventral pallidum, except that the nigral terminals formed en passant and axosomatic synapses as well as axodendritic synapses. A combined immunohistochemistry and WGA-HRP tracing study revealed that the nigral inputs were immunoreactive for glutamic acid decarboxylase and the axon terminals from the DT were immunoreactive for choline acetyltransferase. In a separate study, the colliculothalamic fibers have been shown to take up and transport the transmitter specific tracer [3H]-D-aspartate, and are therefore putatively glutamatergic and/or aspartatergic. Taken together with this, the present results suggest that the collicular afferents are excitatory and glutamatergic and/or aspartatergic, that the inputs from the DT are also excitatory and cholinergic, while the nigral inputs are inhibitory and GABAergic.  相似文献   

5.
The synaptic organization of projections from the lateral mammillary neurons within the dorsal tegmental nucleus of Gudden is studied in the rat with the aid of anterograde transport of horseradish peroxidase conjugated with wheat germ agglutinin (WGA-HRP) and visualized with tetramethylbenzidine. The dorsal tegmental nucleus consists of the pars ventralis (TDV) and the pars dorsalis (TDD). The normal neuropil of the dorsal tegmental nucleus contains three classes of axodendritic terminals, that is, terminals containing round, flat, and pleomorphic vesicles. They make up 44%, 5%, and 51%, respectively, of all axodendritic terminals in the TDV, and 62%, 1%, and 37% in the TDD. Injection of WGA-HRP into the lateral mammillary nucleus permits ultrastructural recognition of many anterograde labeled terminals within both the TDV and TDD. In the TDV, 81% of the labeled terminals contain round synaptic vesicles and make asymmetric synaptic contacts. A few of the labeled terminals contain pleomorphic vesicles and make symmetric synaptic contacts. More than 50% of the labeled terminals contact intermediate dendrites (1-2 microns diameter). In the TDD, almost all labeled terminals are small, contain round vesicles, and make asymmetric synaptic contacts. These terminals mainly contact intermediate as well as distal (less than 1 micron diameter) dendrites. There are only a few labeled terminals with pleomorphic vesicles and no terminals with flat vesicles. The termination pattern of the lateral mammillary neurons in the TDV is similar to that in the TDD. Anterograde labeled axon terminals often contact retrograde labeled dendrites in the TDV. No reciprocal connections are present in the TDD. These results suggest that the TDV and the TDD receive mainly excitatory and a few inhibitory inputs from the lateral mammillary nucleus. The TDV neurons also have direct reciprocal connections with the lateral mammillary neurons.  相似文献   

6.
Physiological and pharmacological studies indicate that descending projections from the prefrontal cortex modulate dopaminergic transmission in the nucleus accumbens septi and ventral tegmental area. We investigated the ultrastructural bases for these interactions in rat by examining the synaptic associations between prefrontal cortical terminals labeled with anterograde markers (lesion-induced degeneration or transport of Phaseolus vulgaris leucoagglutinin; PHA-L) and neuronal processes containing immunoreactivity for the catecholamine synthesizing enzyme, tyrosine hydroxylase. Prefrontal cortical terminals in the nucleus accumbens and ventral tegmental area contained clear, round vesicles and formed primarily asymmetric synapses on spines or small dendrites. In the ventral tegmental area, these terminals also formed asymmetric synapses on large dendrites and a few symmetric axodendritic synapses. In the nucleus accumbens septi, degenerating prefrontal cortical terminals synapsed on spiny dendrites which received convergent input from terminals containing peroxidase immunoreactivity for tyrosine hydroxylase, or from unlabeled terminals. In single sections, some tyrosine hydroxylase-labeled terminals formed thin and punctate symmetric synapses with dendritic shafts, or the heads and necks of spines. Close appositions, but not axo-axonic synapses, were frequently observed between degenerating prefrontal cortical afferents and tyrosine hydroxylase-labeled or unlabeled terminals. In the ventral tegmental area, prefrontal cortical terminals labeled with immunoperoxidase for PHA-L were in synaptic contact with dendrites containing immunogold reaction product for tyrosine hydroxylase, or with unlabeled dendrites. These results suggest that: (1) catecholaminergic (mainly dopaminergic) and prefrontal cortical terminals in the nucleus accumbens septi dually synapse on common spiny neurons; and (2) dopaminergic neurons in the ventral tegmental area receive monosynaptic input from prefrontal cortical afferents. This study provides the first ultrastructural basis for multiple sites of cellular interaction between prefrontal cortical efferents and mesolimbic dopaminergic neurons.  相似文献   

7.
The synaptic organization of the mediodorsal thalamic nucleus (MD) in the rat was studied with the electron microscope, and correlated with the termination of afferent fibers labeled with wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). Presynaptic axon terminals were classified into four categories in MD on the basis of the size, synaptic vesicle morphology, and synaptic membrane specializations: 1) small axon terminals with round synaptic vesicles (SR), which made asymmetrical synaptic contacts predominantly with small dendritic shafts; 2) large axon terminals with round vesicles (LR), which established asymmetrical synaptic junctions mainly with large dendritic shafts; 3) small to medium axon terminals with pleomorphic vesicles (SMP), which formed symmetrical synaptic contacts with somata and small-diameter dendrites; 4) large axon terminals with pleomorphic vesicles (LP), which made symmetrical synaptic contacts with large dendritic shafts. Synaptic glomeruli were also identified in MD that contained either LR or LP terminals as the central presynaptic components. No presynaptic dendrites were identified. In order to identify terminals arising from different sources, injections of WGA-HRP were made into cortical and subcortical structures known to project to MD, including the prefrontal cortex, piriform cortex, amygdala, ventral pallidum and thalamic reticular nucleus. Axons from the amygdala formed LR terminals, while those from the prefrontal and insular cortex ended exclusively in SR terminals. Fibers labeled from the piriform cortex formed both LR and SR endings. Based on their morphology, all of these are presumed to be excitatory. In contrast, the axons from the ventral pallidum ended as LP terminals, and those from the thalamic reticular nucleus formed SMP terminals. Both are presumed to be inhibitory. At least some terminals from these sources have also been identified as GABAergic, based on double labeling with anterogradely transported WGA-HRP and glutamic acid decarboxylase (GAD) immunocytochemistry.  相似文献   

8.
To better understand the functional organization of the mammillary nuclei, we investigated the afferents to this nuclear complex in the rat with iontophoretically injected wheat germ agglutinin conjugated to horseradish peroxidase. Particular attention was paid to tracing local hypothalamic afferents to these nuclei. Injections into the medial mammillary nucleus (MMN) revealed strong projections from the subicular region, and weaker projections from the prefrontal cortex, medial septum, and the nucleus of the diagonal band of Broca. Other descending subcortical projections to the MMN arise from the anterior and the lateral hypothalamic area, the medial preoptic area, and the bed nucleus of the stria terminalis. Ascending afferents to the MMN were found to originate in the raphe and various tegmental nuclei. Following all injections into the MMN, labelled neurons were found in nuclei surrounding the mammillary body. The lateral and posterior subdivisions of the tuberomammillary nucleus projected mainly to the pars medianus and pars medialis of the MMN. The dorsal and ventral premammillary nuclei projected to the pars lateralis of the MMN. The supramammillary nucleus at rostral level had a small projection to the pars medialis and lateralis of the MMN. However, the most obvious projection from this nucleus was to the pars posterior of the MMN, chiefly from the lateral part of the caudal supramammillary nucleus. Injections into the lateral mammillary nucleus revealed inputs from the presubiculum, parasubiculum, septal region, dorsal tegmental nucleus, dorsal raphe nucleus, and periaqueductal gray. In addition, the lateral mammillary nucleus was found to receive a moderate projection from the medial part of the supramammillary nucleus and stronger projections from the lateral part of the caudal supramammillary nucleus. A very light projection was also seen from the lateral and posterior subdivisions of the tuberomammillary nucleus. These findings add to our knowledge of the extensive and complex connectivity of the mammillary nuclei. In particular, the local connections we have demonstrated with the supramammillary and tuberomammillary nuclei indicate the existence of significant local circuits as well as circuits involving more distant brain regions such as the septal nuclei, subiculum, prefrontal cortex, and brain stem tegmentum.  相似文献   

9.
This study examines the termination pattern of axons from the medial mammillary nucleus within the ventral tegmental nucleus of Gudden (TV) in rats by using anterograde transport of horseradish peroxidase conjugated with wheat germ agglutinin (WGA-HRP) and visualized with tetramethylbenzidine. The neuropil of TV contains three classes of axodendritic terminals, that is, terminals containing round, flat, and pleomorphic synaptic vesicles. These types make up 55.6%, 26.1%, and 18.3%, respectively, of all normal axodendritic terminals. Injection of WGA-HRP into the medial mammillary nucleus permits ultrastructural recognition of anterogradely labeled terminals within the TV. More than 80% of the labeled terminals contain round synaptic vesicles and form asymmetric synaptic contacts, whereas about 16% contain flat synaptic vesicles with symmetric synaptic contacts. There are a few labeled terminals with pleomorphic vesicles and only a few axosomatic terminals. Almost all labeled terminals are small, having diameters of less than 1.5 microns. Compared with the distributions of normal and labeled terminals with round vesicles, there is an increase of the percentage of labeled terminals with round vesicles on the intermediate dendrites (1-2 microns diameter) and a decrease on the distal dendrites (less than 1 micron diameter). Anterogradely labeled axon terminals often contact retrogradely labeled dendrites. These results suggest that the medial mammillary neurons send mainly excitatory as well as a few inhibitory inputs to the dendrites of TV and have direct reciprocal contacts with the TV neurons.  相似文献   

10.
Transnuclear transport of horseradish peroxidase (HRP) and wheat germ agglutinin-HRP conjugate (WGA-HRP) and the retrograde transport of fluorescent tracers were used to study axon collaterals of neurons in the mamillary nuclei. Tracers were injected into the thalamus or brain stem and after 18 hour-5 day survival periods, the brains were processed for fluorescence microscopy or for light and electron microscopic HRP histochemistry. Neurons in all divisions of the ipsilateral mamillary nuclei projected to both the thalamus and tegmentum. After HRP and WGA-HRP injections, anterogradely labeled axon terminals were observed in the known projection fields of the mamillary nuclei. Mamillary neurons were characterized by deeply invaginated, eccentrically located nuclei. Most labeled terminals of axon collaterals in the contralateral anterodorsal thalamic nucleus and dorsal and ventral tegmental nuclei contained round vesicles and formed asymmetrical synapses with somata and dendrites. The present results demonstrate that transnuclear transport of HRP and WGA-HRP can be used to study the connectivity and ultrastructure of axon collaterals and their cells of origin in the central nervous system in a manner comparable to that of transganglionic transport in the peripheral nervous system.  相似文献   

11.
Afferent and efferent connections of the medial preoptic area including medial preoptic nucleus (MP) and periventricular area at the MP level were examined using WGA-HRP as a marker. Injections were performed by insertion of micropipette containing (1) small amount of HRP powder or (2) dryed HRP solution for 24 to 48 hr until the fixation or for 5 min respectively. Dorsal and ventral approaches of injection micropipettes were performed and the results were compared. Previously reported reciprocal connections with lateral septum, bed nucleus of the stria terminalis, medial amygdaloid nucleus, lateral hypothalamic nucleus, paraventricular hypothalamic nucleus, ventromedial hypothalamic nucleus, arcuate nucleus, supramammillary nucleus, central gray at the mesencephalon, raphe dorsalis, raphe medianus, and lateral parabrachial nucleus have been confirmed. In addition, we found reciprocal connections with septo-hypothalamic nucleus, amygdalo-hipocampal nucleus, subiculum, parafascicular thalamic nucleus, posterior thalamic nucleus at the caudo-ventral subdivision, median preoptic nucleus, lateral preoptic nucleus, anterior hypothalamic nucleus, periventricular area at the caudal hypothalamic level, dorsomedial hypothalamic nucleus, posterior hypothalamic nucleus, dorsal and ventral premammillary nucleus, lateral mammillary nucleus, peripeduncular nucleus, periventricular gray, ventral tegmental area, interpeduncular nucleus, nucleus raphe pontis, nucleus raphe magnus, pedunculo-pontine tegmental nucleus, gigantocellular reticular nucleus and solitary tract nucleus. The areas which had only efferent connections from MP were accumbens, caudate putamen, ventral pallidum, substantia innominata, lateral habenular nucleus, paratenial thalamic nucleus, paraventricular thalamic nucleus, mediodorsal thalamic nucleus, reuniens thalamic nucleus, median eminence, medial mammillary nucleus, subthalamic nucleus, pars compacta of substantia nigra, oculomotor nucleus, red nucleus, laterodorsal tegmental nucleus, reticular tegmental nucleus, cuneiform nucleus, nucleus locus coeruleus, and dorsal motor nucleus of vagus among which substantia innominata and median eminence were previously reported. Efferent connections to the nucleus of Darkschewitsch, interstitial nucleus of Cajal, dorsal tegmental nucleus, ventral tegmental nucleus, vestibular nuclei, nucleus raphe obsculus were very weak or abscent in the ventral approach while they were observed in dorsal approach. Previously reported afferent connections from dorsal tegmental nucleus, cuneiform nucleus, and nucleus locus ceruleus were not detected in this study.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The afferent connections of the substantia innominata (SI) in the rat were determined employing the anterograde axonal transport of Phaseolus vulgaris leucoagglutinin (PHA-L) and the retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP), in combination with histochemical procedures to characterize the neuropil of the SI and identify cholinergic cells. Both neurochemical and connectional data establish that the SI is organized into a dorsal and a ventral division. Each of these divisions is strongly affiliated with a different region of the amygdala, and, together with its amygdalar affiliate, forms part of one of two largely distinct constellations of interconnected forebrain and brainstem cell groups. The dorsal SI receives selective innervation from the lateral part of the bed nucleus of the stria terminalis, the central and basolateral nuclei of the amygdala, the fundus of the striatum, distinctive perifornical and caudolateral zones of the lateral hypothalamus, and caudal brainstem structures including the dorsal raphe nucleus, parabrachial nucleus, and nucleus of the solitary tract. Projections preferentially directed to the ventral SI arise from the medial part of the bed nucleus of the stria terminalis, the rostral two-thirds of the medial nucleus of the amygdala, a large region of the rat amygdala that lies ventral to the central nucleus, the medial preoptic area, anterior hypothalamus, medialmost lateral hypothalamus, and the ventromedial hypothalamus. Both SI divisions appear to receive afferents from the dorsomedial and posterior hypothalamus, supramammillary region, ventral tegmental area, and the peripeduncular area of the midbrain. Projections to the SI whose selectivity was not determined originate from medial prefrontal, insular, perirhinal, and entorhinal cortex and from midline thalamic nuclei. Findings from both PHA-L and WGA-HRP experiments additionally indicate that cell groups preferentially innervating a single SI division maintain numerous projections to one another, thus forming a tightly linked assembly of structures. In the rat, cholinergic neurons that are scattered throughout the SI and in parts of the globus pallidus make up a cell population equivalent to the primate basal nucleus of Meynert (Mesulam et al.: Neuroscience 10:1185-1201, '83). PHA-L-filled axons, labelled from lectin deposits in the dorsal raphe nucleus, peripeduncular area, ventral tegmental area, or caudomedial hypothalamus were occasionally seen to approach individual cholinergic neurons int he SI, and to contact the surface of such cells with axonal varicosities (putative synaptic boutons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The distribution of the afferents to the rat's prefrontal cortex originating in the thalamic mediodorsal nucleus and the amygdala was investigated with two fluorescent tracers. Special emphasis was laid on detecting the loci of neurons which project via axonal collaterals into both lateral and medial portions of the prefrontal cortex. It was found that a high number of neurons of the anterior portion of the basolateral amygdaloid nucleus terminate via collaterals in both the medial and lateral subfields of the prefrontal cortex. On the other hand, only a small number of mediodorsal thalamic cells were found to project to both sides of the prefrontal hemisphere via bifurcating axonal collaterals. These cells were situated exclusively in the lateral part of the medial segment of the mediodorsal nucleus. The majority of both thalamic and amygdaloid neurons with bifurcating axons originate from subregions whose cells innervate primarily the medial prefrontal cortex. In brain-stem, neurons of the nucleus raphé dorsalis also project via collaterals to the medial and lateral prefrontal regions. Furthermore, neurons of the dorsal and ventral premamillary nuclei, the lateral mamillary nucleus, the ventral tegmental area of Tsai, and the ventral tegmental nucleus of Gudden were found to project to the medial prefrontal cortex. Our results indicate a differential collateral organization of thalamic and amygdaloid afferents to prefrontal cortical fields. The anterior basolateral amygdala (which innervates via collaterals both the medial and lateral prefrontal subfields) may add a common input to either subfield, such as information on the significance of incoming stimuli to the animal's behavior, while the mediodorsal nucleus (whose segments are principally connected to only one prefrontal subfield) may add segment-specific information, for example, of a spatial-cognitive nature for the lateral segment and of an emotional nature for the central and medial segments. The existence of a basolateral limbic circuit, composed of the amygdala, the thalamic mediodorsal nucleus, and the prefrontal cortex, is confirmed and knowledge on its interconnectivity is extended. From an anatomical point of view these data provide arguments for both unitary and diverging functions of the prefrontal cortex.  相似文献   

14.
Projections from the parvicellular division of the posteromedial ventral thalamic nucleus (VPMpc) of the cat were examined. After injection of horseradish peroxidase conjugated with wheat germ agglutinin (WGA-HRP) into the VPMpc, both anterogradely labeled axon terminals and retrogradely labeled neuronal cell bodies were found ipsilaterally in three discrete regions of the cerebral cortex, i.e., in the orbital cortex, caudoventral part of the infralimbic cortex, and medial part of the fundus of the posterior rhinal sulcus (perirhinal area); in the subcortical regions, anterogradely labeled axon terminals were seen ipsilaterally in the rostrodorsal part of the lateral amygdaloid nucleus. Neuronal connections between these VPMpc-recipient regions were further verified by injecting WGA-HRP into each of the three cortical and the lateral amygdaloid regions. After injection of WGA-HRP into each of the three cortical regions, labeled neuronal cell bodies and axon terminals were seen ipsilaterally in the VPMpc, especially in its medial part, and in the other two of the three VPMpc-recipient cortical regions. In the rostrodorsal part of the lateral amygdaloid nucleus, both axon terminals and neuronal cell bodies were labeled after WGA-HRP injection into the perirhinal area, and only axon terminals were labeled after WGA-HRP injection into the orbital cortex, but no labeling was observed after WGA-HRP injection into the infralimbic cortex. After injection of WGA-HRP into the rostrodorsal portion of the lateral amygdaloid nucleus, both axon terminals and neuronal cell bodies were labeled ipsilaterally in the perirhinal area and the ectorhinal area, and only neuronal cell bodies were labeled ipsilaterally in the VPMpc (especially in its medial part) and orbital cortical region; no labeling was observed in the infralimbic cortex. The present results indicate that the VPMpc of the cat is connected reciprocally with the orbital, infralimbic, and perirhinal cortical regions on the ipsilateral side, that the three VPMpc-recipient cortical regions are reciprocally connected with each other, that the VPMpc sends fibers ipsilaterally to the rostrodorsal part of the lateral amygdaloid nucleus, which may relay information from the VPMpc to the perirhinal cortical area, and that the VPMpc-recipient area in the lateral amygdaloid nucleus receives cortical fibers from the orbital and perirhinal cortical regions.  相似文献   

15.
The retinal terminals of the medial interlaminar nucleus (MIN) and ventral lateral geniculate nucleus (VLG) have been examined quantitatively to determine if there are morphological differences in their synaptic ultrastructure which reflect their distinctive physiologies. The cross-sectional area and density (number per unit area) of synaptic contact zones with conventional and presynaptic dendrites (F2 profiles) were measured for each retinal terminal. The densities of F2 presynaptic dendrites and F1 flattened vesicle axon terminals were also measured. Retinal terminals in MIN were often large (mean size= 2.7 μm2 area) and had a high density of synaptic contacts (0.14 per μm surface area) with conventional dendrites, presynaptic dendrites, and dendritic spines. A high density of F2 presynaptic dendrites (0.08 per μm2 area) was found in MIN. F1 axon terminals were also found frequently (0.04 per μm2). MIN retinal terminals were often organized in glomeruli like those of the dorsal lateral geniculate nucleus. The retinal terminals in VLG were almost always small (mean size= 0.94 μm2 area), although they also had a high density of synaptic contacts (0.17 per μm surface area). They frequently synapsed on small dendrites and dendritic spines and less frequently on large dendrites. Unlike MIN, retinal terminals in VLG rarely contacted F2 presynaptic dendrites which were much less frequent in VLG (0.01 per μm2 area). Like MIN, VLG contained numerous F1 axon terminals (0.06 per μm2 area). No typical retinal glomeruli were found in VLG. These results show that MIN, which contains many Y cells, has a population of large retinal terminals and many F2 presynaptic dendrites. VLG, which apparently has only W cells, contains only small retinal terminals and has fewer F2 presynaptic dendrites. Both have a high density of F1 flat vesicle axon terminals.  相似文献   

16.
The synaptic organization of afferents to the parafascicular nucleus (Pf) of the thalamus was studied in rats. In the Pf, three types of axon terminals were identified: the first type was a small terminal with round synaptic vesicles forming an asymmetric synapse, the second type was a large terminal with round synaptic vesicles forming an asymmetric synapse, and the third type was a terminal with pleomorphic vesicles forming a symmetric synapse. They were named SR, LR and P boutons, respectively. In order to determine the origin of these axon terminals, biotinylated dextran amine (BDA) was injected into the main afferent sources of the Pf, the superior colliculus (SC) and the pedunculopontine tegmental nucleus (PPN). Axon terminals from the SC were both SR and LR boutons which made synaptic contacts with somata and dendrites. PPN afferents were SR boutons, which made synaptic contacts with somata and smaller dendrites. Double-labeled electron microscopic studies, in which a retrograde tracer (wheat germ agglutinin conjugated to horseradish peroxidase: WGA-HRP) was injected into the striatum and an anterograde tracer (BDA) into the SC revealed that SC afferent terminals made synapses directly with Pf neurons that projected to the striatum. Another experiment was performed to find out whether two different afferents converged onto a single Pf neuron. To address this question, two different tracers were injected into the SC and PPN in a rat. Electron microscopically, both afferent terminals from the SC and PPN made synaptic contacts with the same dendrite. Our results prove that a single neuron of the rat Pf received convergent projections from two different sources.  相似文献   

17.
We examined the afferent projections to the subnuclei of the interpeduncular nucleus (IPN) in the rat by means of retrograde and anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). We observed locations of retrogradely labeled cells following injections of WGA-HRP into the IPN, and distributions of anterogradely labeled fibers and terminals within the IPN following injections into the areas that contain cells of origin of afferents. Results of the retrograde and anterograde experiments have clarified the detailed organization of the IPN afferents. A part of the nucleus incertus, located dorsomedial to the dorsal tegmental nucleus, projects to the contralateral half of the rostral subnucleus of the IPN; the pars caudalis of the dorsal tegmental nucleus projects sparsely to the rostral lateral, dorsal lateral, lateral, caudal, and apical subnuclei predominantly contralaterally; the laterodorsal tegmental nucleus, to most of the subnuclei predominantly contralaterally; the ventromedial central gray rostral to the dorsal tegmental nucleus and lateral to the dorsal raphe nucleus projects to the rostral lateral and dorsal lateral subnuclei predominantly contralaterally; the median raphe nucleus, substantially to all subnuclei; the medial habenular nucleus, in a topographic manner, to the rostral, central, and intermediate subnuclei, to the rostral lateral and lateral subnuclei predominantly ipsilaterally, and to the dorsal lateral subnucleus predominantly contralaterally; the supramammillary nucleus and areas around the origin of the mammillothalamic tract and near the third ventricle project sparsely to the ventral part of the rostral subnucleus and to the central, lateral, caudal and apical subnuclei; the nucleus of the diagonal band, sparsely to the rostral, central, dorsal lateral, caudal, and apical subnuclei. These differential projections of the afferents to the subnuclei of the IPN may reflect its complex functions within the limbic midbrain circuit.  相似文献   

18.
Projections from the nucleus subceruleus (nSC) to the hypoglossal nucleus (XII) were investigated with complementary retrograde and anterograde axonal transport techniques at the light and electron microscopic level in the rat. Injections of WGA-HRP into XII resulted in labeling of neurons in and around the nSC. Labeled nSC neurons were few in number (less than 4 per 40-60 microns sections) and variable in size and shape. Most labeled nSC neurons were medium-sized (mean = 16.89 microns), fusiform, triangular, or oval, with 3-4 dendrites typically oriented dorsomedially and ventrolaterally. These neurons were found throughout the rostrocaudal extent of the nSC but were most numerous medial, dorsomedial, and ventromedial to the motor trigeminal nucleus. Others were observed rostral to the motor trigeminal nucleus and ventral to the parabrachial nuclear complex. Confirmation of retrograde results was obtained following injections of tritiated amino acids or WGA-HRP into the nSC. This resulted in labeling throughout the rostrocaudal extent of XII mainly ipsilaterally. Labeled fibers descended the brainstem in the dorsolateral and, to a lesser extent, in the ventromedial component of Probst's tract. Fibers entered XII mainly rostrally along the lateral border of the nucleus. All regions of XII were recipients of nSC afferents, but the caudoventromedial quadrant contained the greatest density of terminal labeling. Electron microscopic evaluation confirmed that nSC afferents synapsed on motoneurons in XII. Axon terminals containing WGA-HRP reaction product were found contacting dendrites and somata, but primarily the former (81.3% versus 10.6%). Axodendritic terminals synapsed mainly on medium-to-small sized dendrites (less than 3 microns in diameter). The majority of labeled axodendritic terminals (90.1%) contained small, round, and clear synaptic vesicles (S-type: 20-50 nm) and were associated with an asymmetric (60.6%), symmetric (11.4%), or no (18%) postsynaptic specialization. By contrast, most axosomatic terminals contained flattened vesicles (F-type) and formed a symmetric or no postsynaptic specialization (75%). Large dense core vesicles (55-90 nm) were observed within a small proportion of all labeled axon terminals (1.3%). The results from this study demonstrate that the nSC projects to XII, preferentially targets a specific subgrouping of protrusor motoneurons, and synapses on both somata and dendrites, although mainly on the latter. The implications of these data are discussed relative to tongue control.  相似文献   

19.
Collateral axonal branching from the medial or lateral mammillary nuclei to the anterior thalamus, Gudden's tegmental nuclei, the nucleus reticularis tegmenti pontis, and the medial pontine nucleus was studied using the fluorescent retrograde double-labeling method. One day after injection of Fast Blue into the anterior thalamic nuclei or Gudden's tegmental nuclei, Nuclear Yellow was injected into Gudden's tegmental nuclei or the nucleus reticularis tegmenti pontis and the medial pontine nucleus. Following 1 day survival, single- and double-labeled neurons were examined in the mammillary nuclei. The lateral mammillary nucleus contains neurons whose collateral fibers project to both the dorsal tegmental nucleus of Gudden and the ipsilateral or contralateral anterodorsal thalamic nucleus, to both the medial pontine nucleus and the anterodorsal thalamic nucleus, and to both the dorsal tegmental nucleus of Gudden and the medial pontine nucleus. The pars medianus and pars medialis of the medial mammillary nucleus contain neurons whose collateral fibers project to both the anteromedial thalamic nucleus and the ventral tegmental nucleus of Gudden, to both the anteromedial thalamic nucleus and the medial part of the nucleus reticularis tegmenti pontis, and to both the ventral tegmental nucleus of Gudden and the medial part of the nucleus reticularis tegmenti pontis. The dorsal half of the pars posterior of the medial mammillary nucleus contains a few neurons whose collateral fibers project to both the anteromedial thalamic nucleus and the rostral part of the ventral tegmental nucleus of Gudden, and to both the caudal part of the anteroventral thalamic nucleus and the rostral part of the ventral tegmental nucleus of Gudden, while the pars lateralis of the medial mammillary nucleus contains no double-labeled neurons and projects only to the anteroventral thalamic nucleus.  相似文献   

20.
A light and electron microscopic double antigen localization technique was employed to examine the fine structural relationship between neurotensin-containing axon terminals and dopaminergic neurons in the substantia nigra and ventral tegmental area of the rat. At the light microscopic level, neurotensin-immunoreactive terminals were densely distributed throughout the substantia nigra pars compacta and ventral tegmental area in close proximity to tyrosine hydroxylase-immunoreactive somata and dendrites. On electron microscopic examination, direct synaptic connections were identified between neurotensin-immunoreactive axon terminals and tyrosine hydroxylase-immunopositive perikarya and dendrites. However, only 8.2% and 8.8% of the neurotensin-immunoreactive axonal profiles detected in the substantia nigra and ventral tegmental area, respectively, were found in direct apposition with tyrosine hydroxylase-immunostained elements. In turn, only 9.3% and 10.0% of tyrosine hydroxylase immunoreactive dendrites sampled from the substantia nigra and ventral tegmental area, respectively, were seen in contact with neurotensin immunopositive axon terminals. However, neurotensin-immunoreactive and tyrosine hydroxylase-immunolabelled elements were frequently identified in close anatomical proximity (less than 5 microns) to one another. These results are interpreted in light of the selective association of neurotensin receptors with dopaminergic neurons in the substantia nigra and ventral tegmental area to suggest a predominantly parasynaptic mechanism of action for neurotensin in the ventral midbrain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号