首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since anion secretion inhibitors reproduce important aspects of cystic fibrosis (CF) lung disease, the effects of these antagonists on airway mucus morphology were assessed in isolated perfused pig lungs. Maximal inhibitory concentrations of bumetanide and dimethylamiloride, which respectively block Cl and HCO3 secretion in porcine airways, induced the formation of dense 'plastered' mucus on the airway surface, depletion of periciliary fluid and collapse of cilia. This effect was more pronounced when lungs were also exposed to bethanechol to stimulate submucosal gland secretion, when plastered mucus covered > 98% of the airway surface. Bethanechol also reduced gland duct mucin content in the absence, but not presence, of the anion secretion inhibitors. Anion secretion inhibitors did not induce measurable increases in goblet cell degranulation. We conclude that inhibition of anion and liquid secretion in porcine lungs disrupts the normal morphology of airway surface mucus, providing further evidence that impaired anion secretion alone could account for critical aspects of CF lung disease.  相似文献   

2.
Fluid secretion by submucosal glands of the tracheobronchial airways   总被引:2,自引:0,他引:2  
Submucosal glands of the tracheobronchial airways provide the important functions of secreting mucins, antimicrobial substances, and fluid. This review focuses on the ionic mechanism and regulation of gland fluid secretion and examines the possible role of gland dysfunction in the lethal disease cystic fibrosis (CF). The fluid component of gland secretion is driven by the active transepithelial secretion of both Cl(-) and HCO(3)(-) by serous cells. Gland fluid secretion is neurally regulated with acetylcholine, substance P, and vasoactive intestinal peptide (VIP) playing prominent roles. The cystic fibrosis transmembrane conductance regulator (CFTR) is present in the apical membrane of gland serous cells and mediates the VIP-induced component of liquid secretion whereas the muscarinic component of liquid secretion appears to be at least partially CFTR-independent. Loss of CFTR function, which occurs in CF disease, reduces the capacity of glands to secrete fluid but not mucins. The possible links between the loss of fluid secretion capability and the complex airway pathology of CF are discussed.  相似文献   

3.
In the lungs, the first line of defence against bacterial infection is the thin layer of airway surface liquid (ASL) lining the airway surface. The superficial airway epithelium exhibits complex regulatory pathways that blend ion transport to adjust ASL volume to maintain proper mucociliary clearance (MCC). We hypothesized that stresses generated by airflow and transmural pressures during breathing govern ASL volume by regulating the rate of epithelial ATP release. Luminal ATP, via interactions with apical membrane P2-purinoceptors, regulates the balance of active ion secretion versus absorption to maintain ASL volume at optimal levels for MCC. In this study we tested the hypothesis that cyclic compressive stress (CCS), mimicking normal tidal breathing, regulates ASL volume in airway epithelia. Polarized tracheobronchial epithelial cultures from normal and cystic fibrosis (CF) subjects responded to a range of CCS by increasing the rate of ATP release. In normal airway epithelia, the CCS-induced increase in ASL ATP concentration was sufficient to induce purinoceptor-mediated increases in ASL height and MCC, via inhibition of epithelial Na+-channel-mediated Na+ absorption and stimulation of Cl secretion through CFTR and the Ca2+-activated chloride channels. In contrast, static, non-oscillatory stress did not stimulate ATP release, ion transport or MCC, emphasizing the importance of rhythmic mechanical stress for airway defence. In CF airway cultures, which exhibit basal ASL depletion, CCS was partially effective, producing less ASL volume secretion than in normal cultures, but a level sufficient to restore MCC. The present data suggest that CCS may (1) regulate ASL volume in the normal lung and (2) improve clearance in the lungs of CF patients, potentially explaining the beneficial role of exercise in lung defence.  相似文献   

4.
Adenovirus-mediated gene transfer to airway epithelia is inefficient in part because its receptor is absent on the apical surface of the airways. Targeting adenovirus to other receptors, increasing the viral concentration, and even prolonging the incubation time with adenovirus vectors can partially overcome the lack of receptors and facilitate gene transfer. Unfortunately, mucociliary clearance would prevent prolonged incubation time in vivo. Thixotropic solutions (TS) are gels that upon a vigorous shearing force reversibly become liquid. We hypothesized that formulating recombinant adenoviruses in TS would decrease virus clearance and thus enhance gene transfer to the airway epithelia. We found that clearance of virus-sized fluorescent beads by human airway epithelia in vitro and by monkey trachea in vivo were markedly decreased when the beads were formulated in TS compared with phosphate-buffered saline (PBS). Adenovirus formulated in TS significantly increased adenovirus-mediated gene transfer of a reporter gene in human airway epithelia in vitro and in murine airway epithelia in vivo. Furthermore, an adenovirus encoding the cystic fibrosis transmembrane regulator (CFTR) gene (AdCFTR) formulated in TS was more efficient in correcting the chloride transport defect in cystic fibrosis airway epithelia than AdCFTR formulated in PBS. These data indicate a novel strategy to augment the efficiency of gene transfer to the airways that may be applicable to a number of different gene transfer vectors and could be of value in gene transfer to cystic fibrosis (CF) airway epithelia in vivo.  相似文献   

5.
The pulmonary disease of cystic fibrosis (CF) is characterized by persistent airway obstruction, which has been attributed to chronic endobronchial infection and inflammation. The levels of exhaled nitric oxide (NO) are reduced in CF patients, which could contribute to bronchial obstruction through dysregulated constriction of airway smooth muscle. Because airway epithelium from CF mice has been shown to have reduced expression of inducible NO synthase, we examined airway responsiveness and relaxation in isolated tracheas of CF mice. Airway relaxation as measured by percent relaxation of precontracted tracheal segments to electrical field stimulation (EFS) and substance P, a nonadrenergic, noncholinergic substance, was significantly impaired in CF mice. The airway relaxation in response to prostaglandin E2 was similar in CF and non-CF animals. Treatment with the NO synthase inhibitor NG-nitro-L-arginine methylester reduced tracheal relaxation induced by EFS in wild-type animals but had virtually no effect in the CF mice. Conversely, exogenous NO and L-arginine, a NO substrate, reversed the relaxation defect in CF airway. We conclude that the relative absence of NO compromises airways relaxation in CF, and may contribute to the bronchial obstruction seen in the disease.  相似文献   

6.
PURPOSE OF REVIEW: Mucociliary clearance is a critical host defense mechanism of the airways. Effective mucociliary clearance requires appropriate mucus production and coordinated ciliary activity. The important role of these two components is best demonstrated in disorders such as primary ciliary dyskinesia and cystic fibrosis, both of which lead to lifelong recurrent respiratory tract infections. We review the methods used to analyze mucociliary clearance. RECENT FINDINGS: Utilization of microdialysis probes has improved temporal resolution of mucociliary clearance in murine airways, availing many genetic mouse models to critical mucociliary clearance analysis, while improved fixation technique for transmission electron microscopy has allowed for detailed resolution of the airway surface liquid. High-speed digital video analysis has improved quantification of ciliary beat frequency while advancements in air-liquid interface culturing techniques have generated in-vitro models to investigate mucociliary clearance. SUMMARY: Advancements in techniques for analysis of mucociliary clearance have improved our understanding of the interaction between the respiratory epithelium and the airway surface liquid, resulting in the ability to study pathologic processes involving mucociliary clearance in great detail.  相似文献   

7.
Ion transport defects underlying cystic fibrosis (CF) lung disease are characterized by impaired cyclic adenosine monophosphate (cAMP)-dependent Cl(-) conductance. Activation of Cl(-) secretion in airways depends on simultaneous activation of luminal Cl(-) channels and basolateral K(+) channels. We determined the role of basolateral K(+) conductance in cAMP- dependent Cl(-) secretion in native human airway epithelium obtained from non-CF and CF patients. CF tissues showed typical alterations of short-circuit currents with enhanced amiloride-sensitive Na(+) conductance and defective cAMP-mediated Cl(-) conductance. In non-CF tissues, Cl(-) secretion was significantly inhibited by the chromanol 293B (10 micromol/liter), a specific inhibitor of K(V)LQT1 K(+) channels. Inhibition was increased after cAMP-dependent stimulation. Similar effects were obtained with Ba(2+) (5 mmol/liter). In patch-clamp experiments with a human bronchial epithelial cell line, stimulation with forskolin (10 micromol/liter) simultaneously activated Cl(-) and K(+) conductance. The K(+) conductance was reversibly inhibited by Ba(2+) and 293B. Analysis of reverse-transcribed messenger RNA from non-CF and CF airways showed expression of human K(V)LQT1. We conclude that the K(+) channel K(V)LQT1 is important in maintaining cAMP-dependent Cl(-) secretion in human airways. Activation of K(V)LQT1 in CF airways in parallel with stimulation of residual CF transmembrane conductance regulator Cl(-) channel activity or alternative Cl(-) channels could help to circumvent the secretory defect.  相似文献   

8.
Effective clearance of mucus is a critical innate airway defense mechanism, and under appropriate conditions, can be stimulated to enhance clearance of inhaled pathogens. It has become increasingly clear that extracellular nucleotides (ATP and UTP) and nucleosides (adenosine) are important regulators of mucus clearance in the airways as a result of their ability to stimulate fluid secretion, mucus hydration, and cilia beat frequency (CBF). One ubiquitous mechanism to stimulate ATP release is through external mechanical stress. This article addresses the role of physiologically relevant mechanical forces in the lung and their effects on regulating mucociliary clearance (MCC). The effects of mechanical forces on the stimulating ATP release, fluid secretion, CBF, and MCC are discussed. Also discussed is evidence suggesting that airway hydration and stimulation of MCC by stress-mediated ATP release may play a role in several therapeutic strategies directed at improving mucus clearance in patients with obstructive lung diseases, including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD).  相似文献   

9.
The proper homeostasis of the airway surface liquid (ASL) depends on transepithelial ion and fluid transport and is critically important for lung defence, and more specifically for mucociliary transport. In cystic fibrosis (CF), abnormal ion and fluid transport lead to depleted ASL volume resulting in mucus plugs and recurrent lung infections. Like bronchi, human bronchioles exhibit amiloride-sensitive Na(+) absorption and cyclic-AMP and Ca(2+)-activated Cl(-) secretion. However, cyclic-AMP-stimulated Cl(-) and fluid secretion appears to be quantitatively more important in bronchioles than in bronchi. In CF bronchioles, like in CF bronchi, the ASL height is reduced because of an abnormally persistent Na(+) absorption, combined with a lacking CFTR-dependent Cl(-) secretion. The precocity and severity of the bronchiolar disease in CF could be attributed in part to the more important role of CFTR-dependent Cl(-) secretion and fluid secretion, and the lack of compensatory ATP-driven Cl(-) secretion and fluid secretion, in bronchioles compared to bronchi.  相似文献   

10.
Anion transport drives fluid into the airways and is essential for humidifying inspired air and supplying surface liquid for mucociliary transport. Despite the importance of airway secretion in diseases such as cystic fibrosis, the cellular mechanisms remain poorly understood, in part due to the small size and complicated structure of the submucosal glands that produce most of the fluid. The Calu-3 human lung adenocarcinoma cell line has become a popular model for studying airway secretion because it can be cultured as a flat sheet, expresses the cystic fibrosis transmembrane conductance regulator and several acinar cell markers, forms polarized monolayers with tight junctions, has robust cAMP-stimulated anion transport, and responds to secretagogues that regulate the glands in vivo. However, some properties of Calu-3 cells are less consistent with those of native tissue. In particular, Calu-3 monolayers do not secrete chloride when stimulated by forskolin under short-circuit conditions. Bicarbonate ions are thought to carry the short-circuit current (I(sc)) and the drive secretion of alkaline fluid, in contrast to the neutral pH secretions that are produced by submucosal glands. Calu-3 cells also have abnormal chromosomes and characteristics of both serous and mucus cells. In this article, we discuss Calu-3 as a model in light of our ongoing studies, which suggest that Calu-3 monolayers resemble submucosal glands more closely than was previously thought. For example, we find that net HCO(3)(-) flux fully accounts for I(sc) as previously suggested but Cl(-) is the main anion transported under physiological conditions. A novel, HCO(3)(-) -dependent mechanism of Cl(-) transport is emerging which may explain secretion by Calu-3 and perhaps other epithelial cells.  相似文献   

11.
A critical relationship exists between ordered ciliary ultrastructure and optimal mucociliary clearance in the respiratory airways. Structurally defective cilia derived from heritable syndromes or from epithelial cell injury may promote or exacerbate chronic disease processes. A lesion of airway epithelial cilia characterized by microtubular discontinuities and previously associated with primary ciliary dyskinesia (PCD) has been documented in other forms of chronic airways diseases, including cystic fibrosis (CF). Nasal cilia obtained by curettage of the inferior nasal turbinate from 89 patients without CF but exhibiting symptoms favoring PCD were evaluated by transmission electron microscopy. Of the 89 patients in the study group, 19 (21.4%) were diagnosed with PCD. Among the PCD patients, 16 (84.2%) exhibited microtubular discontinuities. Nine patients from this group without ultrastructural evidence of PCD also exhibited these defects, however. Furthermore, seven of eight nasal biopsy specimens from patients with CF in a separate disease control group exhibited microtubular discontinuities. Microtubular discontinuities were quantitatively negligible among control groups of healthy human subjects and individuals experimentally and naturally subjected to acute airway injury. These data provide evidence that ciliary microtubular discontinuities represent acquired ciliary defects reflective of chronic airway disease injury and are not components of a primary structural abnormality in PCD.  相似文献   

12.
Cystic fibrosis (CF) airway epithelia are characterized by enhanced Na(+) absorption probably due to a lack of downregulation of epithelial Na(+) channels by mutant CF transmembrane conductance regulator. Extracellular nucleotides adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP) have been shown to activate alternative Ca(2+)-dependent Cl(-) channels in normal and CF respiratory epithelia. Recent studies suggest additional modulation of Na(+) absorption by extracellular nucleotides. In this study we examined the role of mucosal ATP and UTP in regulating Na(+) transport in native human upper airway tissues from patients with 16 patients with CF and 32 non-CF control subjects. To that end, transepithelial voltage and equivalent short-circuit current (I(SC)) were assessed by means of a perfused micro-Ussing chamber. Mucosal ATP and UTP caused an initial increase in lumen-negative I(SC) that was followed by a sustained decrease of I(sc) in both non-CF and CF tissues. The amiloride-sensitive portion of I(SC) was inhibited significantly in normal and CF tissues in the presence of either ATP or UTP. Both basal Na(+) transport and nucleotide-dependent inhibition of amiloride-sensitive I(SC) were significantly enhanced in CF airways compared with non-CF. Nucleotide-mediated inhibition of Na(+) absorption was attenuated by pretreatment with the Ca(2+)-adenosine triphosphatase inhibitor cyclopiazonic acid but not by inhibition of protein kinase C with bisindolylmaleimide. These data demonstrate sustained inhibition of Na(+) transport in non-CF and CF airways by mucosal ATP and UTP and suggest that this effect is mediated by an increase of intracellular Ca(2+). Because ATP and UTP inhibit Na(+) absorption and stimulate Cl(-) secretion simultaneously, extracellular nucleotides could have a dual therapeutic effect, counteracting the ion transport defect in CF lung disease.  相似文献   

13.
Adenosine is formed from extracellular purines by ecto-5′-nucleotidase (CD73) and is an essential player in allergic airway inflammation. The contribution of adenosine and other purines to electrolyte transport and mucociliary clearance was studied in airways of allergen challenged mice. No signs for allergen-induced inflammation were found in CD73−/− mice, and adenosine monophosphate (AMP) was unable to elicit airway Cl secretion in these animals. Tracheas of ovalbumin (OVA)-treated BALB/c and CD73+/+ mice were hyperresponsive towards methacholine when assessed by Penh and direct optical measurement of contraction. In addition Cl secretion activated by ATP and ADP was enhanced. These changes were not observed in CD73−/− mice. Expression of CFTR or CLCA was unchanged upon OVA treatment of CD73 mice, suggesting enhanced Cl secretion due to upregulated purinergic pathways. Mucociliary clearance was determined by measuring particle transport in excised mouse tracheas and was strongly enhanced in OVA-challenged CD73+/+ mice, but remained unchanged in CD73−/− mice. While mucociliary clearance is activated by allergen exposure independent of functional ecto-5′-nucleotidase, airway inflammation is largely dependent on CD73. Thus, ecto-5′-nucleotidase may provide a novel target for therapeutic intervention, probably by local application of ecto-5′-nucleotidase inhibitors through inhalation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The composition of airway surface liquid (ASL) is partly determined by active ion and water transport through the respiratory epithelium. It is usually stated that in cystic fibrosis (CF), CF transmembrane conductance regulator protein abnormality results in imbalanced ion composition and dehydration of ASL, leading to abnormal rheologic and transport properties. To explore the relationship between ion composition, water content, and viscosity of airway liquid (AL), we used a human xenograft model of fetal airways developed in severe combined immunodeficiency (SCID) mice. Six non-CF and six CF portions of fetal tracheas were engrafted subcutaneously in the flanks of SCID mice raised in pathogen-free conditions. AL accumulated in the closed cylindric grafts was harvested 9 to 17 wk after implantation. At the time of AL sampling, all tracheal grafts displayed well-differentiated pseudostratified surface epithelium and submucosal glands. The viscosity of AL was measured using a controlled-stress rheometer. The ion composition of AL was quantified by X-ray microanalysis. No significant difference was observed for AL viscosity between non-CF (0.6 +/- 0.5 Pa. s) and CF (0.2 +/- 0.1 Pa. s) samples. In AL from non-CF and CF samples, the ion concentrations were Na: 63.9 +/- 7.6, 79.7 +/- 11.6; Cl: 64.9 +/- 13.2, 82.6 +/- 15.7; Mg: 1.9 +/- 0.3, 2.2 +/- 0.4; S: 4.9 +/- 1. 3, 4.8 +/- 0.5; K: 2.4 +/- 0.5, 3.2 +/- 1.6; and Ca: 1.2 +/- 0.3, 2.6 +/- 0.8 mmol/liter, respectively. The ion composition of AL from CF versus non-CF xenografts was not significantly different. These results suggest that prior to inflammation and infection, the viscosity and ion composition of the fetal AL do not differ in CF and non-CF.  相似文献   

15.
The acquisition of Pseudomonas aeruginosa in the airways of patients with cystic fibrosis (CF) is the initial event leading to bronchiectasis and lung disease. Although the host factors that permit initial airway colonization are largely unknown, recent studies suggest that secretion of interleukin (IL)-8 by airway epithelia and local recruitment of neutrophils is the final pathway in a pulmonary cytokine network. To determine whether differences in cytokine production exist between normal and CF airway epithelia, secretion of immunoreactive IL-8 and IL-10 as well as specific messenger RNA (mRNA) abundance were compared in airway epithelia expressing normal and mutant CF transmembrane regulator. After induction with IL-1beta, a CF airway cell line engineered to express the wild-type CF gene (CFT1-LCFSN) secreted significantly more immunoreactive IL-8 than did its isogenic parent that expressed the mutant CF gene (CFT1) or an isogenic vector control line (CFT1-LC3). Further studies with the three related cell lines demonstrated that expression of CFT1-LCFSN was associated with a significant increase in uninduced secretion of immunoreactive IL-8 as well as a 10- to 20-fold increase in IL-8 mRNA abundance when compared with the isogenic lines expressing the mutant gene. IL-1beta induction and intracellular accumulation of IL-8 appeared to be unaffected by CF genotype. These studies suggest that IL-8 secretion by CF airway epithelial cells is defective and may contribute to Pseudomonas persistence in the CF airway. Further studies are needed to confirm this difference in other cell lines and determine the linkage between IL-8 production and CF gene expression.  相似文献   

16.
Antibacterial defenses in the airway are dependent on multifactorial influences that determine the composition of both fluid and/or electrolytes at the surface of the airway and the secretory products that aid in bacterial killing and clearance. In cystic fibrosis (CF), these mechanisms of airway protection may be defective, leading to increased colonization with Pseudomonas aeruginosa. Submucosal glands, a predominant site of cystic fibrosis transmembrane conductance regulator (CFTR) protein expression in the airway, have been hypothesized to play an important role in protection of the airway. Furthermore, recent studies have suggested that the salt concentration at the airway surface may be a key factor in regulating the activity of antibacterial substances in the airway. To explore these issues, we have used a new model of the ferret tracheal airway to evaluate the contribution of submucosal glands in regulating airway surface fluid and electrolyte composition. Using tracheal xenograft models with and without submucosal glands, we have characterized several aspects of airway physiology that may be important in defining antibacterial properties. These endpoints included the contribution of submucosal glands in defining bioelectric properties of the surface airway epithelium, airway surface fluid (ASF) chloride composition, ASF volumes, and secretion of the antibacterial factor lysozyme. Findings from these studies demonstrate a significantly elevated secreted fluid volume (Vs) and chloride concentration ([Cl](s)) in ASF from airways with submucosal glands (Vs = 47 +/- 4 microl; [Cl](s) = 128 +/- 5 mM), as compared with xenograft airways without glands (Vs = 36 +/- 2 microl; [Cl](s) = 103 +/- 6 mM). Furthermore, a temperature labile factor secreted by submucosal glands appears to alter the baseline activation of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid and/or diphenylamine-2-carboxylic acid-sensitive chloride channels in the surface airway epithelium. Lastly, the lysozyme content of tracheal airways with submucosal glands was 8.5-fold higher than were airways without glands. These studies demonstrate that submucosal glands affect both the ionic composition and bioelectric properties of the airway and suggest that models evaluating antibacterial properties of the airway in CF should take into account the contribution of glands in airway physiology.  相似文献   

17.
Increased airway Na+ absorption mediated by the amiloride-sensitive epithelial Na+ channel (ENaC) is a basic defect in cystic fibrosis (CF) lung disease. Cystic fibrosis is one of the most common lethal hereditary diseases and is caused by mutations in the cystic fibrosis transmembrane conductance regulator ( CFTR ) gene. The CFTR acts as a cAMP-dependent Cl channel and regulator of ENaC, and CFTR dysfunction causes impaired Cl secretion and increased Na+ absorption in the airways of CF patients. Evidence from in vitro studies suggested that increased Na+ absorption produces airway surface liquid (ASL) volume depletion and led to the generation of transgenic mice with airway-specific overexpression of ENaC to elucidate the role of this mechanism in the in vivo pathogenesis of lung disease. Studies of the pulmonary phenotype of βENaC-overexpressing mice demonstrated that increased airway Na+ absorption caused ASL depletion and reduced mucus transport, producing a CF-like lung disease with airway mucus plugging, chronic airway inflammation and pulmonary mortality. Further, recent pharmacological studies demonstrated that preventive, but not late, inhibition of increased airway Na+ absorption with the ENaC blocker amiloride reduced morbidity and mortality in this murine model of CF lung disease. These results support a critical role of ENaC in the in vivo pathogenesis of CF lung disease and suggest that amiloride may be an effective preventive therapy for CF patients.  相似文献   

18.
19.
The mucosa of the proximal airways defends itself and the lower airways from inhaled irritants such as capsaicinoids, allergens, and infections by several mechanisms. Sensory nerves monitor the luminal microenvironment and release the tachykinin substance P (SP) to stimulate mucus secretion. Here, we have studied the role of the cystic fibrosis transmembrane conductance regulator (CFTR) in SP stimulation by comparing mouse airway submucosal gland responses in wild-type (WT) and CFTR−/− mice. Capsaicinoids (chili pepper oil) increased fluid secretion by glands from WT mice five-fold, and this response was abolished by exposing the basolateral aspect of the tracheas to L-732,138 (10 μmol/l), a specific antagonist of the neurokinin-1 receptor. Secretion was also stimulated 25-fold by basolateral application of SP, and this response was strongly inhibited by the CFTR inhibitor CFTRinh172. In contrast, submucosal glands from CFTR knockout mice failed to secrete when stimulated by SP (1 μmol/l), although those from wild-type control littermates were responsive. SP stimulation of wild-type glands was also abolished by clotrimazole (25 μmol/l), a blocker of Ca2+-activated K+ channels. These results indicate that SP mediates local responses to capsaicinoids through a mechanism involving coordinated activation of CFTR and K+ channels. To our knowledge, this is the first study in which CFTR-dependent responses to substance P have been directly demonstrated. Since CFTR regulation is qualitatively similar in human and mouse glands, loss of this local regulation in CF may contribute to reduced innate defenses in CF airways.  相似文献   

20.
BACKGROUND: Airway inflammation and infection are early events in cystic fibrosis (CF) pathogenesis. The existence of an imbalance in the immune cell population of the CF fetal airway before infection remains completely unknown. OBJECTIVE: The aim of this study was to determine whether early signs of inflammation are observed in CF airways during human fetal development. METHODS: Tracheas and lungs were collected from 21 CF and 16 non-CF fetuses. In tissue sections, the numbers of neutrophils, mast cells, macrophages, and B and T lymphocytes were quantitatively analyzed by means of image cytometry. The presence of IL-4, IL-6, IL-8, IL-10, RANTES, IFN-gamma, TNF-alpha, and NF kappa B and its inhibitor I kappa B-alpha was qualitatively evaluated by immunofluorescent staining. RESULTS: During fetal airway development, epithelial and glandular differentiation, as well as the distribution of inflammatory markers, was similar in CF and non-CF tissues. Significant differences between CF and non-CF fetal airways were observed only in the numbers of mast cells and macrophages. In the CF trachea, the mast cell number increased slowly but continuously, whereas in the non-CF trachea this number rapidly reached a plateau. In the CF lung, the macrophage number increased with time, whereas in the non-CF lung it decreased. CONCLUSION: Although no intrinsic inflammation was demonstrated, we observed a distinct appearance of mast cells and macrophages in CF airways in comparison with non-CF airways during fetal development. These 2 cell populations were greater in CF airways at a late stage of fetal development, suggesting their possible involvement in the early onset of inflammation in CF infants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号