首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Certain fluoroquinolone (FQ) antibiotics that show clinical phototoxicity and experimental photochemical carcinogenicity have been found to interact with ultraviolet-A (UVA) radiation to produce oxidative DNA damage in cultured cells and isolated DNA. To study the biological consequences of oxidative DNA damage in mammalian cells, the photochemical mutagenicity of two photoactive FQs, lomefloxacin and Bay y3118, was studied in V79 cells in comparison with that of the photostable moxifloxacin. Lomefloxacin and Bay y3118 were photochemically mutagenic to V79 cells with UVA irradiation, increasing the mutation frequency by about eightfold (400 microM, 6000 J/m2) and tenfold (50 microM, 1000 J/m2), respectively, whereas no photochemical mutagenicity was observed with moxifloxacin (400 microM, 9000 J/m2). We suggest that the previously reported ability of lomefloxacin and Bay y3118 to photochemically produce oxidative DNA damage, which is known to be mutagenic, may be the basis for the photochemical mutagenicity and the reported photochemical carcinogenicity. The photostable moxifloxacin appears to lack such properties.  相似文献   

2.
Hypochlorous acid (HOCl), generated by myeloperoxidase from H(2)O(2) and Cl(-), is a strong chlorinating and oxidizing agent, playing an important role in host defense and inflammatory tissue injury. As several recent studies have shown that various oxidizing agents including peroxynitrite and singlet oxygen react readily with 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) to yield further oxidized products, we have studied the reaction of 8-oxodGuo with reagent HOCl and with a myeloperoxidase-H(2)O(2)-Cl(-) system. When 1 mM 8-oxodGuo was reacted with 0.5 mM HOCl at pH 7.4 and 37 degrees C, two major products were formed. They were identified as the diastereomers of spiroiminodihydantoin deoxyribonucleoside (dSph) on the basis of their identical ESI-MS and UV spectra and HPLC retention times with those of the major reaction products which were reported to be formed in other oxidation systems including potassium monopersulfate plus cobalt (II) chloride, peroxynitrite plus thiol, and type II photosensitization. Under the above reaction conditions, the yield of the diastereomers of dSph was 0.38 mM, with 0.57 mM 8-oxodGuo remaining unreacted. Since the presence of 50% D(2)O, 10 mM sodium azide, or 2% ethanol did not affect the yield of the products, involvement of singlet oxygen and hydroxyl radical in the formation of dSph from 8-oxodGuo with HOCl was ruled out. A 1000-fold excess of dGuo did not inhibit the reaction of 8-oxodGuo with HOCl, indicating that 8-oxodGuo reacts more readily than dGuo with HOCl. dSph was also formed by reaction of 8-oxodGuo with myeloperoxidase in the presence of H(2)O(2) and Cl(-). Our results suggest that formation of dSph from 8-oxodGuo is mediated, possibly via an addition of Cl(+) to, or two-electron oxidation of 8-oxodGuo, with HOCl or the myeloperoxidase-H(2)O(2)-Cl(-) system.  相似文献   

3.
The phototoxic potential of eight fluoroquinolones (norfloxacin, ofloxacin, enoxacin, ciprofloxacin, lomefloxacin, tosufloxacin, sparfloxacin and gatifloxacin) was evaluated by using three in vitro methods of cytotoxicity against mammalian cells, erythrocyte lysis and DNA strand breakage. All fluoroquinolones tested with the exception of gatifloxacin, an 8-methoxy quinolone, showed DNA strand breaking activities under UV-A irradiation. Their cytotoxicity against HeLa cells was also enhanced by UV-A irradiation. In particular, the phototoxic potential of sparfloxacin, enoxacin and lomefloxacin was high in both methods. Ofloxacin is very photocytotoxic against HeLa cells, while it has low potential to cause DNA strand breakage. Norfloxacin, ciprofloxacin and enoxacin were very photohemolytic, but sparfloxacin was not, indicating that the in vivo phototoxic potencies of fluoroquinolones might not be predictable by the photohemolysis study. Gatifloxacin, a non-phototoxic quinolone, showed no phototoxic potential in any of these three in vitro tests. These results suggest that determination of DNA strand breaking activity, combined with cytotoxicity against mammalian cells, is available to predict the phototoxic potential of fluoroquinolones without laboratory animals.  相似文献   

4.
Some fluoroquinolone antibiotics (FQs) become toxic and mutagenic upon exposure to ultraviolet radiation (UV). Topoisomerase inhibition has been proposed as one possible mechanism involved in this photochemical genotoxicity. To study this reaction, inhibition of the human topoisomerase IIalpha enzyme by four FQs varying in photochemical genotoxic potency (Bay y3118 [y3118] > Lomefloxacin [Lmx] > Ciprofloxacin [Cpx] > Moxifloxacin [Mox]) was measured in vitro in the presence of UVA irradiation. None of the FQs inhibited topoisomerase IIalpha in the absence of irradiation. In contrast, with irradiation at 365 nm, the potent photochemically genotoxic y3118 produced strong inhibition of the enzyme by 15% and Cpx caused a weak 5% inhibition, but the more photochemically genotoxic Lmx only showed a transient inhibitory effect at one concentration and one irradiation dose. The photostable Mox had no effect with irradiation. Topoisomerase IIalpha inhibition by y3118 only occurred when the FQ, DNA, and enzyme were simultaneously present in the UVA-irradiated reaction mixture and was abolished in the absence of ATP, indicating the possible formation of a ternary structure. The y3118 photochemical topoisomerase inhibition correlated with the increased irradiation-mediated binding of radiolabeled FQ to DNA:topoisomerase complexes and was irreversible, like that of the topoisomerase poison, etoposide, without irradiation. The inhibitory effect of photoactivated y3118 on topoisomerase IIalpha was also observed in the presence of the antioxidant TEMPO, indicating that reactive oxygen species were not involved in the inhibition. These observations demonstrate that some but not all photochemically genotoxic FQs inhibit human topoisomerase IIalpha, possibly by UV-induced affinity of FQs to DNA:topoisomerase complexes.  相似文献   

5.
The mechanism of DNA damage by photoexcited alkaloids, berberine and palmatine, was examined using 32P-labeled DNA fragments obtained from human genes. Berberine and palmatine easily bind to DNA, leading to the formation of strong fluorescent complexes. The binding constants of berberine and palmatine to DNA, estimated from an analysis of their fluorescence enhancements, indicate the formation of stable complexes. Photoexcited berberine and palmatine caused DNA cleavage, specifically at almost all guanine residues, under the aerobic condition after Escherichia coli formamidopyrimidine-DNA glycosylase or piperidine treatment, suggesting the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), an oxidized product of 2'-deoxyguanosine, and further oxidized products. The formation of 8-oxodGuo was confirmed by HPLC measurement. The quantum yield of 8-oxodGuo formation by berberine was almost the same as that induced by palmatine. Berberine and palmatine did not cause DNA photodamage under anaerobic conditions. Scavengers of singlet oxygen (1O2), such as sodium azide and methional, inhibited DNA damage. These findings suggest that photoexcited berberine and palmatine give rise to 8-oxodGuo through 1O2 generation. The photosensitized 1O2 generation from these alkaloids was examined using near-infrared luminescence measurements. Emission at ca. 1270 nm was observed during photoexcitation of the DNA-alkaloid complexes. This emission was quenched by sodium azide, a scavenger of 1O2. In the absence of DNA, berberine and palmatine could not show the emission. This spectroscopic study has shown that photoexcited alkaloids can generate 1O2 only when the DNA-alkaloid complexes are formed. In conclusion, berberine and palmatine easily bind to DNA and induce guanine specific photooxidation via 1O2 formation. The present study suggests that berberine and palmatine can act as functional photosensitizers enabling a switch in phototoxicity via 1O2 formation by the interaction with DNA.  相似文献   

6.
莫西沙星8-二氟甲氧基类似物的合成与体内外抗菌作用   总被引:2,自引:0,他引:2  
1-环丙基-6,7-二氟-8-甲氧基-1,4-二氢.4-氧代喹啉.3-羧酸乙酯依次经醚键断裂、酯化、二氟甲基醚化得1.环丙基-6,7-二氟-8-二氟甲氧基-1,4-二氢-4-氧代喹啉.3-羧酸乙酯,然后经过螫合、与[1S,6S]-2.叔丁氧羰基.2,8.二氮杂双环[4,3,0]壬烷缩合、最后脱除叔丁氧羰基保护得到1-环丙基.8.二氟甲氧基-7-[(1S,6S).2,8.二氮杂双环[4,3,0]壬烷.8.基]-6-氟.1,4-二氢-4-氧代喹啉-3-羧酸。目标化合物的结构经核磁共振氢谱和质谱(ESI)所确证,并测定了其体内外抗菌作用,结果表明该化合物优于对照药环丙沙星,与莫西沙星相当或略优,尤其对肺炎链球菌29074的体内活性突出,值得深入评价。  相似文献   

7.
Purpose: Fluoroquinolones are one of the most commonly prescribed classes of antibiotics. However, their use is often connected with high risk of phototoxic reactions that lead to various skin or eye disorders. The aim of this study was to examine the effect of ciprofloxacin, lomefloxacin, moxifloxacin and fluoroquinolone derivatives with different phototoxic potential, on the viability and melanogenesis in melanocytes.

Materials and methods: Normal human epidermal melanocytes, dark pigmented (HEMn-DP) were used as an in vitro model system. The effect of the tested antibiotics on cell viability and melanization in pigmented cells was investigated using a spectrophotometric method. The WST-1 assay was used to detect the cytotoxic effect of antibiotics.

Results: Ciprofloxacin, lomefloxacin and moxifloxacin induced the concentration-dependent loss in melanocytes viability. The values of EC50 for the tested fluoroquinolone derivatives were found to be 2.0?mM for ciprofloxacin, 0.51?mM for lomefloxacin and 0.27?mM for moxifloxacin. The exposure of cells to different concentrations of the analyzed drugs resulted in decrease in melanin content and tyrosinase activity. The highest decrease was observed for lomefloxacin which may explain its high phototoxic potential in vivo. The role of melanin in the mechanism of the toxicity of fluoroquinolones was discussed and the obtained results were compared with the previously obtained data concerning light-pigmented melanocytes (HEMa-LP).

Conclusions: The results obtained in vitro suggest that the phototoxic potential of fluoroquinolones in vivo depends on specific drug–melanin interaction, the ability of drugs to affect melanogenesis as well as on the degree of melanocytes pigmentation.  相似文献   

8.
To define the binding characteristics of fluoroquinolones to synthetic levodopa melanin, the binding of various drugs, including levofloxacin and ofloxacin, and positive controls (timolol and chloroquine), was investigated in-vitro. The affinity and capacity of the drug binding were calculated by Langmuir's adsorption isotherm. The affinity constant (K) and the binding capacity (r(max)) of levofloxacin were similar to those of timolol and much lower than those of chloroquine. Racemic ofloxacin and its enantiomers showed similar K and r(max), suggesting that the binding lacked stereoselectivity. The binding experiment with levofloxacin derivatives indicated that the basic nitrogen atom at position 7 of the quinolone ring, but not carboxyl group at position 3, would play a critical role in the interaction of fluoroquinolones with melanin. The melanin-drug complexes of levofloxacin and chloroquine were washed with neutral phosphate buffer, ethanol and 1 M HCl solution to explain the nature of the interaction of melanin with the drugs. Electrostatic forces mainly participate in the formation of the chloroquine-melanin complex, whereas van der Waals' and hydrophobic interactions are involved in the levofloxacin-melanin complex in addition to electrostatic forces. The interactions of various fluoroquinolones such as norfloxacin, enoxacin, sparfloxacin, ciprofloxacin and lomefloxacin with melanin were also studied. The results showed that the relative K value was: chloroquine approximately ciprofloxacin, sparfloxacin >/= lomefloxacin > timolol, levofloxacin approximately enoxacin, norfloxacin, and that the relative r(max) value was: norfloxacin, enoxacin >/= chloroquine, sparfloxacin > levofloxacin, ciprofloxacin, timolol, lomefloxacin. The fluoroquinolones vary in their affinity and capacity to bind with melanin, and ciprofloxacin and sparfloxacin showed a stronger interaction with melanin than the other fluoroquinolones studied.  相似文献   

9.
The influence of environmental benzo[a]pyrene (BaP) contamination under ultraviolet A (UVA) on normal human skin fibroblasts was examined. Treatment of human skin fibroblasts with UVA in the presence of BaP induced cytotoxicity in a UVA- and BaP-dose-dependent manner, involving oxidative DNA damage (formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG)). Singlet oxygen quenchers significantly inhibited the formation of 8-oxo-dG, whereas hydroxyl radical and superoixide anion radical scavengers showed no effect. N-Acetyl-l-cysteine prevented the formation of 8-oxo-dG. These findings suggested the possibility of increased carcinogenesis in the skin via singlet oxygen produced by sunlight plus environmental BaP contamination and the efficiency of anti-oxidant agents for its prevention.  相似文献   

10.
目的:建立采用1 H定量核磁共振波谱(1H quantitative nuclear magnetic resonance,1H qNMR)法测定盐酸莫西沙星及其杂质7-氨基莫西沙星喹啉羧酸对照品含量的方法.方法:采用核磁共振波谱法,使用Bruker Ascend 600超导核磁共振谱仪,以氘代二甲基亚砜(DMSO-d...  相似文献   

11.
12.
Camptothecins (CPTs) are topoisomerase I (topo I) inhibitor chemotherapeutic agents. Studies indicate that combination therapy is needed in most therapeutic protocols with camptothecins. Certain fluoroquionolones inhibit topoisomerase II activity in eukaryotic cells. We showed previously that the fluoroquionolone moxifloxacin inhibited purified human topoisomerase II, acted synergistically with etoposide and enhanced anti-proliferative effect in THP-1 and Jurkat cells. There is no information on flouroquionolone's activity on topoisomerase I. We examined the effect of moxifloxacin and ciprofloxacin alone or in combination with camptothecin on purified topoisomerase I activity and further analysed their combined activity on proliferation and apoptosis in HT-29 cells. Moxifloxacin and ciprofloxacin alone slightly inhibited purified topoisomerase I activity; however in combination with camptothecin it led to a 82% and 64% reduction in enzyme activity, respectively. Moreovwer, our studies indicate that incubation of HT-29 cells with a combination of moxifloxacin or ciprofloxacin with CPT increases cellular topoisomerase I inhibitory activity. In cell proliferation assays, addition of moxifloxacin to 1nM camptothecin enhanced its cytotoxic activity by three-fold and was similar to that of 50nM camptothecin alone (45+/-2.1% inhibition). Ciprofloxacin enhanced cytotoxic activity to a lesser extent. Apoptosis studies showed up to 1.6-fold increase in annexin V positive cells when the fluoroquinolones were combined with camptothecin as compared to camptothecin alone. Analysis of the proangiogenic factors IL-8 and VEGF showed significant reduction in IL-8 production by moxifloxacin and ciprofloxacin up to 48% and in VEGF secretion from the cells. Further in vivo and clinical studies of camptothecins combined with the above fluoroquinolones are warranted.  相似文献   

13.
Fluoroquinolones enter eukaryotic cells but the correlation between cellular accumulation and activity remains poorly established. Gemifloxacin is known to accumulate to a larger extent than most other fluoroquinolones in tissues. Using murine J774 macrophages and human THP-1 monocytes, we show that gemifloxacin accumulates more than ciprofloxacin and even moxifloxacin. Whilst showing indistinguishable kinetics of accumulation in J774 macrophages, gemifloxacin was released at an approximately two-fold slower rate than ciprofloxacin and its release was only partial. Gemifloxacin was also a weaker substrate than ciprofloxacin for the efflux transporter Mrp4 active in J774 macrophages. In cells infected with Listeria monocytogenes or Staphylococcus aureus (typical cytoplasmic and phagolysosomal organisms, respectively), gemifloxacin was equipotent to moxifloxacin and ciprofloxacin in concentration-dependent experiments if data are normalised based on the minimum inhibitory concentration (MIC) in broth. Thus, larger cellular concentrations of gemifloxacin than of moxifloxacin or ciprofloxacin were needed to obtain a similar target effect. Fractionation studies showed a similar subcellular distribution for all three fluoroquinolones, with approximately two-thirds of the cell-associated drug recovered in the soluble fraction (cytosol). These data suggest that cellular accumulation of fluoroquinolones is largely a self-defeating process as far as activity is concerned, with the intracellular drug made inactive in proportion to its accumulation level. Whilst these observations do not decrease the intrinsic value of fluoroquinolones for the treatment of intracellular infections, they indicate that ranking fluoroquinolones based on cell accumulation data without measuring the corresponding intracellular activity may lead to incorrect conclusions regarding their real potential.  相似文献   

14.
荆靓艳  王慧玲  薛欣  谢广宏 《中国医药》2012,7(11):1450-1452
目的 比较6种氟喹诺酮类药物对临床分离凝固酶阴性葡萄球菌耐药突变体的选择能力.方法 选择呼吸道标本,对苯唑西林、环丙沙星敏感的凝固酶阴性葡萄球菌34株,采用标准琼脂二倍稀释法、标准琼脂平板稀释法,测定6种氟喹诺酮类药物对凝固酶阴性葡萄球菌的最低抑菌浓度(MIC)、防耐药变异浓度(MPC).结果 MPC值比较,莫西沙星最低(MPC90为1 mg/L),左氧氟沙星和环丙沙星最高(MPC90均为32 mg/L).莫西沙星、卡屈沙星和加替沙星的MPC90/MIC90较低,均为2.结论 莫西沙星、卡屈沙星和加替沙星对凝固酶阴性葡萄球菌的MPC值较低,突变选择窗范围相对较窄.  相似文献   

15.
Minimum inhibitory concentrations (MICs) of gatifloxacin were compared with those of gemifloxacin, moxifloxacin, trovafloxacin, ciprofloxacin and ofloxacin using an agar dilution method for 400 uropathogens cultured from the urine of urological patients with complicated and/or hospital-acquired urinary tract infections (UTI). The collection of strains was made up of Enterobacteriaceae (34.5%), enterococci (31.5%), staphylococci (21.2%) and non-fermenting bacteria (12.8%). The antibacterial activity of the three newer fluoroquinolones, gatifloxacin, gemifloxacin, and moxifloxacin, were similar, but showed some drug specific differences. Gemifloxacin was most active against Escherichia coli, but less so against Proteus mirabilis. In this series all isolates of E. coli were inhibited at a MIC of 0.25 mg/l gatifloxacin and moxifloxacin and by 0.125 mg/l gemifloxacin. The MIC distribution of all fluoroquinolones showed a bimodal distribution for staphylococci, enterococci and Pseudomonas aeruginosa. The two modes for P. aeruginosa were 1 and 64 mg/l for gemifloxacin and moxifloxacin and 0.5 and 64 mg/l for gatifloxacin. For staphylococci the two modes were 0.125 and 2 mg/l for gatifloxacin, 0.03 and 4 mg/l for gemifloxacin, and 0.03 and 2 mg/l for moxifloxacin; for enterococci, 0.25 and 16 mg/l for gatifloxacin, 0.06 and 2 mg/l for gemifloxacin, and 0.25 and 8 mg/l for moxifloxacin. Compared with trovafloxacin the MICs were similar, but the newer fluoroquinolones were more active than ciprofloxacin and ofloxacin against Gram-positive bacteria. Of the newer fluoroquinolones gatifloxacin had the highest rate of renal excretion and could be considered a promising alternative fluoroquinolone agent for the treatment of UTI.  相似文献   

16.
六种氟喹诺酮对肠球菌的体外抗菌活性及利血平的影响   总被引:1,自引:0,他引:1  
目的:研究氟喹诺酮类抗菌药物对临床分离肠球菌的体外抗菌活性,以及多重耐药泵抑制剂利血平对抗菌活性的影响.方法:收集临床分离的101株肠球菌(66株粪肠球菌和35株屎肠球菌),用琼脂稀释法测定应用利血平前后6种氟喹诺酮对菌株的最低抑菌浓度(MIC).结果:诺氟沙星、环丙沙星、氧氟沙星、左氧氟沙星、加替沙星、莫西沙星对66株粪肠球菌的MIC90依次为256、64、64、16、16、8 mg/L,对35株屎肠球菌的MIC90依次为>512、512、128、128、32、32 mg/L.应用利血平之后,上述6种药物对粪肠球菌抗菌活性提高(MIC下降2倍或2倍以上)的株数依次为66(100%)、54(81.8%)、4(6.1%)、4(6.1%)、32(48.5%)和3(4.5%)株,对屎肠球菌抗菌活性提高的株数依次为35(100%)、29(82.9%)、1(2.9%)、0(0%)、6(20.7%)和2(5.7%)株.结论:新氟喹诺酮加替沙星、莫西沙星增强了对肠球菌的抗菌活性,利血平能够提高全部或部分被检测肠球菌对诺氟沙星、环丙沙星和加替沙星的敏感性,但仅使少数被检测肠球菌对氧氟沙星、左氧氟沙星和莫西沙星的敏感性提高.  相似文献   

17.
目的分析氟喹诺酮类抗菌药物(FQNS)药物不良反应(ADR)的特点,为临床合理用药提供依据。方法对2001-2010年某院门、急诊及住院部应用FQNS致ADR患者205例进行回顾性统计、分析。结果男性ADR发生率高于女性,31~40岁年龄段ADR发生率最高(31.2%);引起ADR的主要给药途径为静脉注射,共105例(51.2%);共涉及10种FQNS,不良反应主要表现在神经、循环、皮肤、泌尿、消化、呼吸、血液等系统,其中以神经系统、皮肤及消化系统症状较突出。结论 FQNS致ADR因素较多,临床使用时应注意ADR的监测,合理用药,以提高用药的安全性,减少ADR的发生。  相似文献   

18.
Exposure to polycyclic aromatic hydrocarbons (PAH) and DNA damage were analyzed in coke oven (n = 37), refractory (n = 96), graphite electrode (n = 26), and converter workers (n = 12), whereas construction workers (n = 48) served as referents. PAH exposure was assessed by personal air sampling during shift and biological monitoring in urine post shift (1-hydroxypyrene, 1-OHP and 1-, 2 + 9-, 3-, 4-hydroxyphenanthrenes, ΣOHPHE). DNA damage was measured by 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) and DNA strand breaks in blood post shift. Median 1-OHP and ΣOHPHE were highest in converter workers (13.5 and 37.2 μg/g crea). The industrial setting contributed to the metabolite concentrations rather than the air-borne concentration alone. Other routes of uptake, probably dermal, influenced associations between air-borne concentrations and levels of PAH metabolites in urine making biomonitoring results preferred parameters to assess exposure to PAH. DNA damage in terms of 8-oxo-dGuo and DNA strand breaks was higher in exposed workers compared to referents ranking highest for graphite-electrode production. The type of industry contributed to genotoxic DNA damage and DNA damage was not unequivocally associated to PAH on the individual level most likely due to potential contributions of co-exposures.  相似文献   

19.
The role played by type I (radical) and type II (singlet oxygen) mechanisms in the Rufloxacin (RFX)-photoinduced production of 8-hydroxy-2'-deoxyguanosine in DNA has been evaluated. This fluoroquinolone drug has been shown to be able to photoinduce increased levels of some DNA base oxidation products, such as 8-OH-dGuo, that are indicative of mutagenic and carcinogenic events, with probable implications in aging processes. The relative weight of the two photosensitization mechanisms was obtained via determination of two different photoproducts of 2'-deoxyguanosine (dGuo), which are diagnostic of the two different pathways, namely, (4R)- and (4S)-4,8-dihydro-4-hydroxy-8-oxo-2'-deoxyguanosine and 2,2-diamino-4-[(2-deoxy-beta-D-erythro-pentofuranosyl)amino]-2,5-dihydrooxazol-5-one. The observed predominance of type II reaction is in agreement with the fact that the triplet state of RFX is able to transfer with high efficiency its energy to molecular oxygen, giving rise to singlet oxygen. Photophysical measurements suggest that hydrated electrons produced by Rufloxacin photoionization react with dGuo, Thd, and DNA, whereas these biomolecules quench the RFX triplet state with low efficiency. Static quenching of Rufloxacin fluorescence indicates an interaction of this drug both with DNA and with dGuo. On the basis of these experimental data, Rufloxacin photosensitization of DNA is proposed to occur by a type II mechanism.  相似文献   

20.
Human 8-oxoguanine DNA glycosylase 1 (hOGG1) plays an important role in the repair of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodGuo), one of the major constituents in DNA damage. A recent in vitro study showed that the hOGG1 326Cys polymorphism (rs1052133) exhibits reduced 8-oxodGuo repair activity. This study aimed to develop a LightCycler (LC) assay to analyze the C>G polymorphism (Ser326Cys) in exon 7 of the hOGG1 gene followed by validation of the method using DNA samples from 260 polycyclic aromatic hydrocarbons(PAH)-exposed workers with known 8-oxodGuo DNA-adduct values measured by HPLC. Twenty DNA samples were analyzed by a PCR-RFLP analysis with Fnu4H I to generate control DNA. LC melting curve analyses of the hOGG1 exon 7 PCR product were characteristic of the probes hybridized to the non-mutated Ser-type (CC) at 65 degrees C, or to the Cys mutant (GG) at 59 degrees C. The distribution in the population of PAH-exposed workers (N=260) was 58% (CC), 38%(CG), and 4% (GG). The minor G allele displayed a frequency of 23 %. The distribution of 8-oxodGuo adducts for the Ser326Cys variants of hOGG1 revealed geometric means (GM) of 5.83 (CC), 5.27 (CG), and 6.53 (GG) 8-oxodGuo adducts/10(6)dGuo. Corresponding GM values of current smokers were 5.7 (CC), 5.6 (CG) and 7.0 (GG) 8-oxodGuo adducts/10(6) dGuo. The analysis of the Ser326Cys polymorphism in 260 DNA samples with this new LC assay revealed that this method is reliable for high throughput analysis of this key polymorphism in the hOGG1 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号