首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Compaction and compression of xanthan gum (XG) pellets were evaluated and drug release from tablets made of pellets was characterised. Three formulations were prepared by extrusion-spheronisation and included, among other excipients, diclofenac sodium (Dic Na), at 10% (w/w); xanthan gum, at 16% (w/w); and one of three different fillers (lactose monohydrated (LAC), tribasic calcium phosphate (TCP) and beta-cyclodextrin (beta-CD)), at 16% (w/w). Five hundred milligrams of pellets (fraction 1000-1400microm) were compacted in a single punch press at maximum punch pressure of 125MPa using flat-faced punches (diameter of 1.00cm). Physical properties of pellets and tablets were analysed. Dissolution was performed according to the USP paddle method. Pellets showed close compressibility degrees (49.27% LAC; 51.32% TCP; and 50.48% beta-CD) but densified differently (3.57% LAC; 14.84% TCP; 3.26% beta-CD). Permanent deformation and densification were the relevant mechanisms of compression. Fragmentation was regarded as non-existent. The release behaviour of tablets made of pellets comprising LAC or beta-CD was anomalous having diffusional exponent (n) values of 0.706 and 0.625, respectively. Drug diffusion and erosion were competing mechanisms of drug release from those tablets.  相似文献   

2.
The study was aimed at developing extended release matrix tablets of poorly water-soluble diclofenac sodium and highly water-soluble metformin hydrochloride by direct compression using cashew gum, xanthan gum and hydroxypropylmethylcellulose (HPMC) as release retardants. The suitability of light grade cashew gum as a direct compression excipient was studied using the SeDeM Diagram Expert System. Thirteen tablet formulations of diclofenac sodium (∼100 mg) and metformin hydrochloride (∼200 mg) were prepared with varying amounts of cashew gum, xanthan gum and HPMC by direct compression. The flow properties of blended powders and the uniformity of weight, crushing strength, friability, swelling index and drug content of compressed tablets were determined. In vitro drug release studies of the matrix tablets were conducted in phosphate buffer (diclofenac: pH 7.4; metformin: pH 6.8) and the kinetics of drug release was determined by fitting the release data to five kinetic models. Cashew gum was found to be suitable for direct compression, having a good compressibility index (ICG) value of 5.173. The diclofenac and metformin matrix tablets produced generally possessed fairly good physical properties. Tablet swelling and drug release in aqueous medium were dependent on the type and amount of release retarding polymer and the solubility of drug used. Extended release of diclofenac (∼24 h) and metformin (∼8–12 h) from the matrix tablets in aqueous medium was achieved using various blends of the polymers. Drug release from diclofenac tablets fitted zero order, first order or Higuchi model while release from metformin tablets followed Higuchi or Hixson-Crowell model. The mechanism of release of the two drugs was mostly through Fickian diffusion and anomalous non-Fickian diffusion. The study has demonstrated the potential of blended hydrophilic polymers in the design and optimization of extended release matrix tablets for soluble and poorly soluble drugs by direct compression.  相似文献   

3.
Mini-matrices (multiple-unit dosage form) with release-sustaining properties were developed by means of hot-melt extrusion using ibuprofen as the model drug and ethylcellulose as sustained-release agent. Xanthan gum, a hydrophilic polymer, was added to the formulation to increase the drug release since ibuprofen release from the ibuprofen/ethylcellulose matrices (60/40, w/w) was too slow (20% in 24 h). Changing the xanthan gum concentration as well as its particle size modified the in vitro drug release. Increasing xanthan gum concentrations yielded a faster drug release due to a higher liquid uptake, swelling and erosion rate. Regarding the effect of the xanthan gum particle size, no difference was observed for formulations containing 10% and 20% xanthan gum. However, using 30% xanthan gum, drug release was influenced by the particle size of the hydrophilic polymer due to the susceptibility of the coarser xanthan gum particles to erosion. Drug release from the mini-matrices was mainly diffusion controlled, but swelling played an important role to obtain complete drug release within 24 h. Drug release was influenced by the ionic strength of the medium as the conformation of xanthan gum molecules is determined by the salt concentration. An oral dose of 300 mg ibuprofen was administered to dogs (n=6) in a cross-over study design either as an immediate-release preparation (Junifen), as a sustained-release formulation (Ibu-Slow 600 mg (1/2 tablet)) or as the experimental mini-matrices (varying in xanthan gum concentration). Administration of the experimental formulations sustained the ibuprofen release. Although a significant difference in dissolution rate of the 20% and 30% xanthan gum mini-matrices was detected in vitro, the difference in relative bioavailability was limited (70.6% and 73.8%, respectively).  相似文献   

4.
本文制备了双氯芬酸钠肠溶微丸型片剂。以丙烯酸树脂EudragitNE30D和EudragitL30D-55不同比例的混合物作为衣膜材料,对不同粒径大小的双氯芬酸钠速释丸芯进行不同增重水平的包衣,并与不同压缩特性和用量比例的缓冲微丸混合,压片。所得的双氯芬酸钠肠溶微丸型片剂在人工胃液中2 h内累积释放百分数<10%,在人工肠液中1 h内累积释放百分数为(83±2.42)%。结果表明EudragitNE30D与EudragitL30D-55以一定比例混合制备得到适合压片的肠溶微丸,硬脂酸制备的缓冲微丸可用于微丸型片剂的制备。  相似文献   

5.
6.
The purpose of this study was development of diclofenac sodium extended release compressed matrix pellets and optimization using Generalized Regression Neural Network (GRNN). According to Central Composite Design (CCD), ten formulations of diclofenac sodium matrix tablets were prepared. Extended release of diclofenac sodium was acomplished using Carbopol® 71G as matrix substance. The process of direct pelletisation and subsequently compression of the pellets into MUPS tablets was applied in order to investigate a different approach in formulation of matrix systems and to achieve more control of the process factors over the principal response — the release of the drug. The investigated factors were X1 -the percentage of polymer Carbopol® 71 G and X2- crushing strength of the MUPS tablet. In vitro dissolution time profiles at 5 different sampling times were chosen as responses. Results of drug release studies indicate that drug release rates vary between different formulations, with a range of 1 hour to 8 hours of dissolution. The most important impact on the drug release has factor X1 -the percentage of polymer Carbopol® 71 G. The purpose of the applied GRNN was to model the effects of these two causal factors on the in vitro release profile of the diclofenac sodium from compressed matrix pellets. The aim of the study was to optimize drug release in manner wich enables following in vitro release of diclofenac sodium during 8 hours in phosphate buffer: 1 h: 15–40%, 2 h: 25–60%, 4 h: 35–75%, 8 h: >70%.  相似文献   

7.
Compression of pellets coated with various aqueous polymer dispersions   总被引:4,自引:0,他引:4  
Pellets coated with a new aqueous polyvinyl acetate dispersion, Kollicoat SR 30 D, could be compressed into tablets without rupture of the coating providing unchanged release profiles. In contrast, the compression of pellets coated with the ethylcellulose dispersion, Aquacoat ECD 30, resulted in rupture of the coating and an increase in drug release. Plasticizer-free Kollicoat SR coatings were too brittle and ruptured during compression. The addition of only 10% w/w triethyl citrate as plasticizer improved the flexibility of the films significantly and allowed compaction of the pellets. The drug release was almost independent of the compression force and the pellet content of the tablets. The inclusion of various tabletting excipients slightly affected the drug release, primarily because of a different disintegration rate of the tablets. The core size of the starting pellets had no influence on the drug release. Pellets coated with the enteric polymer dispersion Kollicoat 30 D MAE 30 DP [poly(methacrylic acid, ethyl acrylate) 1:1] lost their enteric properties after compression because of the brittle properties of this enteric polymer. Coating of pellets with a mixture of Kollicoat MAE 30 DP and Kollicoat EMM 30 D [poly(ethyl acrylate, methyl methacrylate) 2:1] at a ratio of 70/30 and compaction of the pellets resulted in sufficient enteric properties.  相似文献   

8.
κ-Carrageenan is a novel pelletisation aid with high formulation robustness and quick disintegration leading to fast drug release unlike the matrix-like release from non-disintegrating microcrystalline cellulose pellets. Compression of pellets into tablets is cost effective. The feasibility of formulating multiparticulate tablets with coated κ-carrageenan pellets was investigated. Pellets containing a highly soluble drug in acid, namely bisacodyl and κ-carrageenan or MCC as pelletisation aid were prepared, enteric coated with a mixture of Kollicoat(?) MAE 30 DP and Eudragit(?) NE 30 D and compressed using silicified microcrystalline cellulose as embedding powder. The effect of coating level, type of pellet core, compression force and punch configurations on drug release were studied. A sufficient coating thickness for κ-carrageenan pellets was necessary to obtain multiparticulate tablets with adequate resistance in the acid stage regardless of the compression pressure used. While κ-carrageenan pellets and their tablets released over 80% of the drug during the neutral stage only about 20-24% was released from MCC pellets and their tablets. The type of punches used (oblong or round) did not significantly influence the drug release from the prepared tablets. Moreover, sufficient prolonged release properties were obtained with κ-carrageenan pellets containing theophylline as a model drug and coated with Kollicoat(?) SR 30 D using Kollicoat(?) IR as pore former. A lower coating level and higher amount of pore former were needed in case of theophylline pellets formulated with MCC as pelletisation aid. The sustained release properties of both coated pellet formulations were maintained after compression at different compression pressures.  相似文献   

9.
In this study, reservoir pellets were prepared and their compression behaviour as well as the importance of their porosity for compression-induced changes in drug release was investigated. Pellets of three different porosities, consisting of microcrystalline cellulose and salicylic acid, were prepared by extrusion–spheronisation and spray-coated with ethyl cellulose (ethanol solution). Lubricated reservoir pellets were compressed and retrieved by deaggregation of the tablets. The retrieved pellets were analysed regarding porosity, thickness, surface area, shape and drug release. It was found that the coating did not significantly affect their compression behaviour. Compaction of pellets of high original porosity considerably affected densification and degree of deformation, whereas the effect on drug release was minor. For low porosity pellets the influence of compaction on drug release was appreciable, but only slight regarding densification and degree of deformation. In conclusion, the porosity of pellets is a potential factor that the formulator can use to optimize drug release and one that can affect the robustness of a formulation during manufacture. Moreover, the coating may be able to adapt to the densification and deformation of the pellets.  相似文献   

10.
Directly compressed matrices were produced containing either xanthan gum or karaya gum as a release-controlling agent. These swellable hydrophilic natural gums were used to control the release of varying proportions of two model drugs, caffeine and diclofenac sodium, which have different solubilities in aqueous medium. Gum erosion, hydration and drug release studies were carried out using a dissolution apparatus (basket method) at two agitation speeds. Xanthan gum displayed a high degree of swelling due to water uptake and a small degree of erosion due to polymer relaxation. Neither agitation speed nor drug solubility had any significant effect on water uptake, but matrices with the lower proportion of gum produced a lesser degree of hydration. In contrast, karaya gum displayed a much lower hydration capacity and a higher rate of erosion, both markedly affected by agitation speed. Drug release from xanthan and karaya gum matrices depended on agitation speed, solubility and proportion of drug. Both xanthan and karaya gums produced near zero order drug release with the erosion mechanism playing a dominant role, especially in karaya gum matrices.  相似文献   

11.
The aim of this study was to investigate the influence of pH, buffer species and ionic strength on the release mechanism of chlorpheniramine maleate (CPM) from matrix tablets containing chitosan and xanthan gum prepared by a hot-melt extrusion process. Drug release from hot-melt extruded (HME) tablets containing either chitosan or xanthan gum was pH and buffer species dependent and the release mechanisms were controlled by the solubility and ionic properties of the polymers. All directly compressed (DC) tablets prepared in this study also exhibited pH and buffer species dependent release. In contrast, the HME tablets containing both chitosan and xanthan gum exhibited pH and buffer species independent sustained release. When placed in 0.1N HCl, the HME tablets formed a hydrogel that functioned to retard drug release in subsequent pH 6.8 and 7.4 phosphate buffers even when media contained high ionic strength, whereas tablets without chitosan did not form a hydrogel to retard drug release in 0.1N HCl. The HME tablets containing both chitosan and xanthan gum showed no significant change in drug release rate when stored at 40 °C for 1 month, 40 °C and 75% relative humidity (40 °C/75% RH) for 1 month, and 60 °C for 15 days.  相似文献   

12.
In the present systematic study, a sustained release of terbutaline sulfate tablet (TBS) was developed and optimized by employing the hydrophilic polymers; chitosan and xanthan gum mixed with sodium bicarbonate as a release modifying agent. This formulation was developed using direct compression technology. In vitro release studies indicated rapid swelling and drug release in the initial period of the acid stage from a matrix composed of chitosan and xanthan gum solely. Addition of sodium bicarbonate to the matrix resulted in sustained drug release. Various formulation factors such as polymer to polymer ratio, polymer viscosity and particle size were altered and their effect on dissolution pattern was illustrated. Manufacturing variables such as compression force and lubricant percentage were investigated and found not to influence the drug release profile of the resulted tablets. The release mechanism follows Korsmeyer-Peppas equation with n value indicating non-Fickian diffusion. The release profiles were analyzed using statistical method (one-way ANOVA) and f2 metric values and found to be similar to the commercial product Bricanyl®. Reproducible data were obtained when scale-up of the formulation was performed.  相似文献   

13.
The aim of the study was to develop enteric-coated pellets for the administration of piroxicam (a poorly water-soluble drug) to small animals in order to avoid local gastrointestinal irritation, one of the major side effects of nonsteroidal anti-inflammatory drugs after oral ingestion. Pellets were made by an extrusion-spheronization process. The influence of several excipients on the in vitro drug release was evaluated. Piroxicam release from the uncoated pellets was measured in phosphate buffer (pH 6.8) using the paddle dissolution method (USP XXIII). The enteric-coated pellets were tested in 0.1 N HCl and phosphate buffer, pH 6.8. The addition of sodium croscarmellose (Ac-Di-Sol) did not influence the piroxicam release from microcrystalline cellulose pellets. Sodium carboxymethyl starch (Explotab) increased the release from 30 to 65% at 45 min. The incorporation of sodium carboxymethyl cellulose on its own or as a co-processed blend with microcrystalline cellulose (Avicel RC 581 and CL 611) enhanced the release of piroxicam at 45 min from 30% (pure Avicel PH 101) to 95% (combination of Avicel PH 101 and CL 611 in a ratio of 1:3). Additional use of cyclodextrins had only a minor influence on the dissolution rate. An Eudragit L 30 D-55 and FS 30 D (6/4) film was applied to the core pellets (containing 2.5% (w/w) piroxicam and a combination of Avicel PH 101 and CL 611 in a ratio of 1:3) in order to obtain gastroresistant properties. The coated pellets retained their dissolution characteristics after compression into fast disintegrating tablets because waxy cushioning beads were added to minimize film damage.  相似文献   

14.
One challenge in tableting of sustained-release multiparticulates is maintaining the desired drug release after compaction. The aim of this study was to design sustained-release ibuprofen tablets which upon oral ingestion rapidly disintegrate into sustained-release pellets in which the integrity of the pellet core and/or coat is preserved. First free films composed of Eudragit RS 30D and RL 30D in 4:1 ratio and containing different levels of triethyl citrate (TEC) were prepared and tested to optimize the plasticizer level. Cured Eudragit based pellets with 60% ibuprofen loading which in our previous study showed proper mechanical properties for compression were coated with Eudragit RS 30D/RL 30D (4:1) containing 20% triethyl citrate at different coating levels. The mechanical properties of the coated pellets were tested. Polymer coated pellets were compacted into tablets either alone or with a blend of excipients comprising Avicel, PEG 4000, cross-linked PVP. A 3(2) full factorial design was used to optimize the filler blend composition. Effects of pellet to filler ratio, compression force and granulation of filler on tablet characteristics were investigated. Results of mechanical test showed that the coating of cured pellets had no significant effect on yield point and elastic modulus of the pellets. In the case of 5% coating level sustained release of ibuprofen over a period of 24h was achieved. The results obtained from tableting procedure showed that by selecting suitable filler blend (60% Avicel, 10% cross-linked PVP and 30% PEG 4000), compression force, and granulation of filler it was possible to prepare sustained-release tablets containing high ratio of coated pellets (even 80%) with desirable strength, disintegration time, and drug release rate. It was observed that compression force, pellet to filler ratio, composition of filler blend and granulation of fillers had no effect on drug release rate from compacted pellets but had significant influence on tablet strength, friability, and disintegration time. SEM graphs and in vitro release profiles for compacted pellets showed no apparent damage to the coated pellets as a result of the compaction process.  相似文献   

15.
The present paper describes development of a polysaccharide based compression coated tablets of secnidazole for colon delivery. Core tablet containing secnidazole was compression coated with various proportions of guar gum, xanthan gum and chitosan, either alone or in combinations. Drug release studies were performed in simulated gastric fluid (SGF) for 2 h followed by simulated intestinal fluid (SIF, pH 7.4) up to 24 h. Secnidazole release from the prepared formulations was dependent on the type and concentration of polymer used in the formulation. Tablets coating containing either guar gum or xanthan gum showed ~30-40% drug release in 8 h. Further, in vitro dissolution studies of selected formulations performed in the dissolution media with rat caecal contents showed 54.48±0.24 - 60.42±0.16% of drug release. Formulations with single polymer in coating layer were unsuitable for targeting secnidazole release to colon region. Combination of chitosan with guar gum or xanthan gum exhibited control over secnidazole release.  相似文献   

16.
This study explored the application of chitosan–alginate (CA) and chitosan–pectin (CP) complex films as drug release regulator for the preparation of multiunit controlled-release diclofenac sodium capsules. Pellets containing drug and microcrystalline cellulose, in a ratio of 3:5, were prepared in a fluidized rotary granulator. The pellets were coated with CA, CP, sodium alginate, pectin, and chitosan solutions. The pellets, equivalent to 75 mg drug, were filled into capsules. After 2 h of dissolution test in acidic medium, the amount of the drug released from any preparation was negligible. The pellets were further subject to pH 6.8 phosphate buffer. More than 80% drug release at 12 h was observed with the uncoated pellets and those coated with sodium alginate, pectin or chitosan. Both 1% CA and 3% CP coated pellets exhibited drug release profiles similar to that of Voltaren SR75. It was found that approximately 60% and 85% of the drug were released at 12 and 24 h, respectively. Both Differential thermal analysis (DTA) and Fourier transform infrared spectroscopy (FTIR) analyses revealed complex formation between chitosan and these anionic polymers. It could be concluded that CA and CP complex film could be easily applied to diclofenac sodium pellets to control the release of the drug.  相似文献   

17.
This study explored the application of chitosan-alginate (CA) and chitosan-pectin (CP) complex films as drug release regulator for the preparation of multiunit controlled-release diclofenac sodium capsules. Pellets containing drug and microcrystalline cellulose, in a ratio of 3:5, were prepared in a fluidized rotary granulator. The pellets were coated with CA, CP, sodium alginate, pectin, and chitosan solutions. The pellets, equivalent to 75 mg drug, were filled into capsules. After 2 h of dissolution test in acidic medium, the amount of the drug released from any preparation was negligible. The pellets were further subject to pH 6.8 phosphate buffer More than 80% drug release at 12 h was observed with the uncoated pellets and those coated with sodium alginate, pectin or chitosan. Both 1% CA and 3% CP coated pellets exhibited drug release profiles similar to that of Voltaren SR75. It was found that approximately 60% and 85% of the drug were released at 12 and 24 h, respectively. Both Differential thermal analysis (DTA) and Fourier transform infrared spectroscopy (FTIR) analyses revealed complex formation between chitosan and these anionic polymers. It could be concluded that CA and CP complex film could be easily applied to diclofenac sodium pellets to control the release of the drug.  相似文献   

18.
Metoprolol tartrate sustained-release tablets (100 mg) were prepared using xanthan/guar gums and also hydroxypropyl methyl cellulose (HPMC) carboxymethyl-Cellulose (CMC) polymers by direct compression method. Physical characteristics of the tablets and water uptake in addition to their dissolution profiles were compared with standard (Lopressor® SR) tablets. Dissolution test was performed in the phosphate buffer solution (pH 6.8) and the samples were analyzed spectrophotometerically in 275.7 nm. Dissolution studies showed that formulations containing 100 and 80% of HPMC, 100% of guar, and 20% of xanthan followed the Higuchi model, while those containing 60 and 40% HPMC and 100 and 80% xanthan followed a zero-order model. The tablets with 40% xanthen followed a Hixon-Crowell model. In cellulose derivatives the highest MDT and dissolution efficiency until 8 hr (DE8%) belonged to tablets with 40% HPMC, increasing the amount of CMC decreased the drug release rate, and formulations containing 60 and 40% of HPMC had the USP dissolution standards. While, in the gum formulations, the highest mean dissolution time and the lowest DE8% belonged to tablets with 100% xanthan, increasing the xanthan decreased the release rate of metoprolol, and formulations containing 80 and 100% xanthan had the USP dissolution standards. Results showed that natural gums are suitable for production of sustained-release tablets of metoprolol.  相似文献   

19.
Compression coating is one of the approaches for delaying the release of drugs. The aim of this study was to develop colon-specific compression coated systems of 5-fluorouracil (5-FU) for the treatment of colorectal cancer using xanthan gum, boswellia gum and hydroxypropyl methylcellulose (HPMC) as the coating materials. Core tablets containing 50 mg of 5-FU were prepared by direct compression. The coating of the core tablets was done using different coat weights (230, 250, 275 and 300 mg) and different ratios (1:2, 2:1, 1:3, 1:7 and 3:4) of boswellia gum and xanthan gum and different ratios (1:1, 1:2, 2:1, and 2:3) of boswellia gum and HPMC. In-vitro release studies were carried out using simulated gastric and intestinal fluids, with and without rat caecal contents. Among the different ratios used for coating with boswellia:xanthan gum combination, ratio 1:3 gave the best release profile with the lowest coating weights of 230 mg (7.47 +/- 1.56% in initial 5 h). Further increase in the coat weights to 250, 275 and 300 mg led to drug release of 5.63 +/- 0.53%, 5.09 +/- 1.56% and 4.57 +/- 0.88%, respectively, in the initial 5 h and 96.90 +/- 0.66%, 85.05 +/- 1.01% and 80.22 +/- 0.35%, respectively, in 24 h. When coating was carried out using different ratios of the combination boswellia gum and HPMC, the ratio 2:3 gave the best results among the initial trial batches (7.80 +/- 0.57% in 5 h). Increasing the coat weights to 250, 275 and 300 mg led to drug release of 6.5 +/- 0.27%, 3.70 +/- 2.3% and 2.99 +/- 0.72%, respectively, in the initial 5 h and 96.90 +/- 0.66%, 85.05 +/- 1.01% and 80.22 +/- 0.35%, respectively, in 24 h. In-vitro studies were further carried out in the presence of 2% w/v rat caecal contents, which led to complete release of the drug from the tablets. Therefore, this study lays a basis for use of compression coating of 5-FU as a tool for delaying the release of the drug, which ensures better clinical management of the disease.  相似文献   

20.
《Drug delivery》2013,20(3):312-319
Abstract

Lafutidine a newly developed histamine H2-receptor antagonist having biological half-life of 1.92?±?0.94?h due to its selective absorption from upper part of gastrointestinal tract the development of mucoadhesive sustained release drug delivery system is recommended in order to enhance the bioavailability. A mucoadhesive tablets was developed using the natural polymer, sodium alginate, xanthan gum and karaya gum. Mucoadhesion is a complex phenomenon which involves wetting, adsorption and interpenetration of polymer chains. The prepared tablets of various formulations were evaluated for a total mucoadhesion time, buoyancy lag time and percentage drug released. The formulation with xanthan gum showed better results. Thus, it may be useful for prolonged drug release in stomach to improve the bioavailability and reduced dosing frequency. Non-fickians release transport was confirmed as the drug release mechanism from the optimized formulation by Korsmeyer–Peppas. The optimized formulation (B3) showed a mucoadhesive strength >35?g. In vivo study was performed using rabbits by X-ray imaging technique. Radiological evidences suggest that, a formulated tablet was well adhered for >10?h in rabbit’s stomach. Optimized lafutidine mucoadhesive tablets showed no significant change in physical appearance, drug content, mucoadhesive properties and in vitro dissolution pattern after storage at 40?°C temperature 75?±?5% relative humidity for 3 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号