首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main purpose of the present work is to study the mechanical behavior and durability performance of recycled steel fiber reinforced concrete (RSFRC) under a chloride environment. To this end, the effect of chloride attack on the load-carrying capacity of pre-cracked RSFRC round panels is investigated by performing round panel tests supported on three points (RPT-3ps), considering the influence of the crack width and the fiber distribution/orientation profile. In addition, the influence of the adopted chloride exposure conditions on the post-cracking constitutive laws of the developed RSFRC is also assessed by performing numerical simulations for the prediction of the long-term performance of RSFRC under these aggressive conditions. The tensile stress–crack width relationship of RSFRC is derived by performing an inverse analysis with the RPT-3ps results. The obtained experimental and numerical results show a negligible effect of the chloride attack on the post-cracking behavior of RSFRC for the chloride exposure conditions and pre-crack width levels adopted in this study.  相似文献   

2.
This research investigates the performance of Steel Fiber Reinforced Rubberized Concrete (SFRRC) that incorporates high volumes of End-of-life tire materials, (i.e., both rubber particles and recycled tire steel fibers) in strengthening existing reinforced concrete (RC) beams. The mechanical and durability properties were determined for an environmentally friendly SFRRC mixture that incorporates a large volume (60% by volume aggregate replacement) of rubber particles and is solely reinforced by recycled tire steel fibers. The material was assessed experimentally under flexural, compressive and impact loading, and thus results led to the development of a numerical model using the Finite Element Method. Furthermore, a numerical study on full-scale structural members was conducted, focusing on conventional RC beams strengthened with SFRRC layers. This research presents the first study where SFRRC is examined for structural strengthening of existing RC beams, aiming to enable the use of such novel materials in structural applications. The results were compared to respective results of beams strengthened with conventional RC layers. The study reveals that incorporation of End-of-life tire materials in concrete not only serves the purpose of recycling End-of-life tire products, but can also contribute to unique properties such as energy dissipation not attained by conventional concrete and therefore leading to superior performance as flexural strengthening material. It was found that by incorporating 60% by volume rubber particles in combination with recycled steel fibers, it increased the damping ratio of concrete by 75.4%. Furthermore, SFRRC was proven effective in enhancing the energy dissipation of existing structural members.  相似文献   

3.
Carbon fiber-reinforced concrete as a structural material is attractive for civil infrastructure because of its light weight, high strength, and resistance to corrosion. Ultra-high performance concrete, possessing excellent mechanical properties, utilizes randomly oriented one-inch long steel fibers that are 200 microns in diameter, increasing the concrete’s strength and durability, where steel fibers carry the tensile stress within the concrete similar to traditional rebar reinforcement and provide ductility. Virgin carbon fiber remains a market entry barrier for the high-volume production of fiber-reinforced concrete mix designs. In this research, the use of recycled carbon fiber to produce ultra-high-performance concrete is demonstrated for the first time. Recycled carbon fibers are a promising solution to mitigate costs and increase sustainability while retaining attractive mechanical properties as a reinforcement for concrete. A comprehensive study of process structure–properties relationships is conducted in this study for the use of recycled carbon fibers in ultra-high performance concrete. Factors such as pore formation and poor fiber distribution that can significantly affect its mechanical properties are evaluated. A mix design consisting of recycled carbon fiber and ultra-high-performance concrete was evaluated for mechanical properties and compared to an aerospace-grade and low-cost commercial carbon fiber with the same mix design. Additionally, the microstructure of concrete samples is evaluated non-destructively using high-resolution micro X-ray computed tomography to obtain 3D quantitative spatial pore size distribution information and fiber clumping. This study examines the compression, tension, and flexural properties of recycled carbon fibers reinforced concrete considering the microstructure of the concrete resulting from fiber dispersion.  相似文献   

4.
The construction industry relies heavily on concrete as a building material. The coarse aggregate makes up a substantial portion of the volume of concrete. However, the continued exploitation of granite rock for coarse aggregate results in an increase in the future generations’ demand for natural resources. In this investigation, coconut shell was used in the place of conventional aggregate to produce coconut shell lightweight concrete. Class F fly ash was used as a partial substitute for cement to reduce the high cement content of lightweight concrete. The impact of steel fiber addition on the compressive strength and flexural features of sustainable concrete was investigated. A 10% weight replacement of class F fly ash was used in the place of cement. Steel fiber was added at 0.25, 0.5, 0.75, and 1.0% of the concrete volume. The results revealed that the addition of steel fibers enhanced the compressive strength by up to 39%. The addition of steel fiber to reinforced coconut shell concrete beams increased the ultimate moment capacity by 5–14%. Flexural toughness was increased by up to 45%. The span/deflection ratio of all fiber-reinforced coconut shell concrete beams met the IS456 and BS 8110 requirements. Branson’s and the finite element models developed in this study agreed well with the experimental results. As a result, coconut shell concrete with steel fiber could be considered as a viable and environmentally-friendly construction material.  相似文献   

5.
The paper reports experimental research regarding the mechanical characteristics of concrete reinforced with natural cellulosic fibers like jute, sisal, sugarcane, and coconut. Each type of natural fiber, with an average of 30 mm length, was mixed with a concrete matrix in varying proportions of 0.5% to 3% mass. The tensile and compressive strength of the developed concrete samples with cellulosic fiber reinforcement gradually increased with the increasing proportion of natural cellulosic fibers up to 2%. A further increase in fiber loading fraction results in deterioration of the mechanical properties. By using jute and sisal fiber reinforcement, about 11.6% to 20.2% improvement in tensile and compressive strength, respectively, was observed compared to plain concrete, just by adding 2% of fibers in the concrete mix. Bending strength increased for the natural fiber-based concrete with up to 1.5% fiber loading. However, a decrease in bending strength was observed beyond 1.5% loading due to cracks at fiber−concrete interface. The impact performance showed gradual improvement with natural fiber loading of up to 2%. The water absorption capacity of natural cellulosic fiber reinforced concrete decreased substantially; however, it increased with the loading percent of fibers. The natural fiber reinforced concrete can be commercially used for interior or exterior pavements and flooring slabs as a sustainable construction material for the future.  相似文献   

6.
In this study, an artificial intelligence tool called gene expression programming (GEP) has been successfully applied to develop an empirical model that can predict the shear strength of steel fiber reinforced concrete beams. The proposed genetic model incorporates all the influencing parameters such as the geometric properties of the beam, the concrete compressive strength, the shear span-to-depth ratio, and the mechanical and material properties of steel fiber. Existing empirical models ignore the tensile strength of steel fibers, which exercise a strong influence on the crack propagation of concrete matrix, thereby affecting the beam shear strength. To overcome this limitation, an improved and robust empirical model is proposed herein that incorporates the fiber tensile strength along with the other influencing factors. For this purpose, an extensive experimental database subjected to four-point loading is constructed comprising results of 488 tests drawn from the literature. The data are divided based on different shapes (hooked or straight fiber) and the tensile strength of steel fiber. The empirical model is developed using this experimental database and statistically compared with previously established empirical equations. This comparison indicates that the proposed model shows significant improvement in predicting the shear strength of steel fiber reinforced concrete beams, thus substantiating the important role of fiber tensile strength.  相似文献   

7.
In order to reduce carbon dioxide (CO2) emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET) fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC) specimens cast with Hwangtoh admixtures (with and without PET fibers) possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco-friendly Hwangtoh concrete reinforced with recycled PET fibers as a structural material for modern construction.  相似文献   

8.
Geopolymer concrete has the potential to replace ordinary Portland cement which can reduce carbon dioxide emission to the environment. The addition of different amounts of steel fibers, as well as different types of end-shape fibers, could alter the performance of geopolymer concrete. The source of aluminosilicate (fly ash) used in the production of geopolymer concrete may lead to a different result. This study focuses on the comparison between Malaysian fly ash geopolymer concrete with the addition of hooked steel fibers and geopolymer concrete with the addition of straight-end steel fibers to the physical and mechanical properties. Malaysian fly ash was first characterized by X-ray fluorescence (XRF) to identify the chemical composition. The sample of steel fiber reinforced geopolymer concrete was produced by mixing fly ash, alkali activators, aggregates, and specific amounts of hook or straight steel fibers. The steel fibers addition for both types of fibers are 0%, 0.5%, 1.0%, 1.5%, and 2.0% by volume percentage. The samples were cured at room temperature. The physical properties (slump, density, and water absorption) of reinforced geopolymer concrete were studied. Meanwhile, a mechanical performance which is compressive, as well as the flexural strength was studied. The results show that the pattern in physical properties of geopolymer concrete for both types of fibers addition is almost similar where the slump is decreased with density and water absorption is increased with the increasing amount of fibers addition. However, the addition of hook steel fiber to the geopolymer concrete produced a lower slump than the addition of straight steel fibers. Meanwhile, the addition of hook steel fiber to the geopolymer concrete shows a higher density and water absorption compared to the sample with the addition of straight steel fibers. However, the difference is not significant. Besides, samples with the addition of hook steel fibers give better performance for compressive and flexural strength compared to the samples with the addition of straight steel fibers where the highest is at 1.0% of fibers addition.  相似文献   

9.
Recognizing that steel fibers can supplement the brittle tensile characteristics of concrete, many studies have been conducted on the shear performance of steel fiber reinforced concrete (SFRC) members. However, previous studies were mostly focused on the shear strength and proposed empirical shear strength equations based on their experimental results. Thus, this study attempts to estimate the strains and stresses in steel fibers by considering the detailed characteristics of steel fibers in SFRC members, from which more accurate estimation on the shear behavior and strength of SFRC members is possible, and the failure mode of steel fibers can be also identified. Four shear behavior models for SFRC members have been proposed, which have been modified from the softened truss models for reinforced concrete members, and they can estimate the contribution of steel fibers to the total shear strength of the SFRC member. The performances of all the models proposed in this study were also evaluated by a large number of test results. The contribution of steel fibers to the shear strength varied from 5% to 50% according to their amount, and the most optimized volume fraction of steel fibers was estimated as 1%–1.5%, in terms of shear performance.  相似文献   

10.
The greatest weakness of concrete as a construction material is its brittleness and low fracture energy absorption capacity until failure occurs. In order to improve concrete strength and durability, silica fume SF is introduced into the mixture, which at the same time leads to an increase in the brittleness of concrete. To improve the ductility and toughness of concrete, short steel fibers have been incorporated into concrete. Steel fibers and silica fume are jointly preferred for concrete design in order to obtain concrete with high strength and ductility. It is well-known that silica fume content and fiber properties, such as aspect ratio and volume ratio, directly affect the properties of SFRCs. The mixture design of steel-fiber-reinforced concrete (SFRC) with SF addition is a very important issue in terms of economy and performance. In this study, an experimental design was used to study the toughness and splitting tensile strength of SFRC with the response surface method (RSM). The models established by the RSM were used to optimize the design of SFRC in terms of the usage of optimal silica fume content, and optimal steel fiber volume and aspect ratio. Optimum silica fume content and fiber volume ratio values were determined using the D-optimal design method so that the steel fiber volume ratio was at the minimum and the bending toughness and splitting tensile strength were at the maximum. The amount of silica fume used as a cement replacement, aspect ratio, and volume fraction of steel fiber were chosen as independent variables in the experiment. Experimentally obtained mechanical properties of SFRC such as compression, bending, splitting, modulus of elasticity, toughness, and the toughness index were the dependent variables. A good correlation was observed between the dependent and independent variables included in the model. As a result of the optimization, optimum steel fiber volume was determined as 0.70% and silica fume content was determined as 15% for both aspect ratios.  相似文献   

11.
Worldwide concern and ascendancy of emissions and carbon footprints have propelled a substantial number of explorations into green concrete technology. Furthermore, construction material costs have increased along with their gradual impact on the environment, which has led researchers to recognize the importance of natural fibers in improving the durability and mechanical properties of concrete. Natural fibers are abundantly available making them relatively relevant as a reinforcing material in concrete. Presently, it should be recognized that most construction products are manufactured using resources that demand a high quantity of energy and are not sustainable, which may lead to a global crisis. Consequently, the use of plant fibers in lightweight foamed concrete (LFC) is deemed a practical possibility for making concrete a sustainable material that responds to this dilemma. The main objective of this study is to investigate the effect of the addition of lignocellulosic fibers on the performance of LFC. In this investigation, four different types of lignocellulosic plant fibers were considered which were kenaf, ramie, hemp and jute fibers. A total of ten mixes were made and tested in this study. LFC samples with a density of 700 kg/m3 and 1400 kg/m3 were fabricated. The weight fraction for the lignocellulosic plant fibers was kept at 0.45%. The durability parameters assessed were flowability, water absorption capability, porosity and ultrasonic pulse velocity (UPV). The results revealed that the presence of cellulosic plant fibers in LFC plays an important role in enhancing all the durability parameters considered in this study. For workability, the addition of ramie fiber led to the lowest slump while the inclusion of kenaf fiber provided optimum UPV. For porosity and water absorption, the addition of jute fiber led to the best results.  相似文献   

12.
The push for sustainability in the construction sector has demanded the use of increasingly renewable resources. These natural fibers are biodegradable and non-toxic, and their mechanical capabilities are superior to those of synthetic fibers in terms of strength and durability. A lot of research recommends coconut fibers as an alternative to synthetic fibers. However, the knowledge is scattered, and no one can easily judge the suitability of coconut fibers in concrete. This paper presents a summary of research progress on coconut fiber (natural fibers) reinforced concrete. The effects of coconut fibers on the properties of concrete are reviewed. Factors affecting the fresh, hardened, and durability properties of concrete reinforced with coconut fiber are discussed. Results indicate that coconut fiber improved the mechanical performance of concrete due to crack prevention, similar to the synthetic fibers but decreased the flowability of concrete. However, coconut fibers improved flexure strength more effectively than compressive strength. Furthermore, improvement in some durability performance was also observed, but less information is available in this regard. Moreover, the optimum dose is an important parameter for high-strength concrete. The majority of researchers indicate that 3.0% coconut fiber is the optimum dose. The overall study demonstrates that coconut fibers have the creditability to be used in concrete instead of synthetic fibers.  相似文献   

13.
Due to the sharp and corrosion-prone features of steel fibers, there is a demand for ultra-high-performance concrete (UHPC) reinforced with nonmetallic fibers. In this paper, glass fiber (GF) and the high-performance polypropylene (HPP) fiber were selected to prepare UHPC, and the effects of different fibers on the compressive, tensile and bending properties of UHPC were investigated, experimentally and numerically. Then, the damage evolution of UHPC was further studied numerically, adopting the concrete damaged plasticity (CDP) model. The difference between the simulation values and experimental values was within 5.0%, verifying the reliability of the numerical model. The results indicate that 2.0% fiber content in UHPC provides better mechanical properties. In addition, the glass fiber was more significant in strengthening the effect. Compared with HPP-UHPC, the compressive, tensile and flexural strength of GF-UHPC increased by about 20%, 30% and 40%, respectively. However, the flexural toughness indexes I5, I10 and I20 of HPP-UHPC were about 1.2, 2.0 and 3.8 times those of GF-UHPC, respectively, showing that the toughening effect of the HPP fiber is better.  相似文献   

14.
The punching shear failure of reinforced concrete (RC) flat slabs is an undesirable type of failure, as it is sudden and brittle. This paper presents an experimental and numerical study to explore the behavior of flat slabs made of different types of concrete under the influence of punching shear. Experimental tests were carried out on four groups of flat slabs, each group representing a different type of concrete: ordinary normal concrete (NC), high-strength concrete (HSC), strain-hardening cementitious composite concrete (SHCC), and ultra-high-performance fiber concrete (UHPFC). Each group consisted of six slabs, one representing an unreinforced control slab other than the reinforcement of the bottom mesh, and the others representing slabs internally reinforced with SHCC-filled steel tubes and high-strength bolts. An analytical equation was used to predict the punching shear capacity of slabs internally reinforced using steel assemblies. A numerical model was proposed using the ABAQUS program, and was validated by comparing its results with our experimental results. Finally, a case study was performed on large-scale slabs. The results showed that using steel assemblies inside NC slabs increased the slab’s punching shear capacity but does not completely prevent punching shear failure. Internally unreinforced slabs made of UHPFC and SHCC were able to avoid punching shear failure and collapse in a ductile bending pattern due to the high compressive and tensile strength of these types of concrete. The proposed analytical method succeeded in predicting the collapse load of slabs reinforced with steel assemblies with a difference not exceeding 9%.  相似文献   

15.
Fiber reinforcement of concrete is an effective technique of providing ductility to concrete, increasing its flexural residual strength while reducing its potential for cracking due to drying shrinkage. There are currently a wide variety of industrial fibers on the market. Recycled steel fibers (RSF) from tires could offer a viable substitute of industrialized fibers in a more sustainable and eco-friendly way. However, mistrust exists among users, based on fear that the recycling process will reduce the performance, coupled with the difficulty of characterization of the geometry of the RSF, as a consequence of the size variability introduced by the recycling process. This work compares the behavior of RSF from tires compared with industrialized steel or polypropylene fibers, evaluating the fresh state, compressive strength, flexural residual strength, and drying behavior. The concept of Equivalent Fiber Length (EFL) is also defined to help the statistical geometrical characterization of the RSF. A microstructural analysis was carried out to evaluate the integration of the fiber in the matrix, as well as the possible presence of contaminants. The conclusion is reached that the addition of RSF has a similar effect to that of industrialized fibers on concrete’s properties when added at the same percentage.  相似文献   

16.
The aim of this paper is to investigate the flexural performance of a new steel–concrete composite beam system, which is required to carry higher loads when applied in flooring systems with less self-weight and cost compared with conventional composite beams. This new composite member is prepared by filling a single cold-formed steel C-section with concrete material that has varied lightweight-recycled aggregates. In addition, varied stiffening scenarios are suggested to improve the composite behavior of this member, since these cold-formed C-sections are of a slender cross-section and more likely to buckle and twist under high bending loads than those of hot-rolled C-sections. The influence of using four different lightweight-recycled aggregates that combine together in the infill concrete material was investigated. These recycled aggregates are recycled concrete aggregate (RCA), expanded polystyrene (EPS) beads, crumb rubber aggregates (CRA) and fine glass aggregates (FGA). For this purpose, 14 samples of cold-formed galvanized steel C-purlin were filled with concrete material (containing 0 to 100% recycled aggregates) which are experimentally tested under pure bending load, and 1 additional sample was tested without the filling material. Further numerical models were prepared and analyzed using finite element analysis software to investigate the effects of additional parameters that were not experimentally examined. Generally, the results confirm that filling the C-sections with concrete material that contains varied percentages of recycled aggregates offer significantly improved the flexural stiffness, bending capacity, and ductility performances. For example, using infill concrete materials with 0% and 100% recycled aggregate replacement increased the bending capacity of hollow C-section by about 11.4 and 8.6 times, respectively. Furthermore, stiffening of the concrete-filled C-sections with steel strips or screw connectors eventually improved the composite behavior of the specimens which led to an increase in their bending capacities accordingly, and this improvement enhanced more with an increased number of these strips and connectors.  相似文献   

17.
There is increased interest in applying electromagnetic (EM) shielding to prevent EM interference, which destroys electronic circuits. The EM shielding’s performance is closely related to the electrical conductivity and can be improved by incorporating conductive materials. The weight of a structure can be reduced by incorporating lightweight aggregates and replacing the steel rebars with CFRP rebars. In this study, the effects of lightweight coarse aggregate and CFRP rebars on the mechanical and electrical characteristics of concrete were investigated, considering the steel fibers’ incorporation. The lightweight coarse aggregates decreased the density and strength of concrete and increased the electrical conductivity of the concrete, owing to its metallic contents. The steel fibers further increased the electrical conductivity of the lightweight aggregate concrete. These components improved the EM shielding performance, and the steel fibers showed the best performance by increasing shielding effectiveness by at least 23 dB. The CFRP rebars behaved similarly to steel rebars because of their carbon fiber content. When no steel fiber was mixed, the shielding effectiveness increased by approximately 2.8 times with reduced spacing of CFRP rebars. This study demonstrates that lightweight aggregate concrete reinforced with steel fibers exhibits superior mechanical and electrical characteristics for concrete and construction industries.  相似文献   

18.
High performance fiber-reinforced concrete (HPFRC) has been frequently investigated in recent years. Plenty of studies have focused on different materials and types of fibers in combination with the concrete matrix. Experimental tests show that fiber dosage improves the energy absorption capacity of concrete and enhances the robustness of concrete elements. Fiber reinforced concrete has also been illustrated to be a material for developing infrastructure sustainability in RC elements like façade plates, columns, beams, or walls. Due to increasing costs of the produced fiber reinforced concrete and to ensure the serviceability limit state of construction elements, there is a demand to analyze the necessary fiber dosage in the concrete composition. It is expected that the surface and length of used fiber in combination with their dosage influence the structure of fresh and hardened concrete. This work presents an investigation of the mechanical parameters of HPFRC with different polymer fiber dosage. Tests were carried out on a mixture with polypropylene and polyvinyl alcohol fiber with dosages of 15, 25, and 35 kg/m3 as well as with control concrete without fiber. Differences were observed in the compressive strength and in the modulus of elasticity as well as in the flexural and splitting tensile strength. The flexural tensile strength test was conducted on two different element shapes: square panel and beam samples. These mechanical properties could lead to recommendations for designers of façade elements made of HPFRC.  相似文献   

19.
In this study, we estimate the potential efficiency of waste fishing net (WFN) fibers as concrete reinforcements. Three WFN fiber concentrations (1, 2, and 3% by volume) were mixed with concrete. Compressive strength, toughness, splitting tensile strength, and biaxial flexural tests were conducted. Compressive strength decreased but other properties increased as a function of fiber proportions. According to the mechanical strength observations and the ductility number, WFN fibers yielded benefits in crack arresting that improved the postcracking behavior and transformed concrete from a brittle into a quasi-brittle material. It is inferred that WFN fiber is a recycled and eco-friendly material that can be utilized as potential concrete reinforcement.  相似文献   

20.
Corrosion creates a significant degradation mechanism in reinforced concrete (RC) structures, which would require a high cost of maintenance and repair in affected buildings. However, as the cost of repairing corrosion-damaged structures is high, it is therefore pertinent to develop alternative eco-friendly and sustainable methods. In this study, structural retrofitting of corroded reinforced concrete beams was performed using bamboo fiber laminate. Three reinforced normal weight concrete beams were produced, two of which were exposed to laboratory simulated corrosion medium, and the remaining one sample served as control. Upon completion of the corrosion cycle, one of the two corroded beams was retrofitted externally with a prefabricated bamboo fiber laminate by bonding the laminate to the beam surface with the aid of an epoxy resin. The three beams were subjected to loading on a four-point ultimate testing machine, and the loads with corresponding deflections were recorded through the entire load cycle of the beams. Finally, the mass loss of embedded steel reinforcements was determined to measure the effect of corrosion on the beams and the steel. The result showed that corroded beams strengthened with bamboo laminates increase the bearing capacity. Using a single bamboo laminate in the tensile region of the corroded beam increased the ultimate load capacity of the beam up to 21.1% than the corroded beam without retrofit. It was demonstrated in this study that the use of bamboo fiber polymer for strengthening destressed RC beams is a more sustainable approach than the conventional synthetic fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号