首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) is a cytotoxic cytokine that induces apoptosis in tumor cells but rarely kills normal ones. To determine how normal human cells acquire TRAIL-sensitive phenotype during the process of malignant transformation, we used an experimental system that allows for controlled conversion of human cells from normal to cancerous by introduction of several genes. Human embryonic kidney cells and foreskin fibroblasts were first immortalized by combination of the early region of simian virus 40 and telomerase and then were transformed with oncogenic Ras. Both normal and immortalized cells were resistant to TRAIL-induced apoptosis, whereas Ras-transformed cells were susceptible. Ras transformation enhanced TRAIL-induced activation of caspase 8 by increasing its recruitment to TRAIL receptors. The proapoptotic effects of Ras could be reversed by mutations in its effector loop or by inhibitors of either farnesyl transferase or mitogen-activated protein kinase kinase. The expression of constitutively activated mitogen-activated protein kinase kinase 1 enhanced caspase 8 recruitment and sensitized immortalized human embryonic kidney cells to TRAIL-induced death. These results indicate that in normal human cells the TRAIL-induced apoptotic signal is blocked at the level of caspase 8 recruitment and that this block can be eliminated by Ras transformation, involving activation of the mitogen-activated protein kinase pathway.  相似文献   

3.
PURPOSE: Malignant gliomas are the most aggressive human brain tumors without any curative treatment. The antitumor effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in gliomas has thus far only been thoroughly established in tumor cell lines. In the present study, we investigated the therapeutic potential of TRAIL in primary human glioma cells. EXPERIMENTAL DESIGN: We isolated primary tumor cells from 13 astrocytoma and oligoastrocytoma patients of all four WHO grades of malignancy and compared the levels of TRAIL-induced apoptosis induction, long-term tumor cell survival, caspase, and caspase target cleavage. RESULTS: We established a stable culture model for isolated primary human glioma cells. In contrast to cell lines, isolated primary tumor cells from all investigated glioma patients were highly TRAIL resistant. Regardless of the tumor heterogeneity, cotreatment with the proteasome inhibitor bortezomib efficiently sensitized all primary glioma samples for TRAIL-induced apoptosis and tremendously reduced their clonogenic survival. Due to the pleiotropic effect of bortezomib-enhanced TRAIL DISC formation upon TRAIL triggering, down-regulation of cFLIP(L) and activation of the intrinsic apoptosis pathway seem to cooperatively contribute to the antitumor effect of bortezomib/TRAIL cotreatment. CONCLUSION: TRAIL sensitivity of tumor cell lines is not a reliable predictor for the behavior of primary tumor cells. The widespread TRAIL resistance in primary glioma cells described here questions the therapeutic clinical benefit of TRAIL as a monotherapeutic agent. Overcoming TRAIL resistance by bortezomib cotreatment might, however, provide a powerful therapeutic option for glioma patients.  相似文献   

4.
Death receptor 5 (DR5/TRAIL-R2) is an apoptosis-inducing membrane receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L). In this study, we showed that tunicamycin, a naturally occurring antibiotic, is a potent enhancer of TRAIL-induced apoptosis through up-regulation of DR5 expression. Tunicamycin significantly sensitized PC-3, androgen-independent human prostate cancer cells, to TRAIL-induced apoptosis. The tunicamycin-mediated enhancement of TRAIL-induced apoptosis was markedly blocked by a recombinant human DR5/Fc chimeric protein. Tunicamycin and TRAIL cooperatively activated caspase-8, -10, -9, and -3 and Bid cleavage and this activation was also blocked in the presence of the DR5/Fc chimera. Tunicamycin up-regulated DR5 expression at the mRNA and protein levels in a dose-dependent manner. Furthermore, the tunicamycin-mediated sensitization to TRAIL was efficiently reduced by DR5 small interfering RNA, suggesting that the sensitization was mediated through induction of DR5 expression. Tunicamycin increased DR5 promoter activity and this enhanced activity was diminished by mutation of a CHOP-binding site. In addition, suppression of CHOP expression by small interfering RNA reduced the tunicamycin-mediated induction of DR5. Of note, tunicamycin-mediated induction of CHOP and DR5 protein expression was not observed in normal human peripheral blood mononuclear cells. Moreover, tunicamycin did not sensitize the cells to TRAIL-induced apoptosis. Thus, combined treatment with tunicamycin and TRAIL may be a promising candidate for prostate cancer therapy.  相似文献   

5.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis via the death receptors DR4 and DR5 in transformed cells in vitro and exhibits potent antitumor activity in vivo with minor side effects. Protein kinase casein kinase II (CK2) is increased in response to diverse growth stimuli and is aberrantly elevated in a variety of human cancers. Rhabdomyosarcoma tumors are the most common soft-tissue sarcoma in childhood. In this investigation, we demonstrate that CK2 is a key survival factor that protects tumor cells from TRAIL-induced apoptosis. We have demonstrated that inhibition of CK2 phosphorylation events by 5,6-dichlorobenzimidazole (DRB) resulted in dramatic sensitization of tumor cells to TRAIL-induced apoptosis. CK2 inhibition also induced rapid cleavage of caspase-8, -9, and -3, as well as the caspase substrate poly(ADP-ribose) polymerase after TRAIL treatment. Overexpression of Bcl-2 protected cells from TRAIL-induced apoptosis in the presence of the CK2 inhibitor. Death signaling by TRAIL in these cells was Fas-associated death domain and caspase dependent because dominant negative Fas-associated death domain or the cowpox interleukin 1beta-converting enzyme inhibitor protein cytokine response modifier A prevented apoptosis in the presence of DRB. Analysis of death-inducing signaling complex (DISC) formation demonstrated that inhibition of CK2 by DRB increased the level of recruitment of procaspase-8 to the DISC and enhanced caspase-8-mediated cleavage of Bid, thereby increasing the release of the proapoptotic factors cytochrome c, HtrA2/Omi, Smac/DIABLO, and apoptosis inducing factor (AIF) from the mitochondria, with subsequent degradation of X-linked inhibitor of apoptosis protein (XIAP). To further interfere with CK2 function, JR1 and Rh30 cells were transfected with either short hairpin RNA targeted to CK2alpha or kinase-inactive CK2alpha (K68M) or CK2alpha' (K69M). Data show that the CK2 kinase activity was abrogated and that TRAIL sensitivity in both cell lines was increased. Silencing of CK2alpha expression with short hairpin RNA was also associated with degradation of XIAP. These findings suggest that CK2 regulates TRAIL signaling in rhabdomyosarcoma by modulating TRAIL-induced DISC formation and XIAP expression.  相似文献   

6.
The antiapoptotic molecule galectin-3 was previously shown to regulate CD95, a member of the tumor necrosis factor (TNF) family of proteins in the apoptotic signaling pathway. Here, we question the generality of the phenomenon by studying a different member of this family of proteins [e.g., TNF-related apoptosis-inducing ligand (TRAIL), which induces apoptosis in a wide variety of cancer cells]. Overexpression of galectin-3 in J82 human bladder carcinoma cells rendered them resistant to TRAIL-induced apoptosis, whereas phosphatidylinositol 3-kinase (PI3K) inhibitors (wortmannin and LY-294002) blocked the galectin-3 protecting effect. Because Akt is a major downstream PI3K target reported to play a role in TRAIL-induced apoptosis, we questioned the possible relationship between galectin-3 and Akt. Parental J82 and the control vector-transfected J82 cells (barely detectable galectin-3) exhibit low level of constitutively active Akt, resulting in sensitivity to TRAIL. On the other hand, J82 cells overexpressing galectin-3 cells expressed a high level of constitutively active Akt and were resistant to TRAIL. Moreover, the blockage of TRAIL-induced apoptosis in J82 cells seemed to be mediated by Akt through the inhibition of BID cleavage. These results suggest that galectin-3 involves Akt as a modulator molecule in protecting bladder carcinoma cells from TRAIL-induced apoptosis.  相似文献   

7.
Hao JH  Yu M  Liu FT  Newland AC  Jia L 《Cancer research》2004,64(10):3607-3616
Previous studies have shown that the lymphoblastic leukemia CEM cell line is resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis because of a low expression of caspase-8. Bcl-2 inhibitors, BH3I-2' and HA14-1, are small cell-permeable nonpeptide compounds, are able to induce apoptosis by mediating cytochrome c release, and also lead to dissipation of the mitochondrial membrane potential (DeltaPsim). This study aimed to use the Bcl-2 inhibitors to sensitize CEM cells to TRAIL-induced apoptosis by switching on the mitochondrial apoptotic pathway. We found that a low dose of BH3I-2' or HA14-1, which did not induce cytochrome c release, greatly sensitized CEM cells to TRAIL-induced apoptosis. In a similar manner to the classical uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP), both BH3I-2' and HA14-1 induced a reduction in DeltaPsim, a generation of reactive oxygen species (ROS), an increased mitochondrial respiration, and a decreased ATP synthesis. This uncoupling function of the Bcl-2 inhibitors was responsible for the synergy with TRAIL-induced apoptosis. CCCP per se did not induce apoptosis but again sensitized CEM cells to TRAIL-induced apoptosis by uncoupling mitochondrial respiration. The uncoupling effect facilitated TRAIL-induced Bax conformational change and cytochrome c release from mitochondria. Inhibition of caspases failed to block TRAIL-mediated cell death when mitochondrial respiration was uncoupled. We observed that BH3I-2', HA14-1, or CCCP can overcome resistance to TRAIL-induced apoptosis in TRAIL-resistant cell lines, such as CEM, HL-60, and U937. Our results suggest that the uncoupling of mitochondrial respiration can sensitize leukemic cells to TRAIL-induced apoptosis. However, caspase activation per se does not represent an irreversible point of commitment to TRAIL-induced cell death when mitochondrial respiration is uncoupled.  相似文献   

8.
Shi RX  Ong CN  Shen HM 《Cancer research》2005,65(17):7815-7823
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is an important member of the TNF superfamily with great potential in cancer therapy. Luteolin is a dietary flavonoid commonly found in some medicinal plants. Here we found that pretreatment with a noncytotoxic concentration of luteolin significantly sensitized TRAIL-induced apoptosis in both TRAIL-sensitive (HeLa) and TRAIL-resistant cancer cells (CNE1, HT29, and HepG2). Such sensitization is achieved through enhanced caspase-8 activation and caspase-3 maturation. Further, the protein level of X-linked inhibitor of apoptosis protein (XIAP) was markedly reduced in cells treated with luteolin and TRAIL, and ectopic expression of XIAP protected against cell death induced by luteolin and TRAIL, showing that luteolin sensitizes TRAIL-induced apoptosis through down-regulation of XIAP. In search of the molecular mechanism responsible for XIAP down-regulation, we found that luteolin and TRAIL promoted XIAP ubiquitination and proteasomal degradation. Next, we showed that protein kinase C (PKC) activation prevented cell death induced by luteolin and TRAIL via suppression of XIAP down-regulation. Moreover, luteolin inhibited PKC activity, and bisindolylmaleimide I, a general PKC inhibitor, simulated luteolin in sensitizing TRAIL-induced apoptosis. Taken together, these results present a novel anticancer effect of luteolin and support its potential application in cancer therapy in combination with TRAIL. In addition, our data reveal a new function of PKC in cell death: PKC activation stabilizes XIAP and thus suppresses TRAIL-induced apoptosis.  相似文献   

9.
Kim M  Park SY  Pai HS  Kim TH  Billiar TR  Seol DW 《Cancer research》2004,64(12):4078-4081
The hypoxic environment in solid tumors results from oxygen consumption by rapid proliferation of tumor cells. Hypoxia has been shown to facilitate the survival of tumor cells and to be a cause of malignant transformation. Hypoxia also is well known to attenuate the therapeutic activity of various therapies in cancer management. These observations indicate that hypoxia plays a critical role in tumor biology. However, little is known about the effects of hypoxia on apoptosis, especially on apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a potent apoptosis inducer that has been shown to specifically limit tumor growth without damaging normal cells and tissues in vivo. To address the effects of hypoxia on TRAIL-induced apoptosis, HCT116 human colon carcinoma cells were exposed to hypoxic or normoxic conditions and treated with soluble TRAIL protein. Hypoxia dramatically inhibited TRAIL-induced apoptosis in HCT116 cells, which are highly susceptible to TRAIL in normoxia. Hypoxia increased antiapoptotic Bcl-2 family member proteins and inhibitors of apoptosis proteins. Interestingly, these hypoxia-increased antiapoptotic molecules were decreased by TRAIL treatment to the levels lower than those of the untreated conditions, suggesting that hypoxia inhibits TRAIL-induced apoptosis via other mechanisms rather than up-regulation of these antiapoptotic molecules. Additional characterization revealed that hypoxia significantly inhibits TRAIL-induced translocation of Bax from the cytosol to the mitochondria in HCT116 and A549 cells, with the concomitant inhibition of cytochrome c release from the mitochondria. Bax-deficient HCT116 cells were completely resistant to TRAIL regardless of oxygen content, demonstrating a pivotal role of Bax in TRAIL-induced apoptotic signaling. Thus, our data indicate that hypoxia inhibits TRAIL-induced apoptosis by blocking Bax translocation to the mitochondria, thereby converting cells to a Bax-deficient state.  相似文献   

10.
Survivin is a member of the inhibitor of apoptosis proteins that is expressed at high levels in most human cancers and may facilitate evasion from apoptosis and aberrant mitotic progression. Naturally occurring dietary compounds such as resveratrol have gained considerable attention as cancer chemopreventive agents. Here, we discovered a novel function of the chemopreventive agent resveratrol: resveratrol is a potent sensitizer of tumor cells for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through p53-independent induction of p21 and p21-mediated cell cycle arrest associated with survivin depletion. Concomitant analysis of cell cycle, survivin expression, and apoptosis revealed that resveratrol-induced G(1) arrest was associated with down-regulation of survivin expression and sensitization for TRAIL-induced apoptosis. Accordingly, G(1) arrest using the cell cycle inhibitor mimosine or induced by p21 overexpression reduced survivin expression and sensitized cells for TRAIL treatment. Likewise, resveratrol-mediated cell cycle arrest followed by survivin depletion and sensitization for TRAIL was impaired in p21- deficient cells. Also, down-regulation of survivin using survivin antisense oligonucleotides sensitized cells for TRAIL-induced apoptosis. Importantly, resveratrol sensitized various tumor cell lines, but not normal human fibroblasts, for apoptosis induced by death receptor ligation or anticancer drugs. Thus, this combined sensitizer (resveratrol)/inducer (e.g., TRAIL) strategy may be a novel approach to enhance the efficacy of TRAIL-based therapies in a variety of human cancers.  相似文献   

11.
Heat stress may enhance the effect of apoptosis-inducing agents in resistant tumor cells. One such agent is the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which has attracted intense interest for its ability to induce apoptosis in tumors without affecting nonmalignant cells. We therefore tested whether heat stress potentiates TRAIL-induced apoptosis in mesothelioma cells, its cell type being resistant to TRAIL alone. We found that heat stress enhanced the apoptosis caused by TRAIL but not by chemotherapy. To explain this potentiation, we found that heat stress decreased Akt phosphorylation via the dissociation of heat shock protein 90 (Hsp90) from its client protein 3-phosphoinositide-dependent kinase 1 (PDK-1), a major Akt kinase. The role of Hsp90 and the Akt pathway was confirmed by showing that inhibitors of Hsp90 and the phosphatidyilinositol-3 kinase/Akt pathway reproduced the effect of heat stress on TRAIL-induced apoptosis and that the effect of inhibiting Hsp90 on TRAIL-induced apoptosis could be overcome by activating the Akt pathway with a constitutively active construct of the Akt kinase PDK-1. The effect of heat stress involved multiple steps of the apoptotic machinery. Heat stress potentiated the death receptor pathway, as shown by an increase in TRAIL-induced caspase 8 cleavage. Nonetheless, knockdown of Bid, the main intermediary molecule from the death receptor pathway to the mitochondria, inhibited the effect of heat stress, showing that mitochondrial amplification was required for potentiation by heat stress. In summary, these results support the novel concept that heat stress inhibits the Akt pathway by dissociating PDK-1 from its chaperone Hsp90, leading to potentiation of TRAIL-induced apoptosis in resistant malignant cells.  相似文献   

12.
13.
One of the major obstacles in curing prostate cancer is the development of drug resistance. It is not only imperative to discover the molecular basis of resistance but also to find therapeutic agents that can disrupt the resistant pathways. Tumor necrosis factor TNF-related apoptosis-inducing ligand TRAIL-like ligands or agonist TRAIL-receptor monoclonal antibodies have entered phase I and II clinical trials with a very limited cytotoxic profile when used systemically in a variety of cancers. Therefore, TRAIL-receptor agonists are new proapoptotic pharmaceutical agents with great potential as new cancer therapeutic agents. Although many cancer cells undergo TRAIL-mediated apoptosis, some are resistant to TRAIL. Therefore, we have been investigating mechanisms to overcome TRAIL resistance in cancer cells so that TRAIL-associated compounds can be used effectively in clinical trials. Epigenetic inactivation of proapoptotic genes, or activation of survival signaling, can cause cross-resistance to several anti-tumor therapies and to immune cytotoxic lymphocytes. We hypothesize that 5-aza-2 deoxycytidine aza-dCR, decitabine may render TRAIL-resistant prostate cancer cells sensitive to caspase-8-mediated apoptosis and may, therefore, be therapeutically efficient. We evaluated the antiproliferative effects of decitabine on the following four prostate cancer cell lines: well-differentiated AR positive LnCaP p53(+), PTEN- and 22rv1 p53(+) and PTEN(+)]; poorly-differentiated AR negative PC3 p53-, PTEN- and DU145 p53 mutant, PTEN(+). Here, we provide evidence that treatment with sub-optimal concentrations of decitabine are additive to TRAIL effects in well-differentiated PCa cells whereas the same treatment shows synergistic effects in poorly-differentiated PCa cells through increased caspase-8 expression, down-modulation of Akt activation and through the expression of certain anti-apoptotic molecules including FLIP, PED/PEA-15, survivin and c-IAP-1. Our findings demonstrate that decitabine at relatively low concentrations restores caspase-8 expression and sensitises resistant PCa cells to TRAIL-induced apoptosis leading to important implications in novel therapeutic strategies targeting defective apoptosis pathways in advanced prostate tumors.  相似文献   

14.
15.
Fas (APO-1/CD95) is a transmembrane protein of the tumor necrosis factor (TNF)/nerve growth factor receptor superfamily that induces apoptosis in susceptible normal and neoplastic cells upon cross-linking by its ligand (FasL). TNF-related apoptosis-inducing ligand (TRAIL) is a more recently identified member of the TNF superfamily that has been shown to selectively kill neoplastic cells by engaging two cell-surface receptors, DR4 and DR5. Two additional TRAIL receptors (DcR1 and DcR2) do not transmit an apoptotic signal and have been proposed to confer protection from TRAIL-induced apoptosis. We addressed the expression of Fas, DR4, and DR5 in thyroid carcinoma cell lines and in 31 thyroid carcinoma specimens by Western blot analysis and immunohistochemistry, respectively, and tested the sensitivity of thyroid carcinoma cell lines to Fas- and TRAIL-induced apoptosis. Fas was found to be expressed in most thyroid carcinoma cell lines and tissue specimens. Although cross-linking of Fas did not induce apoptosis in thyroid carcinoma cell lines, Fas-mediated apoptosis did occur in the presence of the protein synthesis inhibitor cycloheximide, suggesting the presence of a short-lived inhibitor of the Fas pathway in these cells. Cross-linking of Fas failed to induce recruitment and activation of caspase 8, whereas transfection of a constitutively active caspase 8 construct effectively killed the SW579 papillary carcinoma cell line, arguing that the action of the putative inhibitor occurs upstream of caspase 8. By contrast, recombinant TRAIL induced apoptosis in 10 of 12 thyroid carcinoma cell lines tested, by activating caspase-10 at the receptor level and triggering a caspase-mediated apoptotic cascade. Resistance to TRAIL did not correlate with DcR1 or DcR2 protein expression and was overcome by protein synthesis inhibition in 50% of the resistant cell lines. One medullary carcinoma cell line was resistant to Fas-and TRAIL-induced apoptosis, even in the presence of cycloheximide, and to transfection of constitutively active caspase-8, suggesting a different regulation of the apoptotic pathway. Our observations indicate that TRAIL effectively kills carcinomas that originate from the follicular epithelium of the thyroid gland, by inducing caspase-mediated apoptosis, and may provide a potentially potent therapeutic reagent against thyroid cancer.  相似文献   

16.
Wang G  Ahmad KA  Ahmed K 《Cancer research》2006,66(4):2242-2249
Protein kinase CK2 (formerly casein kinase 2 or II) is a ubiquitous and highly conserved protein Ser/Thr kinase that plays diverse roles such as in cell proliferation and apoptosis. With respect to the latter, we originally showed that elevated CK2 could suppress various types of apoptosis in prostate cancer cells; however, the downstream pathways that respond to CK2 for mediating the suppression of apoptosis have not been fully elucidated. Here, we report studies on the role of CK2 in influencing activities associated with tumor necrosis factor-related ligand (TRAIL/Apo2-L)-mediated apoptosis in prostate carcinoma cells. To that end, we show that both androgen-insensitive (PC-3) and androgen-sensitive (ALVA-41) prostate cancer cells are sensitized to TRAIL by chemical inhibition of CK2 using its specific inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB). Furthermore, we have shown that overexpression of CK2alpha using pcDNA6-CK2alpha protected prostatic cancer cells from TRAIL-mediated apoptosis by affecting various activities associated with this process. Thus, overexpression of CK2 resulted in the suppression of TRAIL-induced apoptosis via its effects on the activation of caspases, DNA fragmentation, and downstream cleavage of lamin A. In addition, the overexpression of CK2 blocked the mitochondrial apoptosis machinery engaged by TRAIL. These findings define the important role of CK2 in TRAIL signaling in androgen-sensitive and -insensitive prostatic carcinoma cells. Our data support the potential usefulness of anticancer strategies that may involve the combination of TRAIL and down-regulation of CK2.  相似文献   

17.
Human glioblastoma (GBM) cells are notorious for their resistance to apoptosis-inducing therapeutics. We have identified lanatoside C as a sensitizer of GBM cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cell death partly by upregulation of the death receptor 5. We show that lanatoside C sensitizes GBM cells to TRAIL-induced apoptosis in a GBM xenograft model in vivo. Lanatoside C on its own serves as a therapeutic agent against GBM by activating a caspase-independent cell death pathway. Cells treated with lanatoside C showed necrotic cell morphology with absence of caspase activation, low mitochondrial membrane potential, and early intracellular ATP depletion. In conclusion, lanatoside C sensitizes GBM cells to TRAIL-induced cell death and mitigates apoptosis resistance of glioblastoma cells by inducing an alternative cell death pathway. To our knowledge, this is one of the first examples of use of caspase-independent cell death inducers to trigger tumor regression in vivo. Activation of such mechanism may be a useful strategy to counter resistance of cancer cells to apoptosis.  相似文献   

18.
Li M  Zhou S  Liu X  Li P  McNutt MA  Li G 《Cancer letters》2007,249(2):227-234
The interference of alpha-fetoprotein (AFP) with the apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in Bel 7402 cells was investigated in the current study. The results showed a moderate degree of drug-resistance of Bel 7402 cells to TRAIL. The caspase-3 cascade was the main pathway involved in TRAIL-induced apoptosis, which was virtually abolished in the presence of AFP. TRAIL together with antibody against AFP was able to accelerate the death of tumor cells. This study suggests the possibility a therapeutic strategy for improving clinical treatment of liver tumor with TRAIL could be effected through antagonizing the shelter effect of AFP.  相似文献   

19.
The 5-year survival rate of nasopharyngeal carcinoma (NPC) is disappointing despite the much improved technologies in its treatment. Thus, finding more effective treatment for NPC has become an urgent priority. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in most tumor cells while sparing normal cells. However, its potential in the treatment of NPC has been limited by the eventual emergence of drug resistance. Bcl-2 and Akt contribute to TRAIL resistance in some cancer cells. In this study, CNE-2 was found to be the most resistant NPC cell line to TRAIL, and whether Bcl-2 small-interfering RNA (siRNA) and phosphatidylinositol 3-kinase (PI3-K) inhibitors (LY294002 and Wortmannin) could prevent TRAIL resistance in CNE-2 was also investigated. Results showed that both Bcl-2 siRNA and PI3-K inhibitors could prevent TRAIL resistance in CNE-2. Bcl-2 siRNA sensitized CNE-2 by activating the intrinsic apoptotic pathway and PI3-K inhibitors sensitized CNE-2 by activating both intrinsic and extrinsic pathways. Further, simultaneously targeting Bcl-2 and Akt was found to be a more efficient approach to prevent TRAIL resistance in CNE-2 and this synergistic effect happened at the level of Bid downstream. At last, the combinative treatments did not enhance toxicity of TRAIL in MRC5, a human benign fibroblast cell line. This study suggests that simultaneously targeting Bcl-2 and Akt pathway might be effective in preventing TRAIL resistance of NPC cells.  相似文献   

20.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in combination with chemotherapeutic drugs induces a synergistic apoptotic response in cancer cells. TRAIL death receptors have also been implicated in chemotherapeutic drug-induced apoptosis. This has lead to TRAIL being proposed as a potential cancer treatment. In nude mice injected with human tumors, TRAIL reduces the size of these tumors without toxic side effects. We demonstrate that the epidermal growth factor (EGF) stimulation of human embryonic kidney cells HEK 293 and breast cancer cell line MDA MB 231 effectively protects these cells from TRAIL-induced apoptosis in a dose-dependent manner. This stimulation blocks apoptosis by inhibiting TRAIL-mediated cytochrome c release from the mitochondria and caspase 3-like activation. EGF survival response involves the activation of AKT. Expression of activated AKT was sufficient to block TRAIL-induced apoptosis, and kinase-inactive AKT expression blocked EGF-protective response. In contrast, inhibition of EGF stimulation of extracellular-regulated kinase (ERK) activity did not affect EGF protection. These findings indicate that EGF receptor activation provides a survival response against TRAIL-induced apoptosis by inhibiting mitochondrial cytochrome c release that is mediated by AKT activation in epithelial-derived cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号