首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(alpha-hydroxy-acid)s derived from lactic acid (LA) and glycolic acid (GA) are bioresorbable polymers that are currently used in human surgery and in pharmacology to make temporary therapeutic devices. Nowadays, increasing attention is paid to these polymers in the field of tissue engineering. However, the literature shows that a large number of factors can affect many of their properties and the responses of biological systems. As part of our investigation of the biocompatibility of degradable aliphatic polyesters, the effects of LA and GA on the proliferation of various cells under in vitro cell culture conditions were studied. The release of LA and GA from films made of a copolymer synthesized by the zinc lactate method and composed of 37.5% L-lactyl, 37.5% D-lactyl, and 25% glycolyl repeating units was first investigated over a period of 30 days under abiotic conditions in a cell culture medium in order to identify a range of acid concentrations consistent with releases to be expected in real cell cultures. Four cell lines, namely 3T3-J2, C3H10(1/2), A431, and HaCat, and three primary cell cultures, namely rat endothelial cells, rat smooth muscle cells, and human dermal fibroblasts, were then allowed to grow in the presence of LA and GA at various concentrations taken within the selected 10-1000 mg/cm3 range. Little or no effect was observed on the proliferation of all cells except human keratinocytes, whose growth was dramatically inhibited by GA at concentrations as low as 10 mg/cm3. The inhibiting effect of GA was confirmed by considering the growth of keratinocytes on films made of the same copolymer, in comparison with poly(DL-lactic acid) and polystyrene taken as references. This work shows that GA-releasing degradable matrices are not adapted to the culture of keratinocytes with the aim of making skin grafts.  相似文献   

2.
This work describes a simple method to immobilize heparin by covalent bonding to the surface of poly(lactic acid) film with the aim of showing improved hemocompatibility. Carboxyl groups present in heparin molecules were activated by reaction with N-hydroxy-succinimide and allowed to react with free amino groups created at the surface of poly(DL-lactic acid) films by controlled aminolysis. Contact angle measurements and XPS analysis confirmed the binding. Quantification was determined by radioactivity using heparin labeled with tritium. The surface exhibited anti factor Xa activity, thus confirming the presence of bounded heparin that kept some biological activity. Finally platelets adhesion showed less platelet adhesion on heparin modified films as well as preserved morphology.  相似文献   

3.
Poly(α-hydroxy-acid)s derived from lactic acid (LA) and glycolic acid (GA) are bioresorbable polymers that are currently used in human surgery and in pharmacology to make temporary therapeutic devices. Nowadays, increasing attention is paid to these polymers in the field of tissue engineering. However, the literature shows that a large number of factors can affect many of their properties and the responses of biological systems. As part of our investigation of the biocompatibility of degradable aliphatic polyesters, the effects of LA and GA on the proliferation of various cells under in vitro cell culture conditions were studied. The release of LA and GA from films made of a copolymer synthesized by the zinc lactate method and composed of 37.5% L-lactyl, 37.5% D-lactyl, and 25% glycolyl repeating units was first investigated over a period of 30 days under abiotic conditions in a cell culture medium in order to identify a range of acid concentrations consistent with releases to be expected in real cell cultures. Four cell lines, namely 3T3-J2, C3H101/2, A431, and HaCat, and three primary cell cultures, namely rat endothelial cells, rat smooth muscle cells, and human dermal fibroblasts, were then allowed to grow in the presence of LA and GA at various concentrations taken within the selected 10–1000 mg/cm3 range. Little or no effect was observed on the proliferation of all cells except human keratinocytes, whose growth was dramatically inhibited by GA at concentrations as low as 10 mg/cm3. The inhibiting effect of GA was confirmed by considering the growth of keratinocytes on films made of the same copolymer, in comparison with poly(DL-lactic acid) and polystyrene taken as references. This work shows that GA-releasing degradable matrices are not adapted to the culture of keratinocytes with the aim of making skin grafts.  相似文献   

4.
In this study, we investigated in vitro the role of the degree of acetylation (DA) on some biological properties of chitosan films. We noticed that, whatever the DA, all chitosan films were cytocompatible towards keratinocytes and fibroblasts. We also demonstrated that the higher the DA of chitosan, the lower was the cell adhesion on the films. Fibroblasts appear to adhere twice as much as keratinocytes on these materials. We observed that keratinocyte proliferation increases when the DA of chitosan films decreases. Thus, DA influences the cell growth in the same way as cell adhesion. On the other hand, although they remain alive, fibroblasts do not proliferate on chitosan films. This behaviour is related to an extremely high adhesion on this kind of material, which certainly inhibits cell growth. In conclusion, DA plays a key role in cell adhesion and proliferation, but does not change the cytocompatibility of chitosan. In parallel, it is also important to notice the role played by the surface morphology of the material, a second major parameter which influences the mechanism of adhesion.  相似文献   

5.
Ji J  Zhu H  Shen J 《Biomaterials》2004,25(10):1859-1867
The ligand-tethered poly(ethylene oxide-propylene oxide-ethylene oxide) (PEO-PPO-PEO) triblock copolymer was explored to engineer poly(DL-lactic acid) (PDL-LA) material to promote cell attachment and growth. The PEO-PPO-PEO was activated by methyl sulfonyl chloride and the amino acid, and peptide were attached. By blending the PDL-LA with the ligand-tethered PEO-PPO-PEO derivatives, the surface of modified PDL-LA film was investigated by ATR-FTIR, XPS and contact angle. The chondrocytes test on different PDL-LA films indicated that the PEO-PPO-PEO amino acid and RGD derivatives modified PDL-LA films could promote chondrocyte attachment and growth. This simple surface treatment method may have potentials for tissue engineering and other biomedical applications.  相似文献   

6.
In literature, contacts between pegylated compounds and blood proteins are generally discussed in terms of excluded volume-related repulsions although adsorption and compatibility have been reported for some of these proteins occasionally. The major problem to investigate the behavior of blood in contact with pegylated surfaces is the complexity of the medium and especially the presence of albumin in large excess. In a model approach, optical waveguide lightmode spectroscopy (OWLS) was used to monitor the fate of albumin, fibrinogen, and γ-globulins at physiological concentrations in pH?=?7.4 isotonic HEPES buffer after contact with SiTiO2 chips coated with diblock poly(DL-lactic acid)-block-poly(ethylene oxide)s and triblock poly(DL-lactic acid)-block-poly(ethylene oxide)-block-poly(DL-lactic acid) copolymers. Corresponding homopolymers were used as controls. The three protein systems were investigated separately, as a mixture and when added successively according to different orders of addition. OWLS gave access to the mass and the thickness of adhering protein layers that resist washing with HEPES buffer. Protein depositions were detected regardless of the presence of poly(ethylene glycol) segments on surfaces. Adsorption depended on the protein, on the surface and also on the presence of the other proteins. Unexpectedly any surface coated with a layer of adsorbed albumin prevented deposition of other proteins, including albumin itself. This outstanding finding suggests that it was the presence of albumin adsorbed on a surface, pegylated or not, that made that surface compatible with other proteins. As a consequence, dipping a device to be in contact with the blood of a patient in a solution of albumin could be a very simple means to avoid further protein deposition and maybe platelets adhesion after in vivo implantation.  相似文献   

7.
It has been recognized that adhesion and proliferation of cells on biodegradable polymers such as poly(lactic acid) (PLA), poly(glycolic acid) (PGA), and poly(lactide-co-glycolide) (PLGA) depend on the surface properties. The chloric acid (CA) treatment of these films was developed to increase surface wettability and to improve adhesion and proliferation of human chondrocytes and NIH/3T3 fibroblasts. The CA-treated films were characterized by the measurement of water contact angle, electron spectroscopy for chemical analysis (ESCA), and scanning electron microscopy (SEM). The changes of the film surface water contact angle gradually decreased with increase of CA treatment time, owing to the oxygen-based functional groups incorporated on the surface by CA treatment and were in the order PGA > PLGA > PLA due to the number of methyl group on the backbone chain. In ESCA analysis, as CA treatment time increased, the carbon (binding energy, approximately 285 eV) ratio decreased in film surfaces, whereas the oxygen (approximately 532 eV) ratio increased. The human chondrocytes from articular cartilage and mouse NIH/3T3 fibroblasts adhered for 1 day and grown for 2 days on the CA-treated films were counted and observed by SEM. As the surface wettability increased, the number of cells adhered and grown on the surface increased. In conclusion, this study demonstrated that the surface wettability of the biodegradable polymer plays an important role for cell adhesion and proliferation behavior for the application of the tissue engineering.  相似文献   

8.
Autologous keratinocyte grafts provide clinical benefit by rapidly covering wounded areas, but they are fragile. We therefore developed biocompatible hexagonal-packed porous films with uniform, circular pore sizes to support human keratinocytes and fibroblasts. Cells were cultured on these porous poly (epsilon-calprolactone) films with pore sizes ranging from novel ultra-small 3 microm to 20 microm. These were compared with flat (pore-less) films. Cell growth rates, adhesion, migration, and ultrastructural morphology were examined. Human keratinocytes and fibroblasts attached to all films. Furthermore, small-pore (3-5 microm) films showed the highest levels of cell adhesion and survival and prevented migration into the pores and opposing film surface. Keratinocyte migration over small-pore film surface was inhibited. Keratinocytes optimally attached to 3-microm-pore films due to a combination of greater pore numbers (porosity), a greater circumference of the pore edge per unit surface area, and greater frequency of flat surface areas for attachment, allowing better cell-substrate and cell-cell attachment and growth. The 3-microm pore size allowed cell-cell communication, together with diffusion of soluble nutrients and factors from the culture medium or wound substrate. These characteristics are considered important in developing grafts for use in the treatment of human skin wounds.  相似文献   

9.
Novel synthetic biodegradable polymer substrates with specific chemical micropatterns were fabricated from poly(DL-lactic-coglycolic acid) (PLGA) and diblock copolymers of poly(ethylene glycol) and poly(DL-lactic acid) (PEG/PLA). Thin films of PLGA and PEG/PLA supported and inhibited, respectively, retinal pigment epithelial (RPE) cell proliferation, with a corresponding cell density of 352,900 and 850 cells/cm2 after 7 days (from an initial seeding density of 15,000 cells/cm2). A microcontact printing technique was used to define arrays of circular (diameter of 50 microm) PLGA domains surrounded and separated by regions (width of 50 microm) of PEG/PLA. Reversed patterns composed of PEG/PLA circular domains surrounded by PLGA regions were also fabricated. Both micropatterned surfaces were shown to affect initial RPE cell attachment, limit cell spreading, and promote the characteristic cuboidal cell morphology during the 8-h period of the experiments. In contrast, RPE cells on plain PLGA (control films) were elongated and appeared fibroblast-like. The reversed patterns had continuous PLGA regions that allowed cell-cell interactions and thus higher cell adhesion. These results demonstrate the feasibility of fabricating micropatterned synthetic biodegradable polymer surfaces to control RPE cell morphology.  相似文献   

10.
In this study, self-designed bifunctional RGD-containing fusion protein (BFP) was grafted on the petri dish to evaluate its cytotoxicity and attachment efficiency on primary cultured keratinocytes and dermal fibroblasts. Two lengths of the GRGDS sequences were separately fused to the N-terminus and C-terminus of the Trichoderma koningii cellobiohydrolase I gene cellulose-binding domain, to serve as linking molecule between the cell and the substrate. The grafting procedure was no more labor-intensive and could be done just in aqueous condition itself. The epidermal keratinocytes and dermal fibroblasts, harvested and separated from human foreskin, were cultured in serum-free keratinocyte culture medium and DMEM, respectively. The BFP was dissolved in double-deionized water, and was prepared at different concentrations. The BFP solution was subsequently added into the petri dish for grafting. MTT assay, total DNA measurement, and lactate dehydrogenase analysis were used to evaluate the cell viability, cell proliferation, and cytotoxicity. The immunochemical stain and SEM examination were chosen to make sure that the cultured cells still kept in phenotype. The results showed that the self-designed BFP was successfully coated on the petri dish to improve the cells' adhesion. The whole coating procedure was just done in aqueous solution without any organic solvent being involved. This method was much simpler than the traditional one, and there was no possibility to damage the immobilized biomolecules. From the results of the study, BFP could enhance attachment of keratinocytes and dermal fibroblasts without losing normal cell morphology and keep keratinocytes on the desired differentiation pathway. We believe that coating BFP on petri dish not only enhanced the keratinocyte attachment but also promoted keratinocytes proliferation. We suggest that the self-designed BFP has a great potential to apply on surface modification for the tissue-engineering scaffolds in the future.  相似文献   

11.
Human keratinocytes were cultured on plasma copolymers (PCPs), self-assembled monolayers (SAMs), and tissue culture poly(styrene) (TCPS). Plasma copolymerization was used to deposit films with controlled concentrations of carboxylic acid functional groups (<5%). Human keratinocytes were cultured onto these PCP surfaces, TCPS, and collagen I. A hydrocarbon plasma polymer surface was used as the negative control. Keratinocyte attachment was measured at 24 h and cell proliferation and growth at 3 and 7 days using optical microscopy and DNA concentrations. The PCP surfaces were compared with two SAM systems comprising pure acid and pure hydrocarbon functionalities, and pure gold was used as a control surface. PCP surfaces containing carboxylic acid functionalities promoted keratinocyte attachment. The level of attachment on these surfaces was comparable to that seen on collagen I, a preferred substratum for the culturing of keratinocytes. After several days in culture the cells were well attached and proliferative, forming confluent sheets of keratinocytes. This result was confirmed by DNA assays that suggested the acid PCP surfaces were performing as well as collagen I. Keratinocytes attached well to gold and acid-terminated SAMs but attached poorly to methyl-terminated SAMs. The acid functionality also promoted proliferation and growth of keratinocytes after several days in culture. DNA assays revealed that keratinocyte growth on the acid surface was higher than on collagen I.  相似文献   

12.
The microenvironment of cells in vivo is defined by spatiotemporal patterns of chemical and biophysical cues. Therefore, one important goal of tissue engineering is the generation of scaffolds with defined biofunctionalization in order to control processes like cell adhesion and differentiation. Mimicking extrinsic factors like integrin ligands presented by the extracellular matrix is one of the key elements to study cellular adhesion on biocompatible scaffolds. By using special thermoformable polymer films with anchored biomolecules micro structured scaffolds, e.g. curved and μ-patterned substrates, can be fabricated. Here, we present a novel strategy for the fabrication of μ-patterned scaffolds based on the “Substrate Modification and Replication by Thermoforming” (SMART) technology: The surface of a poly lactic acid membrane, having a low forming temperature of 60°C and being initially very cell attractive, was coated with a photopatterned layer of poly(L-lysine) (PLL) and hyaluronic acid (VAHyal) to gain spatial control over cell adhesion. Subsequently, this modified polymer membrane was thermoformed to create an array of spherical microcavities with diameters of 300 μm for 3D cell culture. Human hepatoma cells (HepG2) and mouse fibroblasts (L929) were used to demonstrate guided cell adhesion. HepG2 cells adhered and aggregated exclusively within these cavities without attaching to the passivated surfaces between the cavities. Also L929 cells adhering very strongly on the pristine substrate polymer were effectively patterned by the cell repellent properties of the hyaluronic acid based hydrogel. This is the first time cell adhesion was controlled by patterned functionalization of a polymeric substrate with UV curable PLL-VAHyal in thermoformed 3D microstructures.  相似文献   

13.
探讨了蒸汽灭菌对聚乙二醇对苯二甲酸酯/聚对苯二甲酸丁二醇酯多嵌段共聚物(PEGT/PBT)性能的改变而导致对血管细胞相容性的影响.血管细胞能在紫外辐照灭菌的PEGT/PBT膜片上较好地黏附生长,而在蒸汽灭菌的膜片表面几乎无法黏附生长.使用差示扫描量热分析、静态接触角、光电子能谱、表面羧基测定、核磁共振和扫描电镜等分析测试方法对灭菌前后膜片的本体性能和表面性能进行表征.结果表明,蒸汽灭菌没有改变材料表面形貌和材料的组成.但是在蒸汽灭菌过程中PEGT/PBT链段发生重新取向,亲水性软段PEGT和材料的端羧基在表面富集,使得材料表面亲水性增加、硬段的结晶度有所增加.可能由于端羧基和表面聚乙二醇增多导致蛋白在材料表面的吸附减少,而致使血管细胞无法在蒸汽灭菌的膜片上黏附生长.  相似文献   

14.
Blends of poly(acrylic acid)‐block‐polystyrene (PAA‐b‐PS) copolymers and poly(ethylene oxide) (PEO) homopolymers in which PAA and PEO interact via hydrogen bonds were used as precursors of nanoporous PS thin films with cavities decorated by PAA blocks. The presence of free carboxylic acid groups inside the pores was evidenced by fluorescence spectroscopy after reacting them with a diazomethane functionalized fluorescent dye. These nanoporous thin films were then used as templates for the preparation of dense arrays of silica nanodots.  相似文献   

15.
Collagen and fibrin are widely used in tissue engineering due to their excellent biocompatibility and bioactivities that support in vivo tissue formation. These two hydrogels naturally present in different wound healing stages with different regulatory effects on cells, and both of them are mechanically weak in the reconstructed hydrogels. We conducted a comparative study by the growth of rat dermal fibroblasts or dermal fibroblasts and epidermal keratinocytes together in collagen and fibrin constructs respectively with and without the reinforcement of electrospun poly(lactic acid) nanofiber mesh. Cell proliferation, gel contraction and elastic modulus of the constructs were measured on the same gels at multiple time points during the 22 day culturing period using multiple non-destructive techniques. The results demonstrated considerably different cellular activities within the two types of constructs. Co-culturing keratinocytes with fibroblasts in the collagen constructs reduced the fibroblast proliferation, collagen contraction and mechanical strength at late culture point regardless of the presence of nanofibers. Co-culturing keratinocytes with fibroblasts in the fibrin constructs promoted fibroblast proliferation but exerted no influence on fibrin contraction and mechanical strength. The presence of nanofibers in the collagen and fibrin constructs played a favorable role on the fibroblast proliferation when keratinocytes were absent. Thus, this study exhibited new evidence of the strong cross-talk between keratinocytes and fibroblasts, which can be used to control fibroblast proliferation and construct contraction. This cross-talk activity is extracellular matrix-dependent in terms of the fibrous network morphology, density and strength.  相似文献   

16.
A cell carrier made from synthetic material supporting selective growth of keratinocytes is a promising approach to avoid the phenomenon of fibroblast overgrowth during in vitro culture of skin substitutes. Therefore, we investigated polymer membranes made of polyacrylonitrile and copolymers of acrylonitrile and N-vinylpyrrolidone (NVP) for their ability to support selectively the growth of keratinocytes. It was found that a copolymer with an NVP-content of 30% (NVP30) supports growth of human keratinocyte cell line (HaCaT) cells and inhibits fibroblast growth under serum-containing conditions. Cell proliferation of HaCaT cells was measured over 14 days. If both cell types were cultured under serum-free conditions for initial adhesion over 6 h on these NVP30 polymers, they adhered to the same extent. Long-term experiments over 7 days were performed as a coculture of both cell types showing that HaCaT cells had a growth advantage that seems to be related to the paracrine activity of contaminating fibroblasts. As a result, confluent layers of HaCaT cells were obtained with small numbers of remaining fibroblasts. The new poly [acrylonitrile-co(NVP) membranes seem to be a promising culture system for the production of epidermal transplants.  相似文献   

17.
Skeletal muscle tissue engineering holds promise for the replacement of muscle damaged by injury and for the treatment of muscle diseases. Although arginylglycylaspartic acid (RGD) substrates have been widely explored in tissue engineering, there have been no studies aimed at investigating the combined effects of RGD nanoscale presentation and matrix stiffness on myogenesis. In the present work we use polyelectrolyte multilayer films made of poly(l-lysine) (PLL) and poly(l-glutamic) acid (PGA) as substrates of tunable stiffness that can be functionalized by a RGD adhesive peptide to investigate important events in myogenesis, including adhesion, migration, proliferation and differentiation. C2C12 myoblasts were used as cellular models. RGD presentation on soft films and increasing film stiffness could both induce cell adhesion, but the integrins involved in adhesion were different in the case of soft and stiff films. Soft films with RGD peptide appeared to be the most appropriate substrate for myogenic differentiation, while the stiff PLL/PGA films induced significant cell migration and proliferation and inhibited myogenic differentiation. ROCK kinase was found to be involved in the myoblast response to the different films. Indeed, its inhibition was sufficient to rescue differentiation on stiff films, but no significant changes were observed on stiff films with the RGD peptide. These results suggest that different signaling pathways may be activated depending on the mechanical and biochemical properties of multilayer films. This study emphasizes the advantage of soft PLL/PGA films presenting the RGD peptide in terms of myogenic differentiation. This soft RGD-presenting film may be further used as a coating of various polymeric scaffolds for muscle tissue engineering.  相似文献   

18.
Novel tailor-made poly(ester urethane)s (PUs) based on microbial polyesters poly(3-hydroxybutyrate-co-4hydroxybutyrate) (P3HB4HB) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) were synthesized by melting polymerization (MP) using 1,6-hexamethylene diisocyanate (HDI) as a coupling agent. A comprehensive characterization using 1H-NMR, Fourier transform infrared spectroscopy (FT-IR), gel-permeation chromatography (GPC), differential scanning calorimetry (DSC), mechanical properties, static water contact angles, cell proliferation using smooth muscle cells from rabbit aorta (RaSMCs) and immortalized human keratinocytes (HaCat), and blood coagulation behavior were conducted on the synthesized PUs films. DSC showed that PU samples had a low degree of crystallinity at room temperature and became fully amorphous after a melt-quenched process. The series of tailor-made PUs based on different mass ratios of P3HB4HB and PHBHHx revealed a ductile and flexile mechanical property especially for PHBHHx-rich PU, or a hydrophobic property for 4HB-rich PU. A 4 days incubation experiment showed that all PU films had a better cell proliferation than poly(lactic acid) (PLA), polyhydroxybutyrate (PHB), P3HB4HB and PHBHHx. RaSMCs cultured on PU films had a quiescent contractile phenotype, indicating that they were fully functional. HaCat incubated on tailor-made PU films showed a proliferation approximately equal to tissue-culture plates (TCPs). Blood coagulation behavior tests revealed a strong platelet adhesion and a short coagulation time on PU films. This study demonstrated potential medical applications for P3HB4HB and PHBHHx based polyurethane as a hydrophobic wound-healing and hemostatic materials.  相似文献   

19.
Within the field of tissue engineering there is a need to develop new approaches to achieve effective wound closure in patients with extensive skin loss or chronic ulcers. This article exploits the well-known interdependency of epithelial keratinocytes and stromal fibroblasts in conjunction with plasma surface technology. The aim was to produce a chemically defined surface, which with the aid of a feeder layer of lethally irradiated dermal fibroblasts would improve the attachment and proliferation of the keratinocyte cell from which subconfluent cells can be transferred to wound bed models. Plasma copolymers of acrylic acid/octa-1,7-diene have been prepared and characterized by X-ray photoelectron spectroscopy. The fibroblasts and keratinocytes were cultured on plasma polymer-coated 24-well plates. Cell attachment and proliferation were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-eluted stain assay (MTT-ESTA) and DNA assay. Attachment and proliferation of both cell types on plasma polymer surfaces were compared with tissue culture plastic and collagen I, plus a negative control of a pure hydrocarbon layer. A pure acrylic acid surface, fabricated at a power of 10 W and containing 9.2% carboxylate groups, was found to promote both fibroblast and keratinocyte attachment and proliferation and permit the serum-free coculture of keratinocytes and irradiated fibroblasts.  相似文献   

20.
Microenvironments, composed of many kinds of cytokines and growth factors plus extracellular matrices with diverse electrostatic properties, play key roles in controlling cell functions in vivo. In this study, three kinds of water-soluble polymers, positively charged poly(L-lysine) (PLL), negatively charged poly(acrylic acid) (PAAc) and neutral poly(ethylene glycol) (PEG), were compared based on their effects on the adhesion, spread, proliferation and chondrogenic differentiation of human mesenchymal stem cells (MSCs). The MSCs were seeded and cultured in the presence of polymers of different concentrations applied by methods using coating, mixing or covering. The effects of the water-soluble polymers depended on their electrostatic properties and method of application. The methods were in the order of coating, mixing and covering in terms of high to low influence. A low concentration of PLL promoted MSC adhesion, spread, proliferation and chondrogenic differentiation, while a high concentration of PLL was toxic. The PEG-coated surface facilitated cell aggregation and spheroid formation by inhibiting cell adhesion. A high concentration of mixed PEG (10 μg/ml) promoted cell proliferation in serum-free medium. PAAc showed no obvious effects on MSC adhesion, spread, proliferation, or chondrogenic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号