首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments on anesthetized cats were used to study the activity of motor cortex neurons (field 4γ) in response to separate and simultaneous stimulation of the ventrolateral nucleus of the thalamus and the somatosensory cortex (field 2) of the brain. Long-term potentiation of motor cortex neuron activity in response to simultaneous stimulation of the ventrolateral nucleus and somatosensory cortex arose only in regions receiving corticocortical projections from the stimulation site in the somatosensory cortex of the brain, while regions lacking corticocortical projections from the somatosensory cortex showed no such effect. Experiments demonstrated that the duration of increased motor cortex neuron activity following stimulation of the ventrolateral nucleus of the thalamus and somatosensory cortex was greater than one hour after recording was started. These data led to the conclusion that simultaneous stimulation of corticocortical and thalamocortical afferents can alter the level of neuronal activity in the motor cortex only in regions with convergent sensory inputs from the thalamus and somatosensory cortex of the brain. Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 84, No. 5–6, pp. 460–468, May–June, 1998.  相似文献   

2.
1. Multiple output pathways originate from motor cortex. In this study on cats, six classes of corticofugal neurons were identified by antidromic activation. Corticocallosal neurons of layer III were activated antidromically by stimulation of contralateral motor cortex. Layer V neurons were identified by antidromic activation from cerebral peduncle, red nucleus, lateral reticular nucleus of medulla, or spinal cord. Corticothalamic neurons were identified in layer VI. All the identified neurons were tested for input from primary somatosensory cortex. 2. Neurons of all corticofugal groups received excitatory inputs from primary somatosensory cortex. The shortest latency corticocortical effects of 1.2-2.5 ms were found for corticocallosal neurons of layer III, and for layer V neurons which projected axons through the cerebral peduncle, to red nucleus, and to spinal cord. 3. Nearby neurons, projecting to the same of different targets, were affected nonuniformly by corticocortical inputs. This finding supports the conclusion that specificity of afferent connections within cerebral cortex is not determined by anatomic segregation of cell bodies nor by projection target of efferent neurons. 4. These selectively distributed input connectivities suggest that even a small region of motor cortex could send different signals to its diverse targets.  相似文献   

3.
1. "Unmasking" of weak synaptic connections has been suggested as a mechanism for the early changes in cortical topographic maps that follow alterations of sensory activity. For such a mechanism to operate, convergent sensory inputs must already exist in the normal cortex. 2. We tested for topographic and cross-modality convergence in primary somatosensory cortex of raccoon. The representation of glabrous skin of forepaw digits was chosen because, even though it is dominated by inputs from the glabrous skin of a single digit, it nevertheless comes to respond to stimulation of other digits when, e.g., a digit is removed. 3. Intracellular recordings were made from 109 neurons in the representation of glabrous skin of digit 4. Neurons were tested for somatosensory inputs with electrical and natural stimulation of digits. 4. Excitatory postsynaptic potentials (EPSPs) were evoked in 100% of the neurons (109/109) by electrical stimulation of glabrous skin of digit 4, and in 79% (31 of 39) by vibrotactile stimulation. 5. Glabrous skin of digit 4 was not the sole source of somatosensory inputs. A minority of neurons generated EPSPs after electrical stimulation of hairy skin of digit 4 (10 of 98 neurons, 10%). Electrical stimulation of digits 3 or 5 evoked EPSPs in 22 of 103 neurons (21%). Natural stimulation (vibrotactile or hair bending) was also effective in most of these latter cases (digit 3, 6/7; digit 5, 9/10). 6. Intracortical microstimulation of the "heterogeneous zone" was used to test for corticocortical connections to neurons in the glabrous zone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effect of high-frequency and burst stimulation of the first and second somatosensory zones on the activity of identical neurons in the anterior limbic cortex was studied comparatively in acute experiments with cats. A histogramic analysis of neuronal responses in the limbic cortex showed that most background-active cells responded to stimulation of both the first and the second somatosensory zones. Both zones variously adjusted the activity of neurons in the limbic cortex. It was found that the responses in the limbic cortex with the maximum density of the potentionals of long-latent reactions are recorded during stimulation of the first somatosensory zone. It was established that the first and second somatosensory zones exert a preferentially activating influence on neurons in the anterior limbic cortex (51.5 and 66.6%, respectively), inhibitory responses comprised 33.3 and 20.0%, while mixed responses were recorded in 15.5 and 13.3% of the neurons, respectively. It was shown that the somatosensory zones exert a modulating influence on the activity of neurons, thus participating in the regulation and processing of information entering the limbic cortex.Translated from Fiziologicheskii Zhurnal SSSR imeni I. M. Sechenova, Vol. 69, No. 9, pp. 1137–1142, September, 1983.  相似文献   

5.
Summary Cortico-cortical neurons and pyramidal tract neurons of the cat were tested for convergent inputs from forelimb afferents. Neurons were recorded in cortical areas 1, 2, and 3a. Consideration was given to both suprathreshold and subthreshold inputs evoked by electrical stimulation of forelimb nerves. Individual cortico-cortical neurons and also pyramidal tract neurons were characterized by convergence of multiple somatosensory inputs from different regions of skin, from several muscle groups, and between group I deep afferents and low threshold cutaneous afferents. Certain patterns of afferent input varied with cytoarchitectonic area. There was, however, no difference between area 3a and areas 1–2 in the incidence of cross-modality convergence in the form of input from cutaneous and also deep nerves. Many of the inputs were subthreshold. Arguments are presented that these inputs, though subthreshold, must be considered for a role in cortical information processing. The convergent nature of the sensory inputs is discussed in relation to the proposed specificities of cortical columns. The patterns of afferent inputs reaching cortico-cortical neurons seem to be appropriate for them to have a role in the formation of sensory fields of motor cortex neurons. PT neurons of somatosensory cortex have possible roles as modifiers of ascending sensory systems, however, the convergent input which these PT neurons receive argues against a simple relationship between the modality of peripheral stimuli influencing them and the modality of the ascending tract neurons under their descending control.Supported by the Medical Research Council of Canada (DG-187 and MT-7373), the Harry Botterell Foundation for the Neurological Sciences, the Ontario Ministry of Health, and the School of Graduate Studies and Research, Queen's University. D.D. Herman (supported by MRC Studentship) participated in five of the experiments  相似文献   

6.
Inferences about how the complex somatosensory systems of anthropoid primates evolved are based on comparative studies of such systems in extant mammals. Experimental studies of members of the major clades of extant mammals suggest that somatosensory cortex of early mammals consisted of only a few areas, including a primary area, S1, bordered by strip-like rostral and caudal somatosensory fields, SR and SC. In addition, the second somatosensory area, S2, and the parietal ventral area, PV, were probably present. S1, S2, and PV were activated independently via parallel projections from the ventroposterior nucleus, VP. Little posterior parietal cortex existed, and it was unlikely that a separate primary motor area, M1, existed until placental mammals evolved. Early primates retained this basic organization and also had a larger posterior parietal region that mediated sensorimotor functions via connections with motor and premotor areas. The frontal cortex included M1, dorsal and ventral premotor areas, supplementary motor area, and cingulate motor fields. Ventroposterior superior and ventroposterior inferior nuclei were distinct from the ventroposterior nucleus in the thalamus. In early anthropoid primates, areas S1, SR, and SC had differentiated into the fields now recognized as areas 3b, 3a, and 1. Areas 3b and 1 contained parallel mirror-image representations of cutaneous receptors and a parallel representation in area 2 was probable. Serial processing became dominant, so that neurons in areas 1, S2, and PV became dependent on area 3b for activation. Posterior parietal cortex expanded into more areas that related to frontal cortex. Less is known about changes that might have occurred with the emergence of apes and humans, but their brains were larger and posed scaling problems most likely solved by increasing the number of cortical areas and reducing the proportion of long connections.  相似文献   

7.
Timing-dependent plasticity in human primary somatosensory cortex   总被引:7,自引:0,他引:7  
Animal experiments suggest that cortical sensory representations may be remodelled as a consequence of changing synaptic efficacy by timing-dependent associative neuronal activity. Here we describe a timing-based associative form of plasticity in human somatosensory cortex. Paired associative stimulation (PAS) was performed by combining repetitive median nerve stimulation with transcranial magnetic stimulation (TMS) over the contralateral postcentral region. PAS increased exclusively the amplitude of the P25 component of the median nerve-evoked somatosensory-evoked potential (MN-SSEP), which is probably generated in the superficial cortical layers of area 3b. SSEP components reflecting neuronal activity in deeper cortical layers (N20 component) or subcortical regions (P14 component) remained constant. PAS-induced enhancement of P25 amplitude displayed topographical specificity both for the recording (MN-SSEP versus tibial nerve-SSEP) and the stimulation (magnetic stimulation targeting somatosensory versus motor cortex) arrangements. Modulation of P25 amplitude was confined to a narrow range of interstimulus intervals (ISIs) between the MN pulse and the TMS pulse, and the sign of the modulation changed with ISIs differing by only 15 ms. The function describing the ISI dependence of PAS effects on somatosensory cortex resembled one previously observed in motor cortex, shifted by ∼7 ms. The findings suggest a simple model of modulation of excitability in human primary somatosensory cortex, possibly by mechanisms related to the spike-timing-dependent plasticity of neuronal synapses located in upper cortical layers.  相似文献   

8.
Summary Previous studies have shown that the amplitude of somatosensory evoked potentials is diminished prior to, and during, voluntary limb movement. The present study investigated the role of the motor cortex in mediating this movement-related modulation in three chronically prepared, awake monkeys by applying low intensity intracortical microstimulation (ICMS) to different sites within the area 4 representation of the arm. Air puff stimuli were applied to the contralateral arm or adjacent trunk at various delays following the ICMS. Somatosensory evoked potentials were recorded from the primary somatosensory cortex, areas 1 and 3b, with an intracortical microelectrode. The principal finding of this study was that very weak ICMS, itself producing at most a slight, localized, muscle twitch, produced a profound decrease in the magnitude of the short latency component of the somatosensory evoked potentials in the awake money. Higher intensities of ICMS (suprathreshold for eliciting electromyographic (EMG) activity in the target muscle, i.e. that muscle activated by area 4 stimulation) were more likely to decrease the evoked response and produced an even greater decrease. The modulation appeared to be, in part, central in origin since (i) it preceded the onset of EMG activity in 23% of experiments, (ii) direct stimulation of the muscle activated by ICMS, which mimicked the feedback associated with the small ICMS-induced twitch, was often ineffective and (iii) the modulation was observed in the absence of EMG activity. Peripheral feedback, however, may also make a contribution. The results also indicate that the efferent signals from the motor cortex can diminish responses in the somatosensory cortex evoked by cutaneous stimuli, in a manner related to the somatotopic order. The effects are organized so that the modulation is directed towards those neurones serving skin areas overlying, or distal to, the motor output.  相似文献   

9.
Interactions between somatosensory afferents arriving from different points in the periphery play an important role in sensory discrimination and also provide the substrate for plasticity following peripheral injury. To examine the extent and time course of such interactions, extracellular recordings were made from neurons in the primary somatosensory cortex and the ventroposterior lateral thalamus of anesthetized raccoons. Interactions between adjacent digits were studied using the conditioning-test paradigm in which a test pulse was delivered to the digit containing the neuron's receptive field (the on-focus digit) at various intervals following conditioning stimulation of an adjacent, off-focus digit. Off-focus stimulation produced predominantly inhibition of the test response with a maximum effect at 20–40 ms in both cortex and thalamus. The mean inhibition was approximately twice as large in the thalamus as in the cortex. Recordings were made in other animals after unmyelinated C fibers had been destroyed in the on-focus digit by subcutaneous injection of capsaicin. This resulted in a doubling of the responses evoked by the test stimulus in both regions, but the spontaneous discharge rate was not changed. The amount of inhibition produced in the cortex was unchanged by capsaicin treatment, but was reduced in the thalamus compared to control animals. This indicates that capsaicin-sensitive peripheral afferents provide a tonic control over interdigit inhibition in the thalamus.  相似文献   

10.
Extracellular discharges were recorded from 205 neurons in the secondary somatosensory (SII) cortex of isoflurane-anesthetized cats. Cross-correlation analysis was used to characterize the temporal coordination of SII neurons recorded during cutaneous stimulation with a focal air jet that moved back-and-forth across the distal forelimb. Over two-thirds of the recorded neuron pairs (n=357) displayed significant levels of synchronized activity during one or both directions of air-jet movement. The probability of detecting correlated activity varied according to the distance separating the neurons. Whereas synchronized responses were observed in 82.3% of the pairs in which the neurons were separated by 200–300 μm, the incidence of synchronization declined to 52.3% for neurons that were separated by 600–800 μm. The distance between neurons also had a significant effect on the temporal precision of correlated activity. For neurons that were separated by 200–300 μm, synchronized responses in the cross-correlograms (CCGs) were characterized by narrow (0.5–1.0 ms) peaks at time zero. For SII neurons that were more widely separated, the peak half-widths were substantially broader and more likely to be displaced from time zero. Analysis of directional sensitivity indicated that only 14.2% of the correlated neurons displayed a directional preference for synchronized activity. By comparison, 63.4% of the neurons displayed a directional preference in their discharge rate. These results indicate that stimulus-induced synchronization is a prominent feature among local populations of SII neurons, but synchronization does not appear to play a critical role in coding the direction of stimulus movement. A comparison of these results with those obtained from similar experiments conducted in primary somatosensory (SI) cortex indicates that neuronal synchronization is more likely in SII cortex. This finding is discussed with respect to the known functional differences between the SI and SII cortical areas. Electronic Publication  相似文献   

11.
Summary Intracellular techniques were used to investigate a cortico-cortical path from sensory cortex to motor cortex of cats. Cortico-cortical epsps were evoked in motor cortex neurons by microstimulation of area 3a. Epsps with latencies between 1.2 and 2.4 ms were identified as monosynaptic. These short latency cortico-cortical effects were recorded in layers II through VI of the motor cortex. Neurons with monosynaptic cortico-cortical epsps also received excitatory inputs from forelimb nerves, usually from both muscle and cutaneous afferent fibers. The epsps evoked from forelimb nerves in motor cortex neurons were preceded by neural activity in somatosensory cortex. Time delays between arrival of inputs in sensory cortex and in motor cortex were compared to the latencies of cortico-cortical epsps in the same motor cortex neurons. It was apparent that the timing was appropriate for the identified cortico-cortical path to have relayed some sensory inputs to motor cortex.Supported by the Medical Research Council of Canada (MT-7373, DG-186), the Harry Botterell Foundation for the Neurological Sciences, the Ontario Ministry of Health, and the Faculty of Medicine, Queen's UniversityRecipient of a Medical Research Council of Canada Studentship.Recipient of a Medical Research Council of Canada Fellowship  相似文献   

12.
The flow of information in the sensorimotor cortex may determine how somatic information modulates motor cortex neuronal activity during voluntary movement. Electrophysiological recordings and neuroanatomical tracing techniques were used to study the connections between the primary somatosensory cortex (SI) and the vibrissal representation of the primary motor cortex (MI) in rodents. Intracortical microstimulation (ICMS) was applied to the vibrissal region of the motor cortex to identify a site from which stimulation evoked movements of the vibrissae. Movements of only a single whisker were evoked by applying low-intensity stimulating current to particular locations within MI. A single injection of either horseradish peroxidase (HRP) or biocytin was made at the stimulus site in each animal, to retrogradely label cells in the somatosensory cortex. Receptive field (RF) responses were recorded from neurons in the barrel cortex to identify the sensory cortex representation of the same whisker that responded to ICMS. The site at which neurons responded predominately to manual stimulation of this particular vibrissa was marked by a small electrolytic lesion. The projection from the somatosensory cortex to the identified whisker representation in the motor cortex was determined by mapping the location of labeled neurons in tissue sections processed for either HRP or biocytin. The relationship of the labeled cells in SI to the barrel structures was determined from adjacent sections that were stained for cytochrome oxidase. In all cases, the barrel column associated with the relevant whisker contained labeled cells. Surrounding barrels also contained labeled cells, although fewer in number. Very few labeled cells were found in non-contiguous barrels. These results show that the SI to MI projection is somatotopically arranged, such that the sensory cortex representation of a whisker is morphologically connected to the motor cortex representation of the same whisker. Thus, sensory information is relayed to MI from the relevant whisker region in SI. Adjacent whisker regions also appear to relay somatic input, but presumably to a lesser degree. A second group of animals received single small injections of the anterograde tracer, Phaseolus vulgaris leucoagglutinin, to an electrophysiologically identified whisker representation in the sensory cortex. A single narrow column of labeled fibers was found in the motor cortex following such injections. Thus, the sensory cortex appears to relay somatic information from the vibrissae to restricted regions of the motor cortex in a somatotopically organized manner. Furthermore, the stimulus-evoked whisker movements suggest that certain features of the output map of the motor cortex are discretely organized. These input/output relationships suggest that complex information processing within the vibrissal sensorimotor cortex is highly organized.  相似文献   

13.
Kim MJ  Kim YB  Kang KJ  Huh N  Oh JH  Kim Y  Jung MW 《Neuroscience》2003,118(1):205-216
Previous studies have shown significant correlated discharges (noise correlation) and synergistic information coding among adjacent cortical neurons. In order to investigate whether such interactions are present at an earlier stage of sensory processing, we compared noise correlation and synergistic information transmission in the ventral posterolateral nucleus (VPLn) of thalamus and primary somatosensory cortex (SI) of anesthetized rats. A hind paw was stimulated electrically and responses of several neighboring neurons were recorded simultaneously with a tetrode. Analyses indicated that noise correlation in the SI was about four times higher than in the VPLn, and, interestingly, it was significantly reduced following sensory stimulation in both regions. Spike count distributions of individual VPLn units contained higher amounts of information about the delivery of external stimulation compared with those of SI units. When simultaneously recorded units were considered together, transmission of information was more interactive (synergistic or redundant) among SI than VPLn units. On average, information transmission was independent in the VPLn, but synergistic in the SI. The difference in synergistic information coding was largely attributable to different levels of noise correlation and their modulation by external sensory stimulation. These results indicate that neuronal interactions are relatively low at the thalamic level, but much enhanced at the cortical level along the somatosensory pathway. The enhanced neuronal interactions in the cortex may reflect the role of cortex in extracting higher features of sensory stimuli.  相似文献   

14.
Summary Electrical activities of the motor and somatosensory cortices preceding visually-initiated hand movements were recorded with electrodes chronically implanted on the surface and at 2.5–3.0 mm depth in the cortex of monkeys, and changes in field potentials in these cortices after cerebellar hemispherectomy were observed for many weeks. As previously reported, a unilateral cerebellar hemispherectomy including the lateral and interpositus nuclei eliminates the cerebellar-mediated superficial thalamo-cortical (T-C) responses recorded in the forelimb motor cortex contralateral to the hemispherectomy. These T-C responses normally precede the hand movement, and the operation results in the delay of movement initiation. The electrodes in the forelimb area of the contralateral primary somatosensory cortex showed an enhancement of superficial T-C responses of the somatosensory cortex for 30–40 days after the operation. The enhanced potentials preceded the delayed movement as do the cerebellar-mediated superficial T-C responses of the motor cortex in normal situations. Local cooling of the somatosensory cortex following the cerebellar hemispherectomy disturbed the reaction time movement for a few weeks after the operation. This effect was rarely encountered in normal monkeys. The present study suggests the compensatory motor function of the somatosensory cortex for the dysfunction of the motor cortex in early weeks after cerebellar hemispherectomy.Supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan  相似文献   

15.
Unit responses in the secondary somatosensory cortex during the formation and extinction of a defensive conditioned reflex to acoustic stimulation were investigated in chronic experiments on cats. In 21 of 28 neurons tested during defensive conditioning the firing pattern changed in accordance with the character of responses to electric shock reinforcement. Two types of conditioned-reflex unit responses were distinguished: excitatory and inhibitory. Most neurons responding to the conditioned stimulus by activation did so during the first 50 msec, which was 80–100 msec before the conditioned motor response. Considerable variability of the unit responses was observed during conditioning. By the time of stabilization of the conditioned-reflex connections the unit response to the conditioned stimulus was stable in form. The pattern of extinction of the conditioned unit activity was expressed as a decrease in the discharge frequency in responses of excitatory type and disinhibition of activity in the case of inhibitory responses.Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 232–238, May–June, 1977.  相似文献   

16.
The cortical representations of the vibrissae of the rat form a matrix in which each whisker has its own area of cortex, called a 'barrel'. The afferent pathways from the periphery travel first to the trigeminal nuclei and thence via the ventroposteromedial thalamus (VPM) to the cortical barrels have been described in detail. We have studied the output from barrels by filling adjacent areas of the primary somatosensory cortex (SI) with either Phaseolus vulgaris leucoagglutinin (PHA-L) or biotinylated dextran amine (BDA) and demonstrating the course and terminations of the axons that arise within the barrel fields. The method not only dramatically illustrates the previously described corticothalamic pathway to VPM but also demonstrates a strict topography in the cortical afferents to the thalamic reticular nucleus (RT). Cells supplying the RT projection are found below the barrels in layer IV. Connections to the posterior thalamus, on the other hand, have no discernible topography and are derived from cortical areas surrounding the barrels. Thus the outputs of these 'septal' areas return to the region from which they receive thalamic input. The corticocortical connections are also visible in the same material. Contralateral cortical connections arise from the cells of the septa between barrels. The projections to secondary somatosensory area (SII) are mirror images of the barrel pattern in SI with rather more overlap but nonetheless a recognisable topography.  相似文献   

17.
Magnetic stimulation of sensorimotor cortex interferes with the detection of electro-cutaneous stimulation. However, it is uncertain whether this interference is due to activation of the somatosensory or the motor cortex. Here, transcranial magnetic stimuli (TMS) were delivered separately over somatosensory and motor cortex contralateral to the right ulnar nerve in 12 subjects. In separate trials, TMS were given 100 ms before and 20 ms after 60 ms trains of electro-cutaneous ulnar nerve stimuli, and their effect on the subjective perception of peripheral stimuli was assessed. TMS of both motor and somatosensory cortex interfered with the perception of afferent stimuli when given before or after stimulation of the ulnar nerve. Perception was more strongly suppressed by motor cortex stimulation than by somatosensory cortex stimulation, when given before or after the peripheral stimulus. A similar proportion of errors was induced by sensory cortex stimulation between the two stimulus timing intervals. This study suggests that the inhibition of the afferent volley is unlikely to be the result of antidromic activation of thalamocortical connections or corticospinal gating. A phenomenon akin to sensory masking is the most plausible explanation for much of the suppression of sensory perception by stimulation of the motor or somatosensory cortex. The more powerful suppressive effect of motor cortex stimulation may be due to multiple mechanisms.  相似文献   

18.
Single-cell activity was examined in digital areas of the primary somatosensory cortex (SI) of monkeys performing sensorially triggered and self-initiated digital movements with the aim of rigorously determining the relative timing of onset of the neuronal activity with respect to movement onset. The activity of prime mover muscles for execution of a key-press movement was recorded simultaneously with the neuronal activity; movement onset was defined as the onset of muscle activity. Neuronal receptive fields were also identified. The following findings emerged from this study: (1) Few neurons, if any, in the SI(areas 3b, 1, 2), including pyramidal tract neurons, were active prior to movement onset. (2) The movement-related activity of SI neurons was basically similar in cases of signal-triggered and self-initiated movement. (3) No neuron in the SI showed activity associated with ipsilateral digital movement. (4) A majority of movement-related neurons in the precentral motor cortex, in contrast, started their activity before movement onset. These findings suggest that SI neuronal activity participates little in providing information necessary for developing motor responses in the initial phase of simple digital movements.  相似文献   

19.
 A promising way to elucidate neuronal information processing is to establish detailed structure-function relationships of identified single neurons or populations of nerve cells, especially their synaptic connectivity. This has been greatly improved by the development of acute brain slice preparations. The cellular physiology of the rodent primary somatosensory (barrel) cortex has been extensively studied. However, for a meaningful interpretation of physiological experiments the degree and pattern of connectivity has to be known for the particular preparation. Since such studies are not available for rat (P15–25) barrel cortex in vitro, we have traced the cortico-cortical and thalamo-cortical connections in 400-μm-thick slices with biocytin. In coronal slices, a wealth of axonal connections in retrograde and anterograde directions were heavily labeled, resembling the full pattern of cortico-cortical projections described in vivo. The most striking connections were vertical and horizontal connections within the primary somatosensory cortex, as well as a columnar projection to the secondary somatosensory cortex and beyond (mainly the parietal ventral area). Electron microscopic extensions of the study indicated that the full possible set of synaptic contacts with an adult-like appearance was already established in these connections. In thalamo-cortical slices, strong reciprocal connections with the ventrobasal (and to a much lesser extent also the posterior) thalamic nucleus were always observed, together with an intensive ramification of fibers in the reticular nucleus. A striatal terminal field was also consistently found. We conclude that all major intracortical and thalamo-cortical connection are richly preserved in the in vitro slice preparations of rats. Thus, these preparations are suitable for elucidation of the functional interaction of the most crucial brain structures involved in somatosensory information processing combining an in vivo-like anatomical structure with the controlled environment of an in vitro slice. Accepted: 28 September 1998  相似文献   

20.
The cerebral cortex must have access to an eye position signal, as humans can report passive changes in eye position in total darkness, and visual responses in many cortical areas are modulated by eye position. The source of this signal is unknown. Here we demonstrate a representation of eye position in monkey primary somatosensory cortex, in the representation of the trigeminal nerve, near cells with a tactile representation of the contralateral brow. The neurons have eye position signals that increase monotonically with increasing orbital eccentricity from near the center of gaze, with directionally selectivity tuned in a Gaussian manner. All directions of eye position are represented in a single hemisphere. The signal is proprioceptive, because it can be obliterated by anesthetizing the contralateral orbit. It is not related to foveal or peripheral visual stimulation, and it represents the position of the eye in the head and not the angle of gaze in space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号