首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isolation and characterization of the first component of the kinin-forming system in human and rabbit plasma are presented. Functionally, the molecule is the precursor of the activator of prekallikrein (Pre-PKA) and evidence is presented that it is identical with Hageman factor (clotting factor XII). The component from each plasma possessed similar characteristics. This molecule was found to have a mol wt of 110,000 and sedimentation rate of 4.6S. It migrated in electrophoresis as a β-globulin, having an isoelectric point of 6.1. Upon activation with glass, kaolin, diatomaceous earth, ellagic acid, or trypsin, the activated molecule converted purified prekallikrein (prokininogenase) to the active enzyme. Clot-promoting activity was associated with the capacity to activate prekallikrein through each procedure of isolation. The clot-promoting factor was in precursor form, requiring treatment with kaolin or trypsin to gain activity. Evidence indicated that the protein was Hageman factor (factor XII): it promoted clotting of factor XII-deficient, but not Factor XI- or IX-deficient plasma, and did not convert fibrinogen to fibrin it bound to and was activated by kaolin or other negatively charged particles in the presence of chelating agents; the activation by kaolin could be prevented by pretreating the kaolin with hexadimethrine bromide (H Br); prekallikrein-activating and clot-promoting activities were identical in their physical properties; and the prekallikrein activator could not be detected in Hageman factor-deficient plasma. Activation of Hageman factor was accompanied by cleavage of the molecule into several fragments, one of which possessed prekallikrein-activating (PKA) and clot-promoting properties. The PKA fragment sedimented at 2.6S and by gel filtration was found to have a molecular weight of 32,000. The PKA possessed only 1/50 the clot-promoting capacity of the freshly activated native molecule.  相似文献   

2.
Recent studies of individuals with high molecular weight (HMW) kininogen deficiency established the importance of this plasma protein for in vitro initiation of blood coagulation. In the present study, HMW-kininogen was highly purified from human plasma by monitoring its clot-promoting activity, using Fitzgerald trait plasma as a substrate. This preparation of HMW-kininogen revealed a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (mol wt: 120,000) and released 1% of its weight as bradykinin upon incubation with plasma kallikrein. HMW-kininogen specifically repaired impaired surface-mediated plasma reactions of Fitzgerald trait plasma, but did not affect those of Hageman trait and Fletcher trait plasma. Kinin release from HMW-kininogen by trypsin, but not by plasma kallikrein, resulted in total loss of clot-promoting activity. No inhibitors of coagulation were found when all kinin activity was removed from HMW-kininogen by trypsin. The roles of HMW-kininogen, Hageman factor (HF, Factor XII), plasma prekallikrein (Fletcher factor), and plasma thromboplastin antecedent (PTA, Factor XI) in blood coagulation were studied in a purified system. HMW-kininogen was absolutely required for activation of PTA by HF and ellagic acid. The yield of activated PTA was proportional to the amount of HF, HMW-kininogen, and PTA in the mixtures, suggesting that, to activate PTA, these three proteins might form a complex in the presence of ellagic acid. No fragmentation of HF was found under these conditions. In contrast to HF, HF-fragments (mol wt: 30,000) activated PTA in the absence of HMW-kininogen and ellagic acid. Thus, it appears that in the present study PTA was activated in two distinct ways. Which pathway is the major one in whole plasma remains to be determined.  相似文献   

3.
Factor VII can be activated, to a molecule giving shorter clotting times with tissue factor, by incubating plasma with kaolin or by clotting plasma. The mechanisms of activation differ. With kaolin, activated Factor XII (XII(a)) was the apparent principal activator. Thus, Factor VII was not activated in Factor XII-deficient plasma, was partially activated in prekallikrein and high-molecular weight kininogen (HMW kininogen)-deficient plasmas, but was activated in other deficient plasmas. After clotting, activated Factor IX (IX(a)) was the apparent principal activator. Thus, Factor VII was not activated in Factor XII-,HMW kininogen-, XI-, and IX-deficient plasmas, but was activated in Factor VIII-, X-, and V-deficient plasmas. In further studies, purified small-fragment Factor XII(a) (beta-XII(a)), kallikrein, and Factor IX(a) were added to partially purified Factor VII and to plasma. High concentrations of beta-XII(a) activated Factor VII in a purified system; much lower concentrations of beta-XII(a) activated Factor VII in normal plasma but not in prekallikrein or HWM kininogen-deficient plasmas. Kallikrein alone failed to activate partially purified Factor VII but did so when purified Factor IX was added. Kallikrein also activated Factor VII in normal, Factor XII-, and Factor IX-deficient plasmas. Purified Factor IX(a) activated partially purified Factor VII and had no additional indirect activating effect in the presence of plasma. These results demonstrate that both Factor XII(a) and Factor IX(a) directly activate human Factor VII, whereas kallikrein, through generation of Factor XII(a) and Factor IX(a), functions as an indirect activator of Factor VII.  相似文献   

4.
Kinetic constants (Km and kcat) of kallikrein and factor XIa for the chromogenic substrates H-D-L-prolyl-L-phenylanyl-L-arginine-p-nitroanilide (S-2302) and L-pyroglutamyl-L-propyl-L-arginine-p-nitroanilide (S-2366) were determined. The determined constants allow the use of S-2302 and S-2366 in an assay that leads to the joint estimation of factor XI and prekallikrein in activated plasma. The assay reports approximately 3.1 micrograms/ml factor XIa and 34.5 micrograms/ml kallikrein in kaolin-activated plasma (kaolin content 2 mg/ml). The dual-substrate amidolytic assay shows good correlation with the coagulant assay of both factors (0.92 with the prekallikrein assay and 0.98 with the factor XI assay). It is capable, through the joint estimation of factor XI and prekallikrein levels, of differentiating among plasma samples deficient in components of the contact phase of blood coagulation. Kinetic constants of factor beta-XIIa (factor XII fragment) for these substrates and for N-benzol-L-isoleusyl-L-glutamyl-glycyl-L-arginine-P-nitro ani lide (S-2222) were determined, and they allowed the assessment of the contribution of this factor to this assay and its estimation in the activated phase.  相似文献   

5.
Acid-pretreated normal human plasma generates renin activity at 0 degree C and neutral pH by the activation of prorenin. The activation is caused by kallikrein generated from prekallikrein by activated factor XII. Nonacidified plasma also generates renin at 0 degree C, but at a lower rate (cold-promoted activation). In normal plasma, 14% +/- 1% of prorenin (mean +/- SEM, n = 30) was activated during incubation at 0 degree C for 7 days (range 6% to 26%). Cold-promoted activation of prorenin was within the normal range in plasma deficient in factor XI, X, IX, VIIIC, VII, V, prothrombin, or high mol wt kininogen. Cold-promoted activation of prorenin was less than or equal to 1% in plasma deficient in factor XII or prekallikrein. Reconstitution of these plasmas with highly purified factor XII or prekallikrein restored normal prorenin activation. Correction of high mol wt kininogen deficiency had no effect. Thus cold-promoted activation of prorenin depends on the presence of factor XII and prekallikrein, whereas the other clotting factors are not essential. The influence of the inhibitors C1 esterase-inhibitor, alpha 2-macroglobulin, antithrombin III, and alpha 1-antitrypsin on the activation of prorenin was studied in factor XII-deficient plasma from which one or more of these inhibitors had been selectively removed by immunoadsorption. Factor XII was subsequently added, and the generation of renin at 37 degrees C was observed after complete factor XII-high mol wt kininogen-mediated activation of prekallikrein induced by dextran sulfate. No activation of prorenin was observed at 37 degrees C after depletion of C1 esterase inhibitor, alpha 2-macroglobulin, antithrombin III, or alpha 1-antitrypsin. When prekallikrein was activated in plasma depleted of both C1 esterase-inhibitor and alpha 2-macroglobulin, 6% of prorenin was activated in 2 hours at 37 degrees C. After additional depletion of antithrombin III, the activation increased to 47%. These results indicate that the contact activation system is capable of activating prorenin in plasma at physiologic pH and temperature when the three most important kallikrein inhibitors, C1 esterase-inhibitor, alpha 2-macroglobulin, and antithrombin III, are absent.  相似文献   

6.
Patients lacking high molecular weight (HMW) kininogen have profound abnormalities of the Hageman factor-dependent pathways of coagulation, kinin formation, and fibrinolysis. The ability of HMW kininogen to potentiate the Hageman factor fragments (HFf) activation of prekallikrein and Factor XI in plasma was studied. HFf only partially converted Factor XI to XIa and prekallikrein to kallikrein in plasma deficient in HMW kininogen (Williams trait), while enhanced activation of Factor XI and prekallikrein by HFf resulted after reconstitution with HMW kininogen. In a system using highly purified components, HMW kininogen increased the initial rate of prekallikrein activation whether the kallikrein formed was assayed by arginine esterase activity or kininforming ability. The potentiation of prekallikrein activation occurred over a 12-fold range of enzyme (HFf) concentration and was nonhyperbolic with respect to substrate (prekallikrein). HMW kininogen exerted its effect even in the absence of prekallikrein since the hydrolysis of acetylglycyl-lysine methyl ester by HFf was increased by HMW kininogen. These results suggest that one of the functions of HMW kininogen is to augment the catalytic action of HFf.  相似文献   

7.
Hageman factor (HF, factor XII), adsorbed to negatively charged agents, is transformed to an activated state in which it initiates reactions of the intrinsic pathway of thrombin formation by activating plasma thromboplastin antecedent (PTA, factor XI). High-molecular-weight kininogen (HMWK, Fitzgerald factor) and plasma prekallikrein accelerate these early steps in the clotting process. Questions have been raised about the role of HMWK in the activation of Hageman factor by surfaces. In the present studies, we report that the activation of purified human HF by sulfatides, ellagic acid, kaolin, or glass occurred in the absence of HMWK. Indeed, small amounts of HMWK inhibited activation of HF by ellagic acid. Physiological concentration of HMWK had little or no influence on the activation of HF by sulfatides, kaolin, or glass, but higher concentrations (3 to 6 times more) showed the same inhibitory effect as after activation by ellagic acid. This inhibitory property of HMWK may be attributed to competitive binding of HF and HMWK on the surface of the activating agents. In fact, when HF was added to kaolin or glass that had been incubated with HMWK and then washed, the inhibitory effect persisted, indicating HMWK that was bound to the surface blocked activation of HF. Studies with 125I-HF and 125I-HMWK supported this interpretation. Plasma prekallikrein accelerated activation of the amidolytic properties of HF by sulfatides, kaolin, or glass but did not influence activation of HF by ellagic acid. In the presence of plasma kallikrein, HMWK at moderate concentrations slightly accelerated the rate of activation of HF by activating agents other than ellagic acid. Higher concentrations of HMWK counteracted both the accelerating effect of prekallikrein and the inhibitory effect observed when HF was incubated with an excess of kaolin. These experiments, then, support the view that the procoagulant function of HMWK is localized to a point subsequent to the activation of HF.  相似文献   

8.
When blood is exposed to negatively charged surface materials such as glass, an enzymatic cascade known as the contact system becomes activated. This cascade is initiated by autoactivation of Factor XII and leads to both coagulation (via Factor XI) and an inflammatory response (via the kallikrein-kinin system). However, while Factor XII is important for coagulation in vitro, it is not important for physiological hemostasis, so the physiological role of the contact system remains elusive. Using patient blood samples and isolated proteins, we identified a novel class of Factor XII activators. Factor XII was activated by misfolded protein aggregates that formed by denaturation or by surface adsorption, which specifically led to the activation of the kallikrein-kinin system without inducing coagulation. Consistent with this, we found that Factor XII, but not Factor XI, was activated and kallikrein was formed in blood from patients with systemic amyloidosis, a disease marked by the accumulation and deposition of misfolded plasma proteins. These results show that the kallikrein-kinin system can be activated by Factor XII, in a process separate from the coagulation cascade, and point to a protective role for Factor XII following activation by misfolded protein aggregates.  相似文献   

9.
Although surface contact is known to accelerate the one-stage prothrombin time of human plasma through the participation of Hageman factor (factor XII) and factor VII, it has not been clear whether Hageman factor interacts with factor VII directly or indirectly. Recently, Gj?nnaess reported experiments suggesting that plasma kallikrein was an intermediate between Hageman factor and factor VII. The present study was undertaken to elucidate the interaction of plasma kallikrein and factor VII. Incubation of Fletcher-trait plasma (deficient in a plasma prekallikrein) with kaolin at 0 degrees C. did not induce shortening of the Thrombotest time or enhancement of factor VII activity, in contrast to studies of normal plasma. Monospecific rabbit antiserum against plasma kallikrein blocked the shortening of the Thrombotest time of normal plasma brought about by kaolin. Purified Hageman factor fragments (prekallikrein activator) induced an increase in factor VII activity in normal or Hageman-trait plasma, but not in Fletcher-trait plasma. A purified plasma kallikrein preparation enhanced factor VII activity in all plasmas, including that of Fletcher-trait plasma. The effect of the kallikrein preparation was blocked by soybean trypsin inhibitor, Trasylol, or rabbit antiserum against kallikrein, but not by lima bean trypsin inhibitor or antiserum against Hageman factor. The activity of partially purified factor VII was enhanced by purified kallikrein in the presence, but not in the absence of factor VII-deficient plasma. These results further support the idea that the enhancement of factor VII activity by surface contact is via Hageman factor and plasma kallikrein, suggesting a possible link between the intrinsic and extrinsic pathway of blood clotting. The significance of this phenomenon in hemostasis in vivo remains to be elucidated.  相似文献   

10.
A monospecific antibody against human plasma kallikrein has been prepared in rabbits with kallikrein further purified to remove gamma globulins. The antisera produced contained antikallikrein and also anti-IgG, in spite of only 8% contamination of kallikrein preparation with IgG. The latter antibody was removed by adsorption of antisera with either Fletcher factor-deficient plasma or with purified IgG. Both kallikrein and prekallikrein (in plasma) cross-react with the antibody with no apparent difference between the precipitation arcs developed during immunoelectrophoresis and no significant difference in reactivity when quantified by radial immunodiffusion.Kallikrein antibody partially inhibits the esterolytic and fully inhibits the proteolytic activity of kallikrein. In addition, the antibody inhibits the activation of prekallikrein, as measured by esterase or kinin release. The magnitude of the inhibition is related to the molecular weight of the activator used. Thus, for the four activators tested, the greatest inhibition is observed with kaolin and factor XII(A), while large activator and the low molecular weight prekallikrein activators are less inhibited.With the kallikrein antibody, the incubation of kallikrein with either plasma or partially purified C1 esterase inactivator results in a new precipitin arc, as detected by immunoelectrophoresis. This finding provides physical evidence for the interaction of the enzyme and inhibitor. No new arc could be demonstrated between kallikrein and alpha(2)-macroglobulin, or alpha(1)-antitrypsin, although the concentration of free kallikrein antigen decreases after interaction with the former inhibitor.By radial immunodiffusion, plasma from healthy individuals contained 103+/-13 mug/ml prekallikrein antigen. Although in mild liver disease, functional and immunologic kallikrein are proportionally depressed, the levels of prekallikrein antigen in plasma samples from patients with severe liver disease remains 40% of normal, while the functional kallikrein activity was about 8%. These observations suggest that the livers of these patients have synthesized a proenzyme that cannot be converted to active kallikrein.  相似文献   

11.
Activation of hageman factor by collagen   总被引:9,自引:10,他引:9       下载免费PDF全文
Purified acid-soluble and insoluble human collagen accelerated the clotting of plateletpoor plasma in silicone-treated tubes. The clot-promoting effect did not appear to be due to thromboplastic activity since the collagen preparations did not activate factor X in the presence of factor VII and calcium. Instead, collagen appeared to accelerate clotting by activating Hageman factor (factor XII) on the basis of the following findings: collagen increased the clot-promoting activity of partially purified Hageman factor but exerted no further effect in the presence of kaolin, a known activator of Hageman factor; clot-promoting eluates were obtained from collagen exposed to normal, hemophilic, or PTC-deficient plasma but not from collagen exposed to Hageman or PTA-deficient plasma. The collagen molecule itself appeared to be required for the clot-promoting activity since digestion with collagenase or thermal denaturation at pH 2.5 (about 35 degrees C) resulted in very marked reduction in clot-promoting activity. Since thermal denaturation is associated with transformation of collagen structure from triple helical to random coil form, it is suggested that the native form of collagen is essential for the ability to activate Hageman factor.Blockage of the free amino groups by treatment with nitrous acid or dinitrofluorobenzene only slightly reduced the clot-promoting activity of collagen. In contrast, since addition of cationic proteins to collagen markedly reduced pro-coagulant activity it is suggested that negatively charged sites on the collagen molecule are critical for Hageman factor activation. This suggestion is supported by the finding that pepsin treatment of collagen, which removes the predominantly negatively charged telopeptides, results in significant decrease in coagulant activity. Esterification of collagen, which neutralizes 80-90% of the free carboxyl groups, reduced coagulant activity by over 90% and it is suggested that the free carboxyl groups of glutamic and aspartic acids provide the negatively charged sites critical for Hageman factor activation.  相似文献   

12.
The contact phase of intrinsic clotting involves Factor XI, Factor XII, Fletcher factor, and a fourth activity that we call contact activation cofactor (CAC). All four of these activities are reduced or absent in Dicalite-adsorbed plasma. A modified activated partial thromboplastin time assay for CAC has been defined by using a substrate of Dicalite-adsorbed plasma combined with partially purified sources of Factors XI and XII, and Fletcher factor. The following properties of CAC in plasma have been determined by using the assay: it is stable up to 60 min at 56 degrees C; gradually loses activity at 80 degrees C; is stable between pH 6 and 9; is precipitated by ammonium sulfate between 40% and 50% saturation; is slightly adsorbed by A1(OH)3; and is eluted from DEAE-cellulose after the major protein peaks. A purification procedure has been devised that separates CAC from other known clotting factors. Isolated CAC was less stable than CAC in plasma, but in the presence of dilute human serum albumin it retained full activity for 80 min at 56 degrees C. On gel filtration CAC had an apparent mol wt of 220,000 daltons. These properties are consistent with those described for Fitzgerald factor, which further supports the conclusion that CAC and Fitzgerald factor represent the same activity. Isolated CAC promoted the generation of activated Factor XI (XIa) in a mixture containing purified Factor XI, Factor XII, and kaolin. The amount of Factor XIa generated was proportional to the amount of added CAC. No time-consuming reaction between Factor XI or Factor XII and CAC could be demonstrated.  相似文献   

13.
Because human platelets participate in the contact phase of intrinsic coagulation and contain a Factor XI-like coagulant activity, the nature of the Factor XI-like activity was examined and compared with purified plasma Factor XI. The platelet factor XI-like activity was sedimented with the particulate fraction of a platelet lysate, was inactivated by heat (t(1/2) 3.5 min, 56 degrees C), was not a nonspecific phospholipid activity, and was destroyed by treatment with Triton X-100. Isolated platelet membranes were four-fold enriched in Factor XI activity and similarly enriched in plasma membrane marker enzymes. The Factor XI-like activity of platelet membranes was detected only when assayed in the presence of kaolin, which suggests that it is present in an unactivated form and can participate in contact activation. Concanavalin A inhibited the Factor XI-like activity of platelet lysates and platelet membranes but not of plasma or purified Factor XI. A platelet membrane-Factor XI complex was isolated after incubation of membranes with purified Factor XI. The Factor XI activity of the platelet membrane-plasma Factor XI complex was inhibited by concanavalin A, whereas unbound plasma Factor XI retained activity. An antibody raised against plasma Factor XI inhibited the in vitro Factor XI activity of plasma and of the platelet membrane-plasma Factor XI complex but had no effect on the endogenous Factor XI-like activity of washed lysed platelets or isolated platelet membranes. Washed platelets and isolated platelet membranes obtained from a Factor XI-deficient donor without a history of excessive bleeding had normal quantities of platelet Factor XI-like activity and normal behavior in the contact phase of coagulation (collagen-induced coagulant activity). These results indicate that platelet membranes contain an endogenous Factor XI-like activity that is functionally distinct from plasma Factor XI.  相似文献   

14.
The ability of the two forms of activated Hageman factor (HFa) produced during contact activation of plasma to activate prekallikrein and factor XI was studied. alpha-HFa, defined as an 80,000 mol wt two-chain enzyme which remains bound to the surface was capable of cleaving surface-bound prekallikrein and factor XI. beta-HFa, a 28,000 mol wt single chain molecule, released from the surface during contact activation was able to cleave prekallikrein but showed no activity on factor XI. Cleavage of prekallikrein by beta-HFa occurred irrespective of whether the substrate was surface-bound or in solution. Cleavage of factor XI occurred only when it was surface bound and only the alpha- form of HFa was capable of this proteolytic action. Factor XI was found to remain bound to the surface while prekallikrein and kallikrein rapidly dissociated from the surface into the supernate. These findings suggest that the initiation of intrinsic coagulation through the activation factor XI is a localized event occurring at the site of contact activation and is the result of the action of alpha-HFa. By contrast, kinin generation and fibrinolysis resulting from the formation of kallikrein can be initiated either at the site of contact activation, by alpha-HFa action, or throughout the plasma, by beta-HFa; further dissemination of these activities is assured by the rapid dissociation of kallikrein itself from the surface.  相似文献   

15.
Factor XI and high molecular weight kininogen were found associated in normal human plasma at mol wt 380,000 as assessed by gel filtration on Sephadex G-200. The molecular weight of Factor XI in high molecular weight kininogen-deficient plasma was 175,000, the same value obtained for purified Factor XI. When high molecular weight kininogen-deficient plasma was reconstituted with purified high molecular weight kininogen, all of the Factor XI was then found at mol wt 380,000. Complex formation was also demonstrable upon incubation of Factor XI and highly purified high molecular weight kininogen. This complex was distinct from the prekallikrein-high molecular weight kininogen complex; thus high molecular weight kininogen forms bimolecular complexes with either Factor XI or prekallikrein but does not form a trimolecular complex that includes both Factor XI and prekallikrein. Neither Hageman factor nor plasminogen were found associated with high molecular weight kininogen; binding to high molecular weight kininogen appeared to be a specific property of the Hageman factor substrates.  相似文献   

16.
The assay of plasma prekallikrein requires activation of prekallikrein to kallikrein and sufficient inactivation of the plasma protease inhibitors of kallikrein to accurately measure the generated kallikrein activity. One method of elimination of the plasma protease inhibitors to kallikrein is to chemically pretreat the plasma. Methylamine has previously been employed to selectively inactivate alpha 2-macroglobulin. Our study examines the effect of sequential preincubation of plasma with chloroform and methylamine on the plasma prekallikrein assay. Chloroform was demonstrated to be a chemical inhibitor of purified C-1 inhibitor, but alpha 2-macroglobulin was not. Chloroform inhibition of C-1 inhibitor was not caused by precipitation of the protein into the interface between the water and organic solvent phase. Greater than 95% of C-1 inhibitor antigen was recovered in the supernatant of chloroform-treated purified C-1 inhibitor, and chloroform-saturated buffer inhibited purified C-1 inhibitor. Chloroform did not dissociate a preformed complex of kallikrein and C-1 inhibitor, but its inhibition of C-1 inhibitor was reversible. The addition of methylamine to plasma pretreated with chloroform in the plasma prekallikrein assay allowed for only a slight increase in the amount of kallikrein measured at 1 minute kaolin activation times, but provided for sustained measurement of activated prekallikrein when kaolin activation times were 5 to 7 minutes. Without chemical pretreatment, prekallikrein was not measurable in rabbit plasma. Both rabbit and pig plasma prekallikrein was measurable after exposure of the plasma to chloroform and methylamine, although the peak activation times and the contribution of each animals' protease inhibitors varied with the species. Our results show that chloroform is a reversible inhibitor of C-1 inhibitor, and that the plasma prekallikrein assay in which it is used is useful for the measurement of prekallikrein in nonhuman mammalian plasma samples.  相似文献   

17.
beta 2-Glycoprotein I (apolipoprotein H), a constituent of normal human plasma, has been shown to inhibit the generation of amidolytic activity in plasma that has been exposed to negatively charged agents. Studies with purified Hageman factor (factor XII) demonstrate that this inhibitory property is directed against the activation of Hageman factor. In this study beta 2-glycoprotein I inhibited the kaolin-induced generation of clot-promoting properties in solutions of Hageman factor. This effect was localized to an interaction between beta 2-glycoprotein I and kaolin. In contrast, once Hageman factor was activated by kaolin, its clot-promoting properties were not inhibited by beta 2-glycoprotein I. Further, beta 2-glycoprotein inhibited the generation of amidolytic activity against H-D-prolyl-L-phenylalanyl-L-arginine p-nitroanilide dihydrochloride in mixtures of Hageman factor and ellagic acid. The specificity of the action of beta 2-glycoprotein I was confirmed by its neutralization by immunoglobulin fractions of antiserums directed against this protein.  相似文献   

18.
A persistent puzzle in our understanding of hemostasis has been the absence of hemorrhagic symptoms in the majority of patients with Hageman trait, the hereditary deficiency of Hageman factor (factor XII). One proposed hypothesis is that alternative mechanisms exist in blood through which plasma thromboplastin antecedent (PTA, factor XI) can become active in the absence of Hageman factor. In order to test this hypothesis, the effect of several proteolytic enzymes, among them thrombin, plasma kallikrein, and trypsin, was tested upon unactivated PTA. PTA was prepared from normal human plasma by Ca(3)(PO(4))(2) adsorption, ammonium sulfate fractionation, and successive chromatography on QAE-Sephadex (twice). Sephadex-G150, and SP-Sephadex. The partially purified PTA was almost all in its native form, with a specific activity of 45-70 U/mg protein; the yield was about 10%. It contained no measurable amounts of other known clotting factors, plasmin, plasminogen, nor IgG. Incubation of PTA with trypsin generated potent clot-promoting activity that corrected the abnormally long clotting time of plasma deficient in Hageman factor or PTA but not in Christmas factor. This clot-promoting agent behaved like activated PTA on gel filtration (apparent molecular weight: 185,000) and was specifically inhibited by an antiserum directed against activated PTA. These data suggested that PTA can be converted into its active form by trypsin. PTA was not activated by thrombin, chymotrypsin, papain, ficin, plasmin, plasma kallikrein, tissue thromboplastin, or C. Trypsin converted PTA to its active form enzymatically. Whether trypsin serves to activate PTA in vivo is not yet clear.  相似文献   

19.
Rabbit Hageman factor was proteolytically cleaved and activated by a homogenate prepared from cultured rabbit endothelial cells. Cleavage of radiolabeled Hageman factor was monitored by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Endothelial cell-mediated cleavage of Hageman factor was demonstrated both in a purified system and in plasma, was time and concentration dependent, and was associated with formation of the characteristic 28,000 M(r) form of active Hageman factor. The rate of cleavage of Hageman factor was not affected by Triton X-100 (Rohm and Haas, Co., Philadelphia, Pa.), hexadimethrine bromide (Polybrene, Aldrich Chemical Co., Inc., Milwaukee, Wis.), hirudin, soybean trypsin inhibitor, or antisera to plasminogen or prekallikrein. However, cleavage was enhanced by kaolin, and was inhibited by diisopropyl-fluorophosphate. The enzyme responsible for cleavage of Hageman factor was localized to the 100,000-g-sedimentable, subcellular fraction of the endothelial cell homogenate and was relatively specific, because neither radiolabeled rabbit Factor XI nor rabbit prekallikrein were themselves proteolytically cleaved by the endothelial cell homogenate. However, when these molecules were incubated with the homogenate in the presence of Hageman factor, both Factor XI and prekallikrein were cleaved, demonstrating that Hageman factor had been activated by the endothelial cell homogenate. Furthermore, the kallikrein generated by endothelial cell homogenate-activated Hageman factor was capable of liberating kinin from high molecular weight kininogen as measured by bioassay. Cultured rabbit endothelial cells, therefore, possess the capacity to activate Hageman factor by proteolysis. This may be one mechanism for Hageman factor activation in vivo.  相似文献   

20.
Elastase is released from human neutrophils during the early events of blood coagulation. Human plasma kallikrein has been shown to stimulate neutrophil chemotaxis, aggregation, and oxygen consumption. Therefore, the ability of kallikrein to release neutrophil elastase was investigated. Neutrophils were isolated by dextran sedimentation, and elastase release was measured by both an enzyme-linked immunosorbent assay, and an enzymatic assay using t-butoxy-carbonyl-Ala-Ala-Pro-Val-amino methyl coumarin as the substrate. Kallikrein, 0.1-1.0 U/ml, (0.045-0.45 microM), was incubated with neutrophils that were preincubated with cytochalasin B (5 micrograms/ml). The release of elastase was found to be proportional to the kallikrein concentration. Kallikrein released a maximum of 34% of the total elastase content, as measured by solubilizing the neutrophils in the nonionic detergent Triton X-100. A series of experiments was carried out to determine if kallikrein was a major enzyme involved in neutrophil elastase release during blood coagulation. When 10 million neutrophils were incubated in 1 ml of normal plasma in the presence of 30 mM CaCl2 for 90 min, 2.75 micrograms of elastase was released. In contrast, neutrophils incubated in prekallikrein-deficient or Factor XII-deficient plasma released less than half of the elastase, as compared with normal plasma. The addition of purified prekallikrein to prekallikrein-deficient plasma restored neutrophil elastase release to normal levels. Moreover, release of elastase was enhanced in plasma deficient in C1-inhibitor, the major plasma inhibitor of kallikrein. This release was not dependent upon further steps in the coagulation pathway, or on C5a, since levels of elastase, released in Factor XI- or C5-deficient plasma, were similar to that in normal plasma, and an antibody to C5 failed to inhibit elastase release. These data suggest that kallikrein may be a major enzyme responsible for the release of elastase during blood coagulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号