首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study investigates effect of the additive consisting of natural zeolite (clinoptilolite) and soda lime glass powder on the hydration, mechanical properties and porosity of Portland cement concrete. The effect of mineral additive on the technological, physical-mechanical properties and porosity of the mortar was investigated by increasing the content of natural zeolite and glass powder added to the mortar up to 20% by weight of cement in increments of 5% and different particles size of natural zeolite. The mixes with the best technological and mechanical properties were identified and further studies were conducted by replacing 10% and 15% of cement with natural zeolite and soda lime glass with an average grain size of 59.3 μm, 29.0 μm or 3.6 μm of zeolite, and 29.6 μm of glass powder. The hydration process and microstructure of hardened cement paste modified with the aforementioned mineral additives was analysed by microcalorimetry, X-ray diffraction tests and thermogravimetric analysis. The optimal composition of cement paste and particle size distribution of natural zeolite were determined to achieve the higher flexural and compressive strength and lower open porosity. The mixture of mineral additives has the highest effect in terms of flexural and compressive strength and open porosity when added at the proportion 75:15:10 (cement:natural zeolite:soda lime glass) and when zeolite with an average particle size of about 3.6 μm is used  相似文献   

2.
Concrete is susceptible to damage during and after high-temperature exposure (most frequently in fire). The concrete partial strength re-gain after a high-temperature exposure obtained by the rehydration process is undoubtedly an advantage of this construction material. However, to use fire-damaged concrete, one has to know why the strength deteriorates and what makes the partial re-gain. Within this framework, the paper aims to find what factors influence the strength re-gain. Moreover, an attempt is made to introduce a measure collecting various influences such as the modified heat accumulation factor—accounting only for that which is important for the process, the temperature decomposing cement paste (i.e., above 400 °C). Several factors, i.e., peak temperature, heating time and rate, cooling regime, post-fire re-curing, concrete composition, age of concrete at exposure, porosity, load level at exposure, and heat accumulation are presented by their influence on the relative residual compressive strength, i.e., a portion of initial strength that is obtained after temperature exposure and strength re-gain. Since the relative strength unifies various concretes, a more general assessment and discussion are presented based on the experimental results and correlation factors. As fundamental influences determining the residual strength, the heating time, peak temperature, cooling, or post-heating re-curing regimes are found with the load level at exposure being inadequately examined. This paper also shows the superiority of the modified heat accumulation factor, but the results obtained are not satisfactory, and additional experimental data are necessary to develop a theoretical model of the residual strength.  相似文献   

3.
Blast furnace ferronickel slag (BFFS) is generated in the production of ferronickel alloys and is used as cement replacement in concrete or mortar. The effectivity in reducing cement consumption and improving performance are limited. By referring to the paste replacement method, this work used BFFS to replace an equal volume of the white Portland cement paste to obtain greater performance enhancement. BFFS was used with five levels of replacement (0%, 5%, 10%, 15%, 20%) and four water-to-cement ratios (0.40, 0.45, 0.50, 0.55) were designed. Fluidity, mechanical strength, hydration products, and pore structure of every mixture were measured. The results showed that the workability of the mortars decreased due to the reduced volume of water, but the 28-day compressive strength of the mortars increased, and the cement content of the mortars was also reduced by 33 wt %. The X-ray diffraction (XRD) patterns revealed that there existed a carboaluminate phase, and the presence of the ettringite was stabilized, indicating that the accumulating amount of the hydration products of the mortar increased. Furthermore, the BFFS could consume the portlandite and free water to form a higher amount of chemically bound water due to its pozzolanic activity. A high degree of hydration and a large volume of the hydration products refined the porosity of the hardened mortars, which explained the enhancement of the strength of the mortars. Compared to the cement replacement method, the paste replacement method was more effective in preparing eco-friendly mortar or concrete by recycling BFFS for reducing the cement content of the mortar while improving its strength.  相似文献   

4.
The objective of this research was to study the effect of an optimal mechanical treatment method to reduce the mortar adhered on recycled aggregates (RCA) on the long-term mechanical properties and durability of concretes containing RCA at different replacement levels. It was found that concretes incorporating treated RCA exhibited sharper and more significant increase on 90- and 365-day compressive strengths than any other investigated mixture. The same mixtures also benefitted from a ‘shrinkage-controlling’ effect, where strains and mass losses were reduced by almost 15% and 10%, respectively, compared to the reference concrete. While sulfate resistance and carbonation resistance are predominantly defined by the hydration products available within the cement paste and not to a large extent by the aggregate type and quality, the incorporation of either treated or untreated RCA in concrete did not appear to expose RACs to significant durability threats.  相似文献   

5.
To improve the durability of cement-based revetment materials serving in different positions relative to the water level, slag powder and polypropylene fibers were added into cement to prepare paste, mortar, and concrete. Based on three simulated experiments of high-humidity air, dry–wet cycles-coupled chloride erosion, and complete immersion-coupled chloride erosion, the half-year durability of cement-based revetment materials was investigated. An abundant amount of Ettringite containing chloride was formed in the pores of the cement, and its formation was accelerated by dry–wet cycles. Replacing 30% of cement by slag powder and adding 0.1 vol.% of polypropylene fibers helped concrete in the intertidal zone to obtain a compressive strength of 47.58 MPa after erosion, equal to 159% of the reference. Slag powder was found to induce cement to form Friedel’s salt and C-S-H with a more amorphous structure, increasing its chemical binding ability and physical adsorption ability to chloride ions, and reduce the chloride ions’ penetration depth of concrete from 22.5 to 12.6 mm. Polypropylene fibers controlled the direction of surface cracks to be perpendicular to the specimen’s sides. These findings lay a foundation for the design of high-durability cement-based revetment materials serving in costal environments.  相似文献   

6.
This paper presents an experimental study on use of hot-melt polyamide (HMP) to prepare mortar specimens with improved crack healing and engineering properties. The role of HMP in the crack repairing of cement mortar subjected to several rounds of heat treatment was investigated. Compatibility between HMP and hydraulic cement was investigated through X-ray diffraction (XRD) and Fourier transform infrared spectra (FTIR) technology. Mortar specimens were prepared using standard cement mortar mixes with HMP at 1%, 3% and 5% (by volume) for fine aggregate substitute. After curing for 28 days, HMP specimens were subjected to heating at temperature of 160 °C for one, two, and three days and then natural cooling down to ambient temperature. Mechanical and durability properties of the heated HMP mortars were evaluated and compared with those of the corresponding mortars without heating. The microscopic observation of the interfacial transition zone (ITZ) of HMP mortar was conducted through environmental scanning electron microscopy (ESEM). Results reveal that incorporation of HMP improves the workability of the HMP/cement binder while leading to decrease in compressive strength and durability. The heated HMP mortars after exposure to heating for one, two, and three days exhibit no obvious change in compressive strength while presenting notable increase in flexural strength and durability compared with the corresponding mortars without heating. The XRD, FTIR and ESEM analyses indicate that no obvious chemical reaction occurs between HMP and hydraulic cement, and thus the self-repairing for interfacial micro-crack in HMP/cement composite system is ascribed to the physical adhesion of HMP to cement matrix rather than the chemical bonding between them.  相似文献   

7.
As the construction of hydrotechnical and energy facilities grows worldwide, so does the need for special heavyweight concrete. This study presents the analysis of the influence of waste-metal particle filler (WMP) on Portland cement (PC) paste and mortars with pozzolanic (microsilica and metakaolin) additives in terms of the hydration process, structure development, and physical–mechanical properties during 28 days of hardening. Results have shown that waste-metal particle fillers prolong the course of PC hydration. The addition of pozzolanic additives by 37% increased the total heat value and the ultrasound propagation velocity (UPV) in WMP-containing paste by 16%; however, in the paste with only WMP, the UPV is 4% lower than in the WMP-free paste. The density of waste-metal particle fillers in the free mortar was about two times lower than waste-metal particle fillers containing mortar. Due to the lower water absorption, the compressive strength of WMP-free mortar after 28 days of hardening achieved 42.1 MPa, which is about 14% higher than in mortar with waste-metal particle filler. The addition of pozzolanic additives decreased water absorption and increased the compressive strength of waste-metal particle filler containing mortar by 22%, compared to pozzolanic additive-free waste-metal particle fillers containing mortar. The pozzolanic additives facilitated a less porous matrix and improved the contact zone between the cement matrix and waste-metal particle fillers. The results of the study showed that pozzolanic additives can solve difficulties in local waste-metal particle fillers application in heavyweight concrete. The successful development of heavyweight concrete with waste-metal particle fillers and pozzolanic additives can significantly expand the possibility of creating special concrete using different local waste. The heavyweight concrete developed by using waste-metal particle fillers is suitable for being used in load balancing and in hydrotechnical foundations.  相似文献   

8.
The influence of a complex application of both plasticizing and air-entraining effects on concrete with polycarboxylate ether superplasticizer (PCE), air-entraining admixture (AIR), or an anti-foaming agent (AF) is analyzed in this paper with considerations for on the air content, workability, flexural and compressive strength, and freezing–thawing resistance of hardened cement mixtures. The effect of the complex behavior of PCE, AIR, and AF on the porosity of hardened cement mortar (HCM) and freezing–thawing resistance was investigated; freezing–thawing resistance prediction methodology for plasticized mortar was also evaluated. The results presented in the article demonstrate the beneficial influence of entrained air content on consistency and stability of cement mortar, closed porosity, and durability of concrete. Freezing–thawing factor KF depending on porosity parameters can be used for freezing–thawing resistance prediction. With both plasticizing (decrease in the water–cement ratio) and air-entraining effects (increase in the amount of entrained air content), the frost resistance of concrete increases, scaling decreases exponentially, and it is possible to obtain great frost resistance for cement-based material.  相似文献   

9.
The study analyzes the anisotropy effect for ceramic masonry based on experimental tests of samples made of 25 × 12 × 6.5 cm3 solid brick elements with compressive strength fb = 44.1 MPa and cement mortar with compressive strength fm = 10.9 MPa. The samples were loaded in a single plane with a joint angle that varied from the horizontal plane. The load was applied in a vertical direction. The samples were loaded at angles of 90°, 67.5°, 45°, 22.5°, and 0° toward the bed joints. The most unfavourable cases were determined. It was observed that the anisotropy of the masonry significantly influences the load-bearing capacity of the walls depending on the angle of the compressive stresses trajectory. Approximation curves and equations for compressive strength, Young’s modulus, and Poisson’s coefficient were proposed. It was observed that Young’s modulus and Poisson’s ratio will also change depending on the trajectory of compressive stresses as a function of the joint angle. Experimental tests allowed to determine the failure mechanism in prepared specimens. The study allowed to estimate the masonry strength with the load acting at different angles toward the bed joints.  相似文献   

10.
In this study, the compressive strength and water contact angle of mortar specimens prepared by mixing two types of water repellent with ordinary Portland cement (OPC) and rapid-hardening cement mortar were measured before and after surface abrasion. In addition, the hydration products and chemical bonding of cement mortar with the repellents were examined using X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (TG-DTA), and Fourier-transform infrared spectroscopy (FT-IR) to evaluate the performance of these cement mortar mixtures as repair materials. We found that the fast-hardening cement mortar mixture containing the oligomer water repellent showed the best performance with a high compressive strength and large water contact angle. With the oligomer water repellent, the rapid-hardening cement mortar mixture showed contact angles of 131° and 126° even after a 2 mm abrasion, thereby confirming that the water repellent secured hydrophobicity through strong bonding with the entire cement mortar as well as its surface. The compressive strengths were found to be 34.5 MPa at 3 h and 54.8 MPa at 28 days, confirming that hydration occurred well despite the addition of water repellent.  相似文献   

11.
The aim of the research was to determine how the admixture of nanosilica affects the structure and mechanical performance of cement concrete exposed to high temperatures (200, 400, 600, and 800 °C). The structural tests were carried out on the cement paste and concrete using the methods of thermogravimetric analysis, mercury porosimetry, and scanning electron microscopy. The results show that despite the growth of the cement matrix’s total porosity with an increasing amount of nanosilica, the resistance to high temperature improves. Such behavior is the result of not only the thermal characteristics of nanosilica itself but also of the porosity structure in the cement matrix and using the effective method of dispersing the nanostructures in concrete. The nanosilica densifies the structure of the concrete, limiting the number of the pores with diameters from 0.3 to 300 μm, which leads to limitation of the microcracks, particularly in the coarse aggregate-cement matrix contact zone. This phenomenon, in turn, diminishes the cracking of the specimens containing nanosilica at high temperatures and improves the mechanical strength.  相似文献   

12.
Existing concrete random aggregate modeling methods (CRAMMs) have deficiencies in in the parameterization of the mesoscale pore structure. A novel CRAMM is proposed, whose pore structure is determined by the pore gradation, total porosity, sub-porosity, and pore size of each pore gradation segment. To study the influence of pore structure on the mechanical properties of concrete, 25 mesoscopic concrete specimens with the same aggregate structure but different meso-scale pore structures are constructed and subjected to uniaxial compression tests. For the first time, the influence of sub-porosity of each pore gradation segment, average pore radius (APR), pore specific surface area (PSSA), and total porosity on concrete failure process, compressive strength, peak strain, and elastic modulus were quantitatively and qualitatively analyzed. Results indicate that the pore structure makes the germination and propagation of the damage in cement mortar show obvious locality and affects the formation and expansion of macroscopic cracks. However, it does not accelerate the propagation of the damage in cement mortar from the periphery to the center of the specimen, nor does it change the phenomenon that the ITZ is more damaged than other meso-components of concrete before peak stress. Macroscopic cracks occur in the descending section of the stress–strain curve, and the sudden drops in the descending section of the stress–strain curve are often accompanied by the generation and expansion of macroscopic cracks. The quadratic polynomial, exponential, and power functions can well fit the relationship between total porosity and compressive strength and the relationship between PSSA and compressive strength. The linear, exponential, and power functions can well reflect the relationship between total porosity and compressive modulus and the relationship between compressive modulus and PSSA. For concrete specimens with the same total porosity, the elastic modulus and strength show randomness with the increase in the sub-porosity of macropores and are basically not affected by the APR. Based on the grey relational analysis, the effects of pore structure parameters on the elastic modulus and compressive strength are in the same order: total porosity > T [k1,k2] > T [k2,k3] > T [k3,k4] > T [k4,k5] > AVR > PSSA. The order of influence of the pore structure parameters on the peak strain is: T [k2,k3] > T [k1,k2] > T [k3,k4] > T [k4,k5] > APR > PSSA > total porosity.  相似文献   

13.
Recently, as a supplement of cement, the utilization of pozzolanic materials in cement and concrete manufacturing has increased significantly. This study investigates the scope to use pozzolanic wastes (slag, palm oil fuel ash and rice husk ash) as an alkali activated binder (AAB) that can be used as an alternative to cement. To activate these materials, sodium hydroxide solution was used at 1.0, 2.5 and 5.0 molar concentration added into the mortar, separately. The required solution was used to maintain the flow of mortar at 110% ± 5%. The consistency and setting time of the AAB-paste were determined. Mortar was tested for its flow, compressive strength, porosity, water absorption and thermal resistance (heating at 700 °C) and investigated by scanning electron microscopy. The experimental results reveal that AAB-mortar exhibits less flow than that of ordinary Portland cement (OPC). Surprisingly, AAB-mortars (with 2.5 molar solution) achieved a compressive strength of 34.3 MPa at 28 days, while OPC shows that of 43.9 MPa under the same conditions. Although water absorption and porosity of the AAB-mortar are slightly high, it shows excellent thermal resistance compared to OPC. Therefore, based on the test results, it can be concluded that in the presence of a chemical activator, the aforementioned pozzolans can be used as an alternative material for cement.  相似文献   

14.
A newly proposed modified non-contact electrical resistivity measurement was used to test the resistivity of concrete and cement mortar. The oxygen diffusion coefficients of concrete and mortar were determined by a gas diffusion measurement, and the capillary porosity of concrete and cement mortar was measured by mercury intrusion porosimetry (MIP) measurement. The obtained electrical resistivity and capillary porosity results were verified with other researchers’ data, the measured electrical resistivity results can be estimated by a simple equation from the capillary porosity results. The obtained oxygen diffusion coefficient results were quantitatively correlated with capillary porosity and electrical resistivity measurement results. The proposed equations can be practically used to assess the electrical resistivity and oxygen diffusion coefficient.  相似文献   

15.
Underwater concrete is a cohesive self-consolidated concrete used for concreting underwater structures such as bridge piers. Conventional concrete used anti-washout admixture (AWA) to form a high-viscosity underwater concrete to minimise the dispersion of concrete material into the surrounding water. The reduction of quality for conventional concrete is mainly due to the washing out of cement and fine particles upon casting in the water. This research focused on the detailed investigations into the setting time, washout effect, compressive strength, and chemical composition analysis of alkali-activated fly ash (AAFA) paste through underwater placement in seawater and freshwater. Class C fly ash as source materials, sodium silicate, and sodium hydroxide solution as alkaline activator were used for this study. Specimens produced through underwater placement in seawater showed impressive performance with strength 71.10 MPa on 28 days. According to the Standard of the Japan Society of Civil Engineers (JSCE), the strength of specimens for underwater placement must not be lower than 80% of the specimen’s strength prepared in dry conditions. As result, the AAFA specimens only showed 12.11% reduction in strength compared to the specimen prepared in dry conditions, thus proving that AAFA paste has high potential to be applied in seawater and freshwater applications.  相似文献   

16.
Compared with nanosilica collected in a gaseous state, nanosilica sol has great economic value and application significance for improving the performance of concrete and mortar. In this study, the influence of nanosilica sol on the hydration process of different kinds of cement is studied by means of hydration heat analysis, X-ray diffraction analysis (XRD) and other methods, and the properties of mortar such as setting time, mechanical properties and porosity are also studied to characterize the influence of nanosilica sol on the macroscopic properties of mortar. The experimental results show that nanosilica sol can accelerate the hydration rate of two kinds of cement and promote the hydration reaction degree of cement, and this promotion effect increases with the increase in nanosilica sol content. At the same time, nanosilica sol can significantly shorten the setting time of the two kinds of cement, and it is more obvious with the increase in content. Excessive content of nanosilica sol will adversely affect the permeability resistance of mortar. It may be caused by the weak interval formed by nanosilica particle clusters in the mortar matrix, which can be supported by the mortar pore structure distribution test. At the same time, the influence of nanosilica sol on the hydration of the two kinds of cement is different, and the compressive strength of HBSAC cement mortar increases first and then decreases after adding nanosilica sol; However, the compressive strength of P·O 42.5 cement mortar increases gradually after adding nanometer silica sol. This shows that nanosilica sol does not effectively promote the hydration of β-C2S in high belite sulfoaluminate cement (HBSAC) mortar. Based on the above experimental results, it can be concluded that when the content of nanosilica sol is about 1%, it has the best promotion effect on the hydration of the two kinds of cement and the performance of mortar.  相似文献   

17.
At present, reducing carbon emissions is an urgent problem that needs to be solved in the cement industry. This study used three mineral admixtures materials: limestone powder (0–10%), metakaolin (0–15%), and fly ash (0–30%). Binary, ternary, and quaternary pastes were prepared, and the specimens’ workability, compressive strength, ultrasonic pulse speed, surface resistivity, and the heat of hydration were studied; X-ray diffraction and attenuated total reflection Fourier transform infrared tests were conducted. In addition, the influence of supplementary cementitious materials on the compressive strength and durability of the blended paste and the sustainable development of the quaternary-blended paste was analyzed. The experimental results are summarized as follows: (1) metakaolin can reduce the workability of cement paste; (2) the addition of alternative materials can promote cement hydration and help improve long-term compressive strength; (3) surface resistivity tests show that adding alternative materials can increase the value of surface resistivity; (4) the quaternary-blended paste can greatly reduce the accumulated heat of hydration; (5) increasing the amount of supplementary cementitious materials can effectively reduce carbon emissions compared with pure cement paste. In summary, the quaternary-blended paste has great advantages in terms of durability and sustainability and has good development prospects.  相似文献   

18.
The impregnation of lightweight aggregate (LWA) is an alternative method to its pre-moistening, which is used to limit the loss of fresh concrete workability due to the aggregate’s ability to absorb a great amount of mixing water. The aim of this study was to access the effectiveness, by pre-coating LWAs with cement paste, in modifying the properties of concrete composites. Two types of lightweight aggregates (Lytag and Leca) characterized with a relatively open-structure shell were selected. The other changeable parameters taken into consideration in this research were: LWA size, initial moisture of aggregate before the impregnation process and type of cement paste applied as an impregnant. Sixteen concretes prepared with pre-moistened and pre-coated lightweight aggregates were subject to a density test in different moisture conditions, a water absorption test and a compressive strength test. On the one hand, the pre-coating of LWAs with cement paste resulted in a relatively slight increase in concrete density (by up to 19%) compared to the pre-moistening of LWAs. On the other hand, it caused a very significant reduction (by up to 52%) in the composite’s water absorption and an incomparably greater growth (by up to 107%) in compressive strength. The most crucial factors determining the effectiveness of impregnation of LWAs with cement pastes in improvement of composite properties were the aggregate type and its size. The composition of impregnating slurry and the initial moisture content of LWA before pre-coating also mattered.  相似文献   

19.
This study aims to develop highly durable, mineral carbonation-based, resource-recycling, secondary cement products based on supercritical carbon dioxide (CO2) curing as part of carbon capture utilization technology that permanently fixes captured CO2. To investigate the basic characteristics of secondary cement products containing concrete sludge waste (CSW) as the main materials after supercritical CO2 curing, the compressive strengths of the paste and mortar (fabricated by using CSW as the main binder), ordinary Portland cement, blast furnace slag powder, and fly ash as admixtures were evaluated to derive the optimal mixture for secondary products. The carbonation curing method that can promote the surface densification (intensive CaCO3 formation) of the hardened body within a short period of time using supercritical CO2 curing was defined as “Lean Carbonation”. The optimal curing conditions were derived by evaluating the compressive strength and durability improvement effects of applying Lean Carbonation to secondary product specimens. As a result of the experiment, for specimens subjected to Lean Carbonation, compressive strength increased by up to 12%, and the carbonation penetration resistance also increased by more than 50%. The optimal conditions for Lean Carbonation used to improve compressive strength and durability were found to be 35 °C, 80 bar, and 1 min.  相似文献   

20.
Concrete facilities in the severe-cold areas of western China (salt lake environments and heavy saline soils) are seriously damaged by the multiple corrosion effects of freeze–thaw cycles and sulfate corrosion. Magnesium phosphate cement (MPC) cement-based material has become an ideal concrete structural component because of its superior performance. Because concrete structural repair materials are used in heavy-corrosion environments, their durability in those environments should also be considered. Regarding the salt-freezing resistance of MPC, the existing studies have all used a NaCl solution as the heat transfer medium. In addition to chlorine salt, sulfate, especially Na2SO4, is also common in typical use environments such as oceans, salt lakes, and groundwater. To evaluate the sulfate freeze–thaw resistance of potassium magnesium phosphate cement (MKPC) mortar, in this study the strength development, weight loss, and water absorption of MKPC mortar specimens subjected to different freeze–thaw cycles were tested and compared with those for Portland cement (P.O) mortar specimens of the same strength grade. The results showed that the P.O mortar specimen completely lost its strength after 75 cycles of rapid water freezing and thawing and 50 cycles of sodium sulfate solution (5%) freezing and thawing. However, the residual strength rating of the MKPC mortar specimen after 75 cycles of water freezing and thawing and 100 cycles of sodium sulfate solution freezing and thawing was higher than 75%. After 50 rapid freeze–thaw cycles in water and a 5% Na2SO4 solution, the P.O mortar specimen’s mass loss exceeded the 5% failure standard, whereas the mass loss of the MKPC mortar specimens was much less than 5%. Before the freeze–thaw cycles, the water absorption of the P.O mortar specimen was close to 8 times that of the MKPC mortar specimen, and after 50 water freeze–thaw cycles and 25 sulfate solution freeze–thaw cycles, the water absorption reached 4.88% and 5.68%, respectively. However, after 225 freeze–thaw cycles in water and the sulfate solution, the water absorption rates of MKPC mortar specimens were 2.91% and 2.51% respectively. The test and analysis results show that the freeze–thaw resistance of MKPC mortar was much higher than that of Portland cement mortar specimens. Those results provide a prerequisite for applying and expanding the use of MKPC-based materials in severe-cold areas of western China (salt lake and heavily saline soil environments).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号