首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
本文综合应用逆行束路追踪(将四甲基罗达明-TMR注入一侧三叉神经运动核)和免疫荧光组织化学三重标记技术,在激光共聚焦显微镜下对谷氨酸脱羧酶67-绿色荧光蛋白(GAD67-GFP)基因敲入小鼠在口周部给予伤害性刺激时,三叉上核(Vsup)内向对侧三叉神经运动核(Vmo)投射的呈GFP阳性的GABA能神经元表达c-fos的情况进行了研究。结果显示:(1)Vsup内可观察到许多GFP阳性神经元,细胞较小;(2)也可观察到许多TMR或c-fos单标神经元较密集地分布于Vsup内,其中c-fos阳性产物只见于神经元的胞核,在胞浆内未见表达;(3)在激光共聚焦显微镜下可进一步观察到部分神经元同时呈GFP/TMR、TMR/c-fos、GFP/c-fos双重标记或GFP/TMR/c-fos三重标记。其中GFP/TMR双标神经元分别占GFP或TMR阳性神经元的17.8%和19.2%;TMR/c-fos双标神经元分别占TMR或c-fos阳性神经元的34.9%和31.3%;GFP/c-fos双标神经元分别占GFP或c-fos阳性神经元的21.2%和20.5%;而GFP/TMR/c-fos三标神经元分别占GFP、TMR或c-fos阳性神经元的11.1%、12%和10.8%。以上结果表明小鼠Vsup内部分GABA能神经元可接受来自同侧的口面部伤害性信息,并对这些信息进行整合后,直接发出投射纤维至Vmo;故Vsup内部分GABA能运动前神经元可能参与口面部伤害性反射局部环路的构成。  相似文献   

2.
目的:旨在研究三叉上核(Su5)对三叉神经中脑核(Me5)神经元的活动是否发挥着重要的调节作用,从而参与对颌运动的调节。方法:本研究通过全细胞电流钳技术,刺激生后30~43d大鼠脑片上三叉上核并记录Me5神经元反应。结果:Me5神经元静息膜电位为(-53.5±0.5)mV;所有Me5神经元在超极化和去极化时分别显示为内向、外向整流;同时去极化引起神经元放电。刺激三叉上核引起4种类型的Me5神经元的反应,即逆向动作电位、GABAA、AMPA/kainate和NMDA等受体介导的反应,这些反应各占32%、36%、20%和12%。钳制电位在-60mV左右时,诱发的GABA能突触后电位为(1.08±0.45)mV,膜电位水平时;刺激引起的AMPA/Kainate受体介导的电流大小为(0.98±0.51)mV;钳制电位在-45mV左右时,NMDA受体介导的谷氨酸电流为(2.40±0.75)mV。结论:三叉上核神经元可通过突触由GABA和谷氨酸信号系统调节Me5神经元活动。  相似文献   

3.
<正>N-甲基-D-天冬氨酸(N-methyl-D-aspartate,NMDA)受体依赖性长时程增强(long-term potentiation,LTP)引起的突触联系增强具有重塑神经环路及调节学习和记忆的作用。在NMDA受体依赖性LTP诱导过程中,Ca2+内流会刺激突触α-氨基-3-羟基-5-甲基-4-异噁唑丙酸(α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid,AMPA)受体的募集,从而强化突触联系。然而,Ca2+诱导AMPK受体募集的机制尚未明确。Wu等的研究发现,在小鼠海马CA1区的锥体神经元中同时阻断突触结合蛋  相似文献   

4.
目的观察谷氨酸脱羧酶67-绿色荧光蛋白(GAD67-GFP)基因敲入小鼠三叉神经尾侧亚核(Vc)浅层内,表达GFP的GABA能神经元的分布及其与小白蛋白(PV)的共存。方法分别运用原位分子杂交与免疫组织化学相结合;GFP与神经元标记物——神经元核蛋白(NeuN)或PV免疫荧光染色相结合的双重标记方法,在光学显微镜和激光共聚焦显微镜下进行观察。结果1.Vc浅层内90%以上的GFP阳性神经元同时表达GAD67 mRNA,而几乎所有表达GAD67 mRNA的阳性神经元都呈GFP阳性;2.GFP阳性神经元主要分布于Vc的Ⅰ-Ⅱ层内,细胞较小,尤其在Ⅱ层内可见大量密集分布的GFP阳性细胞和突起。GFP阳性神经元分别占Ⅰ、Ⅱ层内NeuN阳性神经元总数的19.4%和24.3%;3.GFP/PV双标神经元主要分布于Vc的Ⅰ-Ⅱ层,这些双标神经元大约占PV阳性神经元的62.4%,占GFP阳性神经元的12.8%。结论在Vc表达GFP的GABA能神经元主要密集分布于与外周伤害性信息传递关系密切的板层内,且大部分PV样阳性神经元属于GABA能神经元。  相似文献   

5.
目的比较快速老化小鼠P8(SAMP8)与抗快速老化小鼠R1(SAMR1)海马神经元突触可塑性相关的谷氨酸α-氨基-3-羟基-5-甲基-4-异唑丙酸(AMPA)受体表达差异,为阿尔兹海默病(AD)的发病机制提供实验依据。方法取雄性10月龄SAMP8 10只和SAMR1 9只,应用Morris水迷宫实验评价动物学习记忆能力,透射电子显微镜观察海马CA1区神经元突触界面超微结构,蛋白质免疫印迹法检测海马AMPA受体亚基GluR1、GluR2的表达。结果与SAMR1比较,SAMP8逃避潜伏期延长,目标象限时间百分比下降,穿台次数减少;海马CA1区神经元突触后致密带变薄,突触间隙增宽,突触界面曲率下降;海马GluR2含量下降,GluR1含量有下降趋势,但差异无统计学意义。结论海马AMPA受体异常可能是导致突触可塑性受损,引发SAMP8认知障碍的原因之一,AMPA受体在AD的发病中可能占有重要地位。  相似文献   

6.
以成年大鼠脊髓片骶髓后连合核(DCN)为模型,应用盲膜片钳全细胞记录法,研究了DCN神经元对与伤害性信息传递和抑制有关的递质的反应。证明:谷氨酸在DCN神经元引起了由NMDA和非NMDA受体介导的内向电流;P物质激发的内向电流可被spantide或CP-99994阻断;GABA激发的外向电流由GABAA和GABAB受体介导;甘氨酸激发的外向电流可被士的宁完全阻断。本研究结果提示DCN神经元既表达兴奋性神经递质受体又表达抑制性神经递质受体,即谷氨酸和P物质介导的外用伤害性信息与GABA和甘氨酸介导的抑制性信息可能在DCN神经元水平进行整合,从而起到了抑制伤害性信息传入的作用。本研究为进一步探索DCN参与伤害性信息的传递和镇痛作用的机理提供了电生理学基础。  相似文献   

7.
目的:研究急性缺氧对非洲电鱼小脑浦肯野细胞(Pc)之间γ-氨基丁酸(GABA)能突触传递的影响。方法:采用配对全细胞膜片钳记录法,记录电鱼小脑Pc-Pc之间的抑制性突触后电流(IPSC),观察急性缺氧对Pc-Pc IPSC的影响,以及GABA_A受体拮抗剂和谷氨酸α-氨基-3-羟基-5-甲基-4-异噁唑丙酸(AMPA)受体拮抗剂对Pc-Pc IPSC缺氧反应的调节作用。结果:短暂缺氧使Pc-Pc IPSC的幅值显著增大,表现为长时程增强(LTP);GABA_A受体拮抗剂荷包牡丹碱逆转了Pc-Pc IPSC的LTP,表现为长时程抑制;AMPA受体拮抗剂6-氰基-7-硝基喹喔啉-2,3-二酮(CNQX)阻断了Pc-Pc IPSC的LTP,表现为短时程增强。结论:急性缺氧引起电鱼小脑Pc之间的GABA能突触活动持续增强,GABAA受体和AMPA受体共同介导这种反应,提示GABA能和谷氨酸能突触活动的平衡可能是电鱼以及其他缺氧耐受动物缺氧保护反应的关键机制。  相似文献   

8.
<正>NMDA受体(N-methyl-D-aspartate receptor,NMDAR)是一种离子通道型谷氨酸受体,这类受体还包括KA受体(kainic acid receptor,KAR)和AMPA受体(α-amino-3-hydrox-y-5-methyl-4-isoxa-zolep-propionate receptor,AMPAR)。绝大部分NMDA受体分布于中枢神经系统,参与兴奋性突触传  相似文献   

9.
目的 探讨一氧化氮 (NO)对大鼠脑皮质离子型谷氨酸受体 (NMDA、AMPA、KA受体 )和 GABA受体的影响。 方法 将 Wistar大鼠腹腔注射神经细胞结构型一氧化氮合酶抑制剂 7-硝基吲唑 ,以氚标配体分别标记 NMDA、AMPA、KA和 GABAA 受体 ,用图像分析仪对大鼠额区、顶区、后肢区、梨状区、压部后区和味觉区皮质内标记受体进行定量分析。 结果 实验组大鼠额区、后肢区和梨状区内 NMDA、AMPA、KA受体和 GABAA 受体含量均显著增加 ;顶区皮质内 NMDA、KA受体和 GABAA 受体增加显著 ;味觉区皮质内 KA受体增加显著。 结论  NO可能参与大鼠脑皮质离子型谷氨酸受体和 GABA受体水平的调节  相似文献   

10.
兴奋性氨基酸受体(EAAR)是脊椎动物中枢神经系统中最主要的兴奋性神经递质受体。分为NMDA;KA;AMPA;AP_(43)ACPD五个亚型。NMDA受体与中枢神经系统的许多重要生理、病理过程密切相关。以往对NMDA受体单离子通道特性的研究均是在从神经元上撕下的膜片上(外面向外式)进行的。而有许多研究表明  相似文献   

11.
It has been reported in the cat and rat that inhibitory premotor neurons, which send their axons to motoneurons of the trigeminal motor nucleus (Vm) are distributed in the reticular regions around the Vm, especially in the supratrigeminal region (Vsup) and the intertrigeminal region (Vint). In the present study, we examined neuronal connections of GABAergic neurons in the Vsup and Vint in the mouse by utilizing the adult heterozygous GAD67-GFP knock-in mouse, in which green fluorescence protein (GFP) is expressed in GABAergic neurons under the control of the endogenous GAD (GAD67) gene promoter [Yanagawa, Y., Kaneko, K., Kanbara, N., Totsuka, M., Yagi, T., Obata, K., 2001. Development of mouse expressing GFP in GABAergic neurons. Neurosci. Res. Suppl. 25, S77; Tamamaki, N., Yanagawa, Y., Tomioka, R., Miyazaki, J.-I., Obata, K., Kaneko, T., 2003. Green fluorescent protein expression and colocalization with calretinin, parvalbumin and somatostatin in the GAD67-GFP knock-in mouse. J. Comp. Neurol. 467, 60-79]. The connections were examined light- and electron-microscopically by combining the anterograde or the retrograde tract-tracing method with the immunohistochemical method for GFP. The data indicated that the Vsup and Vint of the mouse contained GABAergic neurons, which received projection fibers from the marginal layer of the nucleus of the spinal tract of the trigeminal nerve (Vc) on the ipsilateral side and sent their axons to the Vm on the contralateral side. Some of these GABAergic neurons may represent Vm-premotor neurons that receive nociceptive input from the Vc to elicit jaw-opening reflex by inhibiting jaw-closing Vm-motoneurons.  相似文献   

12.
Lateral parabrachial nucleus (LPB) is a critical region in the integration and transmission of peripheral nociceptive information. The parabrachio-amygdaloid (P-Amy) pathway and parabrachio-ventral tegmental area (P-VTA) pathway is thought to be significant in regulation of pain-related negative emotions. In present study, retrograde tract tracers Fluoro-gold (FG) and tetramethylrhodramine-dextran (TMR) were stereotaxically injected into the right central amygdaloid nucleus (CeA) and right VTA, respectively. Then, part of these rats were performed with the spare nerve injury (SNI) in the controlateral side of FG and TMR injection. Afterwards, double- or triple-immunofluorescent histochemistry was used to examine FG/TMR double- and FG/TMR/FOS or FG/TMR/CGRP triple-labeled neurons in the LPB. The results showed that all of FG, TMR single- and FG/TMR double-labeled neurons were distributed in the LPB bilaterally with an ipsilateral predominance. The proportion of FG/TMR double-labeled neurons to the total number of FG- and TMR-labeled neurons was 10.78% and 13.07%, respectively. Nearly all of the FG/TMR double-labeled neurons (92.67%) showed calcitonin gene-related peptide (CGRP) immunopositive. On the other hand, in the SNI rats, about 89.49% and 77.87% of FG- and TMR-labeled neurons were FG/FOS- and TMR/FOS-positive neurons; about 93.33% of the FG/TMR double-labeled neurons were FOS-LI. Our results suggest that the part of CGRP immunopositive neurons in the LPB send projection fibers to both the CeA and VTA by the way of axon collaterals, which are activated by the nociceptive stimulation in the SNI condition, and may play an important role in the transmission of peripheral nociceptive information. Anat Rec, 302:1178–1186, 2019. © 2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.  相似文献   

13.
The supratrigeminal region (SupV) receives abundant orofacial sensory inputs and descending inputs from the cortical masticatory area and contains premotor neurons that target the trigeminal motor nucleus (MoV). Thus it is possible that the SupV is involved in controlling jaw muscle activity via sensory inputs during mastication. We used voltage-sensitive dye, laser photostimulation, patch-clamp recordings, and intracellular biocytin labeling to investigate synaptic transmission from the SupV to jaw-closing and jaw-opening motoneurons in the MoV in brain stem slice preparations from developing rats. Electrical stimulation of the SupV evoked optical responses in the MoV. An antidromic optical response was evoked in the SupV by MoV stimulation, whereas synaptic transmission was suppressed by substitution of external Ca2+ with Mn2+. Photostimulation of the SupV with caged glutamate evoked rapid inward currents in the trigeminal motoneurons. Gramicidin-perforated and whole cell patch-clamp recordings from masseter motoneurons (MMNs) and digastric motoneurons (DMNs) revealed that glycinergic and GABAergic postsynaptic responses evoked in MMNs and DMNs by SupV stimulation were excitatory in P1–P4 neonatal rats and inhibitory in P9–P12 juvenile rats, whereas glutamatergic postsynaptic responses evoked by SupV stimulation were excitatory in both neonates and juveniles. Furthermore, the axons of biocytin-labeled SupV neurons that were antidromically activated by MoV stimulation terminated in the MoV. Our results suggest that inputs from the SupV excite MMNs and DMNs through activation of glutamate, glycine, and GABAA receptors in neonates, whereas glycinergic and GABAergic inputs from the SupV inhibit MMNs and DMNs in juveniles.  相似文献   

14.
Numerous evidence suggests that interneurons located in the lateral tegmentum at the level of the trigeminal motor nucleus contribute importantly to the circuitry involved in mastication. However, the question of whether these neurons participate actively to genesis of the rhythmic motor pattern or simply relay it to trigeminal motoneurons remains open. To answer this question, intracellular recordings were performed in an in vitro slice preparation comprising interneurons of the peritrigeminal area (PeriV) surrounding the trigeminal motor nucleus (NVmt) and the parvocellular reticular formation ventral and caudal to it (PCRt). Intracellular and extracellular injections of anterograde tracers were also used to examine the local connections established by these neurons. In 97% of recordings, electrical stimulation of adjacent areas evoked a postsynaptic potential (PSP). These PSPs were primarily excitatory, but inhibitory and biphasic responses were also induced. Most occurred at latencies longer than those required for monosynaptic transmission and were considered to involve oligosynaptic pathways. Both the anatomical and physiological findings show that all divisions of PeriV and PCRt are extensively interconnected. Most responses followed high-frequency stimulation (50 Hz) and showed little variability in latency indicating that the network reliably distributes inputs across all areas. In all neurons but one, excitatory postsynaptic potentials (EPSPs) or inhibitory postsynaptic potentials (IPSPs) were also elicited by stimulation of NVmt, suggesting the existence of excitatory and inhibitory interneurons within the motor nucleus. In a number of cases, these PSPs were reproduced by local injection of glutamate in lieu of the electrical stimulation. All EPSPs induced by stimulation of PeriV, PCRt, or NVmt were sensitive to ionotropic glutamate receptor antagonists 6-cyano-7-dinitroquinoxaline and D,L-2-amino-5-phosphonovaleric acid, while IPSPs were blocked by bicuculline and strychnine, antagonists of GABA(A) and glycine receptors. Examination of PeriV and PCRt intrinsic properties indicate that they form a fairly uniform network. Three types of neurons were identified on the basis of their firing adaptation properties. These types were not associated with particular regions. Only 5% of all neurons showed bursting behavior. Our results do not support the hypothesis that neurons of PeriV and PCRt participate actively to rhythm generation, but suggest instead that they are driven by rhythmical synaptic inputs. The organization of the network allows for rapid distribution of this rhythmic input across premotoneuron groups.  相似文献   

15.
1. Extracellular single-unit activity was recorded from 250 trigeminal (V) spinal tract nucleus neurons that were excited by electrical stimulation of the middle meningeal artery (MMA) and/or sagittal sinus (SS) in anesthetized cats. One hundred and thirty of these neurons were located in the V subnucleus caudalis (Vc), and the remaining 120 neurons were located in the V subnucleus oralis (Vo) or rostral part of the V subnucleus interpolaris (Vi). In many cases these neurons were also examined for the existence of orofacial receptive fields (RFs) by applying mechanical stimuli to the orofacial region. 2. The mean minimum latencies to suprathreshold electrical stimulation of the MMA and the SS were similar for Vc and Vo/Vi neurons. Excitation of Vc neurons occurred at latencies of 14.3 +/- 1.0 (n = 102) and 17.4 +/- 1.6 ms (n = 36) to MMA and SS stimulation, respectively. Excitation of Vo/Vi neurons occurred at latencies of 12.4 +/- 0.9 (n = 86) and 16.4 +/- 1.1 ms (n = 58) to MMA and SS stimulation, respectively. These latencies correspond to mean conduction velocities of approximately 5.2 and 4.0 m/s to MMA and SS stimulation, respectively. 3. Mechanical stimulation of the vessels evoked neuronal responses in five of eight MMA-activated neurons tested and three of five SS-activated neurons tested. 4. Almost all of the neurons tested (127 of 131) had peripheral RFs, and all were in the orofacial region. Nearly all (95%) Vc neurons had RFs within or including the ophthalmic facial region. The RFs of most (67%) Vo/Vi neurons also had RFs within or including ophthalmic regions, but in some cases were only within maxillary and/or mandibular regions. 5. Most of the Vc neurons (87%) were classified on the basis of their cutaneous inputs as nociceptive. The incidence of nociceptive neurons in Vo/Vi was also high (61%), although less than in Vc. In both the Vc and Vo/Vi neuronal populations, MMA-activated neurons were more likely to have nociceptive peripheral inputs than SS-activated neurons. 6. Histological reconstruction of recording sites indicated that the MMA- and/or SS-activated Vc neurons were concentrated in the lateral half of laminae III-V. The responsive neurons at the level of Vo/rostral Vi were not confined to any particular portion of these subnuclei. 7. These findings indicate that sensory afferents that innervate the dural arteries and venous sinuses are capable of activating neurons throughout the V spinal tract nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Sun H  Ma CL  Kelly JB  Wu SH 《Neuroscience letters》2006,399(1-2):151-156
Whole-cell patch clamp recordings were made from ICC neurons in brain slices of 9-16 day old rats. Postsynaptic currents were evoked by electrical stimulation of the lemniscal inputs. Excitatory postsynaptic currents (EPSCs) were isolated pharmacologically by blocking GABA(A) and glycine receptors. EPSCs were further dissected into AMPA and NMDA receptor-mediated responses by adding the receptor antagonists, APV and CNQX, respectively. The internal solution in the recording electrodes contained CsF and TEA to block K(+) channels that might be activated by postsynaptic GABA(B) receptors. The modulatory effects of GABA(B) receptors on EPSCs in ICC neurons were examined by bath application of the GABA(B) receptor agonist, baclofen, and the antagonist, CGP 35348. The amplitudes of EPSCs in ICC neurons were reduced to 34.4+/-3.2% of the control by baclofen (5-10 microM). The suppressive effect by baclofen was concentration-dependent. The reduction of the EPSC amplitude was reversed by CGP35348. The ratio of the 2nd to 1st EPSCs evoked by paired-pulse stimulation was significantly increased after application of baclofen. These results suggest that glutamatergic excitation in the ICC can be modulated by presynaptic GABA(B) receptors. In addition, baclofen reduced NMDA EPSCs more than AMPA EPSCs. The GABA(B) receptor-mediated modulation of glutamatergic excitation in the ICC provides a likely mechanism for preventing overstimulation and/or regulating the balance of excitation and inhibition involved in processing auditory information.  相似文献   

17.
N-methyl-d-aspartate (NMDA) receptors expressed in the midbrain periaqueductal gray (PAG) exert various physiological functions. The PAG contains various neurotransmitter phenotypes, which include GABAergic neurons and serotonergic neurons. In the present experiments, we made tight-seal whole-cell recordings from GABAergic and/or serotonergic neurons in mouse PAG slices and analyzed NMDA and non-NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) evoked by electrical stimulation. The NMDA/non-NMDA ratio of EPSC amplitude was high and the decay time course of NMDA-EPSC was slow in non-serotonergic/GABAergic neurons. In contrast, serotonergic neurons exhibited a low NMDA/non-NMDA ratio and a fast decay time course of NMDA-EPSC. Peripheral nerve ligation-induced chronic pain was associated with an increased NMDA/non-NMDA ratio in serotonergic neurons. Additionally, single-cell real-time RT-PCR analysis showed that peripheral nerve ligation up-regulated NR2B subunit expression in non-serotonergic/non-GABAergic neurons. Such changes in NMDA receptor expression in the PAG result in an alteration of the descending modulation of nociception, which might be an underlying mechanism for peripheral nerve injury-evoked persistent pain. Finally, the expression of NMDA receptors seems differentially regulated among neurons of different neurotransmitter phenotypes in the PAG.  相似文献   

18.
It has been suggested that in mammals, trigeminal lamina I neurons play a role in the processing and transmission of sensory information from the orofacial region. We investigated the physiological and morphological properties of trigeminal subnucleus caudalis (Sp5C) lamina I neurons in slices prepared from the medulla oblongata of 13- to 15-day-old postnatal rats using patch-clamp recordings and subsequent biocytin-streptavidin-Alexa labeling. Twenty-five neurons were recorded and immunohistochemically stained. The Sp5C lamina I consisted of several types of neurons which, on the basis of their responses to somatic current injection, can be classified into four groups: tonic neurons, which fired throughout the depolarizing pulse; phasic neurons, which expressed an initial burst of action potentials; delayed onset neurons, which showed a significant delay of the first action potential; and single spike neurons, characterized by only one to five action potentials at the very beginning of the depolarizing pulse even at high levels of stimulation intensity. Electrical stimulation of the spinal trigeminal tract evoked AMPA receptor-mediated excitatory postsynaptic currents (EPSC) exhibiting a strong polysynaptic component. AMPA receptor-mediated miniature excitatory postsynaptic currents (mEPSC) were characterized by a 10-90% rise time of 0.50+/-0.06 ms and a decay time constant of 2.5+/-0.5 ms. The kinetic properties of NMDA receptor-mediated EPSCs were measured at +40 mV. The 10-90% rise time was 8+/-2 ms and the deactivation time constants were 94+/-31 and 339+/-72 ms, respectively. Intracellular staining and morphological analysis revealed three groups of neurons: fusiform, pyramidal, and multipolar. Statistical analysis indicated that the electrophysiological properties and morphological characteristics are correlated. Tonic and phasic neurons were fusiform or pyramidal and delayed onset and single spike neurons were multipolar. Our results show that both the physiological and morphological properties of Sp5C lamina I neurons exhibit significant differences, indicating their specific integration in the processing and transmission of sensory information from the orofacial region.  相似文献   

19.
We have recently shown that injection of the P/Q-type (Ca(v)2.1/alpha(1A)) calcium channel blocker, omega-agatoxin IVA, into the periaqueductal gray (PAG) facilitates meningeal dural stimulation-evoked trigeminal nociceptive processing. We injected the GABA(A) antagonist bicuculline into the PAG in addition to the agatoxin and observed bicuculline's effect on neurons responding to dural stimulation recorded in the trigeminal nucleus caudalis of rats in order to determine if P/Q channel-mediated changes acted through GABAergic mechanisms. The inhibition of trigeminal nociceptive neurons characteristic of bicuculline administered into the PAG was maintained in the presence of blocked PAG P/Q-type calcium channels. This suggests the PAG descending pain modulatory pathway is not affected by P/Q-type calcium channel blockade at the postsynaptic GABAergic inhibitory interneuron and the facilitation produced by agatoxin is mediated by another mechanism. These findings have implications for disorders involving the PAG or P/Q-type channels, such as migraine, in particular for the development of preventative treatments, suggesting GABAergic and voltage-gated calcium channels could be separately modulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号