首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sohn JH  Lee BH  Park SH  Ryu JW  Kim BO  Park YG 《Neuroreport》2000,11(7):1413-1416
We have previously demonstrated that electrical stimulation of the ventral periaqueductal gray matter (PAG) produced analgesia in neuropathic pain in rats. Opioids were also shown to be involved in analgesic effects. This study sought to determine whether opiates microinjected into the ventral PAG produce analgesia. Male Sprague-Dawley rats were chronically implanted with a guide cannula in the PAG under pentobarbital anesthesia and both the tibial and sural nerves were completely cut. Pain sensitivity was postoperatively measured with a von Frey filament and acetone applied to the sensitive area for 1 week. Opioids such as [D-Ala2,N-MePhe4,Gly(ol)5]-enkephalin (DAMGO) and [D-Pen ,D-Pen5]-enkephalin (DPDPE) were injected into the PAG. DAMGO, a mu-opioid agonist, and DPDPE, a delta-opioid agonist, were highly effective in reducing neuropathic pain. These effects were reversed by naloxone. These results suggest that the neurons in the ventral PAG are activated by opioids to produce analgesia and that specific opioid receptors are involved in the descending pain inhibition system from the PAG.  相似文献   

2.
It has been previously established that a bulbar relay plays an important role in descending inhibition of spinal dorsal horn nociceptive neurons and nociceptive reflexes produced by stimulation in the midbrain periaqueductal gray (PAG). In the present study, selected receptor antagonists were microinjected into the medial medullary nucleus raphe magnus (NRM) to determine whether descending inhibition of the tail flick (TF) reflex in the rat produced by focal electrical stimulation in the midbrain PAG was mediated by serotonin, opioid, or glutamate receptors on bulbospinal neurons in the NRM. It was determined in initial experiments that the serotonin receptor antagonist methysergide, the opioid receptor antagonist naloxone, the local anesthetic lidocaine, and the glutamate receptor antagonists gamma-D-glutamylglycine (DGG) and DL-2-amino-5-phosphonovalerate (APV) microinjected into the medulla all significantly increased the threshold of focal electrical stimulation in the medulla required to inhibit the TF reflex. The antinociceptive efficacy of agonists at opioid, serotonin, and glutamate receptors was also tested in other experiments. The microinjection of morphine (2.5-10 micrograms) into the NRM increased significantly TF latencies in a dose-dependent manner in rats in the awake or lightly anesthetized state; morphine was more potent in awake rats. Inhibition of the TF reflex produced by the microinjection of morphine was reversed by a subsequent microinjection of naloxone into the same site in the medulla. The microinjection of serotonin (5 and 10 micrograms), however, did not affect the latency of the TF reflex in either awake or lightly anesthetized rats. Glutamate (100 microM, 0.5 microliter) microinjected into the rostral ventral medulla produced an inhibition of the TF reflex of short duration that could be blocked or attenuated significantly by the glutamate receptor antagonists DGG or APV microinjected into the same site. In subsequent experiments, a nonspecific functional block was introduced adjacent to the NRM bilaterally in the medullary reticular formations (MRFs) by the microinjection of the local anesthetic lidocaine; receptor antagonists were then microinjected into the NRM and their effect on the threshold of focal electrical stimulation in the PAG to inhibit the TF reflex determined. No increase was seen in stimulation thresholds in the PAG following the microinjection of either methysergide or naloxone into the NRM. Following the microinjection of lidocaine, DGG or APV into the NRM, the stimulation threshold in the PAG for inhibition of the TF reflex was increased significantly.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The effects of electrolytic lesions of the nucleus raphe magnus (NRM), nucleus reticularis paragigantocellularis (PGC) and nucleus raphe alatus (NRA) on analgesia elicited in the rat from systemic morphine and morphine microinjection into the periaqueductal gray (PAG) were evaluated using the tail flick test. No consistent change in baseline pain sensitivity was observed following lesions of the NRM, PGC or NRA. To determine the effect of ventral medullary lesions on systemic porphine analgesia, pain sensitivity was assessed prior to and 40 min after 6 mg/kg morphine administration (i.p.) at 2 days preceding lesioning and 5, 12 and 19 days post-lesion. NRM and PGC lesions produced only slight reductions in analgesia at 5 days after surgery. It was observed that large NRM, large PGC, and NRA lesions significantly attenuated analgesia evaluated at 12 days post-lesion. Smaller lesions confined within the NRM or PGC were reliably less effective than the larger lesions in reducing analgesia. In a subsequent study, 5 μg morphine in 0.5 μl saline was microinjected into the ventral PAG at the level of the dorsal raphe. Identical testing procedures were used and the analgesia was assessed at 2 days before lesioning and 5 and 12 days post-lesion. In contrast to the previous study, large NRM lesions abolished analgesia as early as 5 days following lesioning. Small NRM lesions were less effective and PGC lesions were generally ineffective in attenuating analgesia induced by morphine microinjection. We conclude that the NRA may act as a functional unit in the mediation of systemic morphine analgesia. In contrast, analgesia elicited from intracerebral (PAG) morphine microinjection is mediated via the NRM.  相似文献   

4.
In this study, we examined whether a competitive AMPA receptor antagonist, NBQX, attenuates mechanical allodynia and hyperexcitability of spinal neurons in remote, caudal regions in persistent central neuropathic pain following spinal cord injury in rats. Spinal cord injury was produced by unilateral T13 transverse spinal hemisection, from dorsal to ventral, in male Sprague Dawley rats (200-250 g). Mechanical thresholds were measured behaviorally, and the excitability of wide-dynamic-range (WDR) dorsal horn neurons in the lumbar cord (L4-L5) was measured to assess central neuropathicpain. On postoperation day (POD) 28 after spinalhemisection, mechanical thresholds were significantly decreased in both injured (ipsilateral) and noninjured (contralateral) hindpaws compared with preinjury and sham control, respectively (P < 0.05). Intrathecal administration of NBQX (0.25, 0.5, 1 mM) significantly reversed the decreased mechanical thresholds in both hindpaws, dose dependently (P < 0.05). The excitability of WDR neurons was significantly enhanced on both sides of the lumbar dorsal horn 28 days following spinal hemisection (P < 0.05). The hyperexcitability of WDR neurons was attenuated by topical administration of NBQX (0.125, 0.25, 0.5, 1 mM), dose dependently (P < 0.05). Regression analysis indicated that at least three molecules of NBQX bond per receptor complex, and are needed to achieve inhibition of WDR hyperexcitability. In conclusion, our study demonstrates that the AMPA receptor plays an important role in behaviors related to the maintenance of central neuropathic pain below the level of spinal cord injury.  相似文献   

5.
The periaqueductal gray area (PAG) is a mesencephalic area involved in cardiovascular modulation. Noradrenaline (NA), a neurotransmitter involved in central blood pressure control, is present in the rat PAG. We report here on the cardiovascular effects caused by NA microinjection into the ventrolateral PAG (vlPAG) of unanesthetized rats and the peripheral mechanism involved in their mediation. NA microinjection in the vlPAG of unanesthetized rats evoked dose-related pressor and bradycardiac responses. No significant cardiovascular responses were observed in urethane-anesthetized rats. The pressor response was potentiated by pretreatment with the ganglion blocker pentolinium (5 or 10 mg/kg, intravenously). Pretreatment with the vasopressin antagonist dTyr(CH2)5 (Me)AVP (50 microg/kg, intravenously) blocked the pressor response evoked by the NA microinjection into the vlPAG. Additionally, circulating vasopressin content was found to be significantly increased after NA microinjection in the vlPAG. The results suggest that activation of noradrenergic synapses within the vlPAG modulates vasopressin release in unanesthetized rats.  相似文献   

6.
Wei H  Panula P  Pertovaara A 《Brain research》2001,900(2):423-243
The pain modulatory effects of (D-Tyr)L(Me-Phe)QPQRF-amide ([1DMe]NPYF), a stable analogue of neuropeptide FF were studied in rats with a chronic neuropathy induced by unilateral ligation of two spinal nerves. According to behavioral assessments, intrathecal (i.t.) administration of [1DMe]NPYF induced mechanical antiallodynic and thermal antinociceptive effects in a parallel and dose-dependent fashion, whereas following administration in the periaqueductal gray (PAG) it produced only mechanical antiallodynia. I.t. or PAG administration of FLFQPQRF, a non-amidated form of NPFF, or intraplantar injection of [1DMe]NPYF into the neuropathic paw had no effects. Electrophysiological results indicated that administration of [1DMe]NPYF suppressed responses of nociceptive spinal dorsal horn neurons in a submodality selective way and without an effect on their spontaneous activity; PAG administration predominantly suppressed brush-evoked responses and i.t. administration heat-evoked responses. The descending inhibitory effect by conditioning electrical stimulation of the PAG was enhanced by i.t. administration of [1DMe]NPYF. The reversibility of [1DMe]NPYF-induced effects by naloxone (1 mg/kg subcutaneously) depended on the submodality of test stimulation and the route of drug administration. The amplitude of the innocuous H-reflex was not changed by [1DMe]NPYF administered i.t. in control rats. The present results indicate that [1DMe]NPYF produces a selective attenuation of pain in neuropathic animals due to naloxone-sensitive or -insensitive central mechanisms depending on the submodality of pain and route of drug administration. The amide-group is essential for the [1DMe]NPYF-induced attenuation of pain.  相似文献   

7.
The effects of stimulating the periaqueductal gray (PAG) against the rat tail flick reflex (TFR) was not changed significantly by the microinjection of lidocaine (5%/0.5 microl) into the medial (ME) or central (CE) nuclei of the amygdala. In contrast, lidocaine into the PAG blocked the effects from the ME or CE. The microinjection of naloxone (1 microg), beta-funaltrexamine (2 microg), propranolol (1 microg), or methysergide (1 microg), but not atropine (1 microg) or mecamylamine (1 microg) into the PAG significantly reduced the effects from the CE. The effect from the ME was not altered significantly by microinjecting naloxone into the PAG. Therefore, the ME or CE are unlikely to be intermediary stations for depression of the TFR evoked by stimulating the PAG, but the PAG may be a relay station for the effects of stimulating the ME or CE. The circuitry activated from the CE, but not the ME, utilises opioid mediation in the PAG. The effect from the CE depends at least on mu-opioid, serotonergic, and probably beta-adrenergic mediation in the PAG.  相似文献   

8.
The effects of microinjection of 5-10 micrograms of morphine into the midbrain periaqueductal gray (PAG) on the activity of neurons in the rostral ventral medulla (RVM) were studied in lightly anesthetized rats. Based on the relationship between changes in neuronal activity and the occurrence of the tail-flick reflex (TF), RVM neurons were divided into 3 groups: off-cells, on-cells and neutral cells. The off-cells exhibited an abrupt pause and the on-cells an acceleration beginning just prior to the occurrence of the TF. Neutral cell firing did not change at the time of the TF. Microinjections of morphine into the PAG which inhibited the TF had differential effects on the spontaneous activity of the 3 groups of neurons in RVM. Off-cells showed an increase and on-cells a decrease in spontaneous activity which preceded the inhibition of the TF. These microinjections also reduced the TF-related responses of off- and on-cells. The effects on cell activity were reversed by systemically administered naloxone and were not seen following microinjections which failed to block the TF. Neutral cell activity was unchanged following microinjection of morphine into the PAG. These results support the hypothesis that off- and on-cells in the RVM mediate the effects of microinjection of morphine into the PAG on spinal nociceptive reflexes.  相似文献   

9.
Exposure to stressful or fear-inducing environmental stimuli activates descending antinociceptive systems resulting in a decreased pain response to peripheral noxious stimuli. Stimulating mu opioid receptors in the basolateral nucleus of the amygdala (BLA) in anesthetized rats produces antinociception that is similar to environmentally induced antinociception in awake rats. Recent evidence suggests that both forms of antinociception are mediated via projections from the amygdala to the ventral periaqueductal gray (PAG). In the present study, we examined the types of neurochemicals released in the ventral PAG that may be important in the expression of antinociception produced by amygdala stimulation in anesthetized rats. Microinjection of a mu opioid receptor agonist into the BLA resulted in a time dependent increase in tail flick latency that was attenuated by preadministration of a mu opioid receptor or a neurotensin receptor antagonist into the ventral PAG. Microinjection of a delta(2) opioid receptor antagonist or an NMDA receptor antagonist into the ventral PAG was ineffective. These findings suggest that amygdala stimulation produces antinociception that is mediated in part by opioid and neurotensin release within the ventral PAG.  相似文献   

10.
Controlled expression of proteins is a key experimental approach to a deeper understanding of the molecular basis of neuronal function. Here we evaluate the HSV-1 (herpes simplex virus) amplicon vector for gene delivery into the brains of living rats. We demonstrate that HSV-1 amplicon vectors expressing enhanced green fluorescent protein (EGFP) can reliably infect neurons after it is injected into cortex, striatum and thalamus in rats, producing sufficient numbers of infected neurons for electrophysiological experiments in acute brain slices. Expression of EGFP delivered by the HSV-1 amplicon was detected for up to 5 weeks post-infection. We detected no changes in the morphology or the electrophysiological properties of thalamic, striatal or cortical neurons within a period of at least 2 weeks after HSV-1 amplicon injection. We conclude that the HSV-1 amplicon is a valuable tool for gene delivery in the rat central nervous system.  相似文献   

11.
Neuropathic pain is of serious clinical concern and only about half of patients achieve partial relief with currently-available treatments,so it is critical to find new drugs for this condition.Recently,the cellsurface trafficking of pain-related receptors has been suggested as an important mechanism underlying persistent neuropathic pain.Here,we used the short peptide GluA_(2-3y),which specifically inhibits the GluA2-dependent endocytosis of a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors,and tested its anti-nociceptive effect in the periaqueductal grey(PAG) of intact rats and rats with neuropathic pain.Intra-PAG injection of 0.15,1.5,7.5,and 15 pmol of GluA_(2-3y) induced dose-dependent increases in hindpaw withdrawal latencies to noxious thermal and mechanical stimuli in intact rats,suggesting that GluA2 cell-surface trafficking in the PAG is involved in pain modulation.Furthermore,GluA_(2-3y) had much stronger anti-nociceptive effects in rats with neuropathic pain induced by sciatic nerve ligation.Interestingly,the intra-PAG injection of 15 pmol GluA_(2-3y) had an analgesic effect similar to 10 ug(35nmol) morphine in rats with neuropathic pain.Taken together,our results suggested that GluA2 trafficking in the PAG plays a critical role in pain modulation,and inhibiting GluA2 endocytosis with GluA_(2-3y) has potent analgesic effects in rats with neuropathic pain.These findings strongly support the recent hypothesis that targeting receptor trafficking could be a new strategy for the treatment of neuropathic pain.  相似文献   

12.
The midbrain ventrolateral periaqueductal gray (VL‐PAG) is a key component that mediates pain modulation. Although spinal cord glial cells appear to play an important role in chronic pain development, the precise mechanisms involving descending facilitation pathways from the PAG following nerve injury are poorly understood. This study shows that cellular events that occur during glial activation in the VL‐PAG may promote descending facilitation from the PAG during neuropathic pain. Chronic constriction nerve injury (CCI) was induced by ligature construction of the sciatic nerve in male Sprague‐Dawley rats. Behavioral responses to noxious mechanical (paw withdrawal threshold; PWT) and thermal (paw withdrawal latency; PWL) stimuli were evaluated. After CCI, immunohistochemical and Western blot analysis of microglia and astrocytes in the VL‐PAG showed morphological and quantitative changes indicative of activation in microglia and astrocytes. Intra‐VL‐PAG injection of microglial or astrocytic inhibitors attenuated PWT and PWL at days 7 and 14, respectively, following CCI. We also evaluated the effects of intra‐VL‐PAG administration of the phosphorylated p38 mitogen‐activated protein kinase (p‐p38 MAPK) inhibitor SB 203580 at day 7 after CCI. This treatment abolished microglial activation and produced a significant time‐dependent attenuation of PWT and PWL. Western blot analysis showed localized expression of p‐p38 in the VL‐PAG after CCI. P‐p38 was expressed in labeled microglia of the VL‐PAG but was not present in astrocytes and neurons on day 7 after CCI. These results demonstrate that CCI‐induced neuropathic pain is associated with glial activation in the VL‐PAG, which likely participates in descending pain facilitation through the p38 MAPK signaling pathway. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
The effects of microinjection of 5–10 μg of morphine into the midbrain periaqueductal gray (PAG) on the activity of neurons in the rostral ventral medulla (RVM) were studied in lightly anesthetized rats. Based on the relationship between changes in neuronal activity and the occurrence of the tail-flick reflex (TF), RVM neurons were divided into 3 groups: off-cells, on-cells and neutral cells. The off-cells exhibited an abrupt pause and the on-cells an acceleration beginning just prior to the occurrence of the TF. Neutral cell firing did not change at the time of the TF. Microinjections of morphine into the PAG which inhibited the TF had differential effects on the spontaneous activity of the 3 groups of neurons in RVM. Off-cells showed an increase and on-cells a decrease in spontaneous activity which preceded the inhibition of the TF. These microinjections also reduced the TF-related responses of off- and on-cells. The effects on cell activity were reversed by systemically administered naloxone and were not seen following microinjections which failed to block the TF. Neutral cell activity was unchanged following microinjection of morphine into the PAG. These results support the hypothesis that off- and on-cells in the RVM mediate the effects of microinjection of morphine into the PAG on spinal nociceptive reflexes.  相似文献   

14.
Opiate analgesia can be hampered by a reduction in pharmacological effectiveness (tolerance), and this crucially depends on the periaqueductal gray matter (PAG). Non-opioids like metamizol (dipyrone) or aspirin also induce PAG-dependent analgesia and tolerance, but the neuronal bases of this tolerance are unknown. Metamizol is a pyrazolon derivative and cyclooxygenase inhibitor with widespread use as an analgesic in Europe and Latin America. Metamizol was microinjected into the PAG of awake male rats, and antinociception was assessed by the tail flick (TF) and hot plate (HP) tests. Microinjection twice daily for 2.5 days caused tolerance to metamizol. The rats were then anesthetized and recordings from pain-facilitating on-cells and pain-inhibiting off-cells of the rostral ventromedial medulla (RVM) were performed. PAG microinjection of morphine or metamizol depresses on-cells, activates off-cells and thus inhibits nociception, including TF and HP. In metamizol-tolerant rats, however, PAG microinjection of metamizol failed to affect on- or off-cells, and this is interpreted as the reason for tolerance. In metamizol-tolerant rats morphine microinjection into PAG also failed to affect RVM neurons or nociception (cross-tolerance). In naïve, non-tolerant rats the antinociceptive effect of PAG-microinjected metamizol or morphine was blocked when CTOP, a μ-opioid antagonist, was previously microinjected into the same PAG site. These results emphasize a close relationship between opioid and non-opioid analgesic mechanisms in the PAG and show that, like morphine, tolerance to metamizol involves a failure of on- and off-cells to, respectively, disfacilitate and inhibit nociception. Cross-tolerance between non-opioid and opioid analgesics should be important in the clinical setting.  相似文献   

15.
Previous studies have demonstrated that glutamate plays an important role in the development of pathological pain. This study investigates the expression changes of glutamate and the roles of different types of glutamate receptors in the red nucleus (RN) in the development of neuropathic allodynia induced by spared nerve injury (SNI). Immunohistochemistry indicated that glutamate was constitutively expressed in the RN of normal rats. After SNI, the expression levels of glutamate were significantly increased in the RN at 1 week and reached the highest level at 2 weeks postinjury compared with sham‐operated and normal rats. The RN glutamate was colocalized with neurons, oligodendrocytes, and astrocytes but not microglia under physiological and neuropathic pain conditions. To elucidate further the roles of the RN glutamate and different types of glutamate receptors in the development of neuropathic allodynia, antagonists to N‐methyl‐D‐aspartate (NMDA), non‐NMDA, or metabotropic glutamate receptors (mGluRs) were microinjected into the RN contralateral to the nerve‐injury side of rats with SNI, and the paw withdrawal threshold (PWT) was dynamically assessed with von Frey filaments. Microinjection of the NMDA receptor antagonist MK‐801 into the RN did not show any effect on SNI‐induced mechanical allodynia. However, microinjection of the non‐NMDA receptor antagonist 6,7‐dinitroquinoxaline‐2,3(1H,4H)‐dione or the mGluR antagonist (±)‐α‐methyl‐(4‐carboxyphenyl) glycine into the RN significantly increased the PWT and alleviated SNI‐induced mechanical allodynia. These findings suggest that RN glutamate is involved in regulating neuropathic pain and facilitates the development of SNI‐induced neuropathic allodynia. The algesic effect of glutamate is transmitted by the non‐NMDA glutamate receptor and mGluRs. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
目的 观察中脑导水管周围灰质(PAG)注射微量鲑鱼降钙素(sCT)后对去势大鼠痛阈的影响.方法 56只雌性SD大鼠被随机分为正常对照(NC)组、假手术组、切除双侧卵巢(OVX)组、慢性压迫性损伤(CCI)组、sCT低剂量组、sCT中剂量最组和sCT高剂量组.OVX术后4周,采用CCI方法制备神经性疼痛大鼠模型,并给予sCT低、中、高剂量组PAG注射相应剂量的sCT,每日1次,共7 d.应用斜板试验评估肌张力和本体感觉功能,热板试验评估热痛阈(TWL),von Frey纤丝测定机械痛阈(MNT).结果 各组间大鼠肌张力和本体感觉比较差异无统计学意义.与NC组比较,假手术组及OVX组TWL及MNT差异无统计学意义,CCI组显著降低(均P<0.05);与CCI组比较,各sCT组TWL和MNT显著提高(均P<0.05),sCT剂量与TWL和MNT呈止相关(r=0.97,r=0.963;均P<0.01).结论 sCT能够提高去势大鼠的痛阈,且这种效应呈剂量依赖性.  相似文献   

17.
18.
The local effects of SCH-32615, an inhibitor of enkephalinase (EC 3.4.24.11) on the hot-plate (HP) and tail-flick (TF) responses were examined following unilateral intracerebral microinjection into the periaqueductal brain (PAG), the medial ventral medulla (VM) and bilateral microinjection into the amygdala (AM) of the rat. In the PAG and VM, SCH-32615 resulted in a dose-dependent increase in HP and TF response latencies over a dose range of 1–30 μg with the ED50 values (μg) beingPAG-TF= 17;PAG-HP= 11;VM-TF= 7;VM-HP= 6. In the AM, dose-dependent increases were only observed on the HP. (ED50 (μg) HP = 17). Peak effects were observed within 10 min and response latencies remained elevated for 45–60 min. Injections of SCH-32615 at sites outside of the PAG or VM were considerably less effective. All antinociceptive effects were antagonized by naloxone (1 mg/kg, i.p.). Twenty-four hours following the microinjection of β-funaltrexamine (an irreversible opioid antagonist) into the PAG or the VM, the effects of SCH-32615 in the PAG were virtually abolished while in the VM, its effects were only moderately reduced. These data suggest that in the presence of a strong thermal stimulus, the behavioral response is subject to a tonically active or stimulus-evoked modulation by the local release in the PAG, VM and AM of an agent, presumably an enkephalin peptide, the degradation of which is altered by enkephalinase inhibition.  相似文献   

19.
Yang ZL  Zhang YQ  Wu GC 《Brain research》2001,888(1):167-171
The aim of the present study was to examine the effect of microinjection of orphanin FQ (OFQ) into periaqueductal gray (PAG) on sensory processing in the wide dynamic range (WDR) neurons of the spinal dorsal horn and to explore the effect of OFQ on a descending system of pain modulation. The results show that microinjection of OFQ into ipsilateral PAG significantly facilitated C-fibre evoked response and post-discharge of spinal dorsal horn WDR neurons. This is consistent with our previous results obtained in behavioral studies. It suggests that the supraspinal effect of OFQ on pain may partly be mediated by PAG neurons.  相似文献   

20.
The amygdala, periaqueductal gray (PAG), and rostral ventromedial medulla (RVM) are critical for the expression of some forms of stress-related changes in pain sensitivity. In barbiturate anesthetized rats, microinjection of agonists for the μ opioid receptor into the amygdala results in inhibition of the tail flick (TF) reflex evoked by radiant heat. We tested the idea that TF inhibition following opioid stimulation of the amygdala is expressed through a serial circuit which includes the PAG and RVM. Rats were anesthetized and prepared for microinjection of DAMGO (0.5 μg/0.25 μl) into the basolateral amygdala (BLA) and lidocaine HCl (2.5%/0.4–0.5 μl) into either the ventrolateral PAG or RVM. Lidocaine did not significantly alter baseline values for TF latency or TF amplitude. When injected into the PAG prior to DAMGO application in the BLA, lidocaine significantly attenuated DAMGO-induced antinociception for the entire 40 min testing session. Similar treatment in the RVM also resulted in an attenuation of antinociception although rats showed significant recovery of TF inhibition by 40 min after lidocaine injection. Since acute injection of lidocaine into the RVM also affected baseline heart rate, separate animals were prepared with small electrolytic lesions placed in the RVM. Chronic RVM lesions also blocked TF inhibition produced by amygdala stimulation but did not affect heart rate. These results, when taken together with similar findings in awake behaving animals, suggest that a neural circuit which includes the amygdala, PAG, and RVM is responsible for the expression of several forms of hypoalgesia in the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号