首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms of neuronal death in amyotrophic lateral sclerosis (ALS) are not known. A pathological aggregation of cytoplasmic constituents in the form of variety of inclusions may play a role in the pathogenesis of neuronal death. Cytoplasmic basophilic inclusions (BIs) in motor neurons are commonly found in sporadic juvenile ALS. The functional significance of these inclusions is not known, i.e., whether they represent a protective reaction for the isolation of abnormal products from the cytoplasm, or a sign of irreversible neuronal damage. To gain insights on the significance of BIs we asked whether neurons with BIs had an intact or fragmented Golgi apparatus (GA), a sign of neuronal degeneration reported not only in sporadic and familial ALS with mutations of the Cu/Zn superoxide dismutase gene (SOD1), but also in transgenic mice expressing the G93A mutation of SOD1. In these mice fragmentation of the GA of spinal cord motor neurons was found months before the onset of paralysis. We report here that all neurons bearing the inclusions showed fragmentation and reduced number of GA. These results suggest that common pathogenetic mechanisms are involved in the production of BIs and in the fragmentation of the GA.  相似文献   

2.
The Golgi apparatus (GA) of the large pyramidal motor neurons in the cerebral cortex (Betz cells), was examined in sixteen patients with sporadic amyotrophic lateral sclerosis (ALS), in one patient with familial ALS (FALS), and in ten non-ALS age matched controls including one patient with Huntington's disease and one patient with a brain infarct. The GA was immunostained with an antibody against the MG-160 protein, a conserved sialoglycoprotein of the medial cisternae of the organelle. In ALS, 13.2% of counted Betz cells had fragmented GA in contrast to 0.6% in the ten non-ALS controls. The fragmentation of the GA of Betz cells was identical to that previously reported in spinal cord motor neurons from patients with sporadic ALS and in transgenic mice expressing the G93A mutation of the gene encoding the Cu/Zn superoxide dismutase. The striking morphological similarity between the fragmentation of the GA observed in Betz cells and in spinal cord motor neurons suggests that a similar pathogenic mechanism is responsible for both, and that the fragmentation of the GA of the spinal cord motor neurons is not a consequence of deafferentation due to the degeneration of the Betz cells.  相似文献   

3.
The Golgi apparatus (GA) of spinal cord motor neurons is fragmented in sporadic amyotrophic lateral sclerosis (ALS), and in asymptomatic and symptomatic transgenic mice expressing the G93A mutation of the gene of the human Cu,Zn superoxide dismutase, found in certain cases of familial ALS (FALS) [Gonatas NK (1994) Am J Pathol 145 : 751–761; Mourelatos Z, et al. (1996) Proc Natl Acad Sci USA 93 : 5472–5477]. A similar fragmentation of the GA has been described in cells treated with microtubule-depolymerizing drugs, where the organelle is functional and contains both Golgi stacks and trans-Golgi network (TGN), the compartment of exit and targeting of proteins processed by the GA. To gain a better definition of the structure of the fragmented neuronal GA in ALS, four cases of sporadic ALS with numerous Bunina bodies in spinal cord motor neurons were stained with antibodies against human TGN and against the lumenal and cytoplasmic domains of MG160, a protein of the medial cisternae of the GA. The fragmented GA was stained with the three antibodies, indicating the presence of both Golgi stacks and TGN. Furthermore, the staining of the fragmented GA by the antiserum against the cytoplasmic domain of MG160 indicates that the fragmentation of the GA is not the result of a terminal and global cytoplasmic lytic event. The Bunina bodies were not stained by the anti-MG160 antibodies, suggesting that they are not derived from the GA. The perikarya of neurons with fragmented GA showed normal immunoreactivity with antibodies against the heavy neurofilament subunit and α-tubulin. However, because of the lack of appropriate antibodies the localization of proteins such as spectrin, ankyrin, centractin and others which link the microtubules with the GA were not done. The findings support the hypothesis that, in ALS, the fragmented neuronal GA is functional. Additional work with animal models of ALS may establish whether the fragmentation of the GA is a sign of early degeneration or a compensatory reaction of the injured motor neuron. Received: 7 October 1997 / Accepted: 5 November 1997  相似文献   

4.
The Golgi apparatus (GA) of the anterior horn cells in the spinal cord was examined by immunohistological methods with an antibody against the MG-160 protein, a conserved intrinsic membrane sialoglycoprotein of the medial cisternae of the GA, in three patients with familial amyotrophic lateral sclerosis (FALS) with posterior column involvement. Large motor neurons in the anterior horns were markedly reduced in number and 10 of total 14 remaining large motor neurons showed fragmentation and a reduction in the number of the elements of the GA. The fragmentation of the GA was identical to that previously reported in motor neurons of the spinal cord and motor cortex from patients with sporadic ALS and in transgenic mice expressing the G93A mutation of the gene encoding the Cu/Zn superoxide dismutase months before the onset of paralysis. This is the first report of fragmented GA of the anterior horn cells in patients with FALS with posterior column involvement. The findings suggest that the GA is a common target in the neuronal degeneration in sporadic and FALS.  相似文献   

5.
Overexpression of BTBD10 (BTB/POZ domain‐containing protein 10) suppresses G93A‐superoxide dismutase 1 (SOD1)‐induced motor neuron death in a cell‐based amyotrophic lateral sclerosis (ALS) model. In the present study, paraffin sections of spinal cords from 13 patients with sporadic ALS and 10 with non‐ALS disorders were immunostained using a polyclonal anti‐BTBD10 antibody. Reduced BTBD10 expression in the anterior horn cells was more frequent in spinal cords from ALS patients than in cords from patients with non‐ALS disorders. We further investigated the relationship between the level of BTBD10 immunoreactivity and the morphology of the Golgi apparatus (GA) and the presence of phosphorylated TAR‐DNA‐binding protein 43 (pTDP‐43). Mirror sections of spinal cords from five sporadic ALS cases were immunostained with antibodies against BTBD10 and trans‐Golgi‐network (TGN)‐46 or pTDP‐43. Whereas 89.7–96.5% of the neurons with normal BTBD10 immunoreactivity showed normal GA morphology and no pTDP‐43 cytoplasmic aggregates, 86.2–94.3% of the neurons with reduced BTBD10 expression showed GA fragmentation and abnormal pTDP‐43 aggregates. These findings suggest that reduced BTBD10 expression is closely linked to the pathogenesis of sporadic ALS.  相似文献   

6.
Fragmentation of the Golgi apparatus (GA) of motor neurons was first described in sporadic amyotrophic lateral sclerosis (ALS) and later confirmed in transgenic mice expressing the G93A mutation of the gene encoding the enzyme Cu,Zn superoxide dismutase (SOD1(G93A)) found in some cases of familial ALS. In these transgenic mice, however, the fragmentation of the neuronal GA was associated with cytoplasmic and mitochondrial vacuoles not seen in ALS. The present new series of transgenic mice expressing 14-17 trans gene copies of SOD1(G93A), compared to 25 copies in the mice we studied previously, showed consistent fragmentation of the GA of spinal cord motor neurons, axonal swellings, Lewy-like body inclusions in neurons and glia, but none of the cytoplasmic or mitochondrial vacuoles originally reported. Thus, this animal model recapitulates the clinical and most neuropathological findings of sporadic ALS. Neurofilaments (NF) accumulate in axons and, less often, in neuronal perikarya in most cases of sporadic ALS and they have been implicated in its pathogenesis. In order to investigate whether fragmentation of the neuronal GA also occurs in association with accumulation of perikaryal NFs, we studied the organelle in transgenic mice expressing the heavy subunit of human neurofilaments (NF-H) which developed a motor neuronopathy resembling ALS. The neuronal GA of mice expressing NF-H, however, was intact despite massive accumulation of NFs in both perikarya and axons of motor neurons. In contrast, in transgenic mice expressing SOD1(G93A), the GA was fragmented despite the absence of accumulation of perikaryal NFs. These findings suggest that, in transgenic mice with neuronopathies caused by the expression of mutant SOD1(G93A) or the human NF-H, the GA and the perikaryal NFs are independently involved in the pathogenesis. The evidence suggests that the GA plays a central role in the pathogenesis of the vast majority of sporadic ALS and in FALS with SOD1 mutations.  相似文献   

7.
We performed clinicopathological analyses of two amyotrophic lateral sclerosis (ALS) patients with homozygous Q398X optineurin (OPTN) mutation. Clinically, both patients presented signs of upper and lower motor neuron degeneration, but only Patient 1 showed gradual frontal dysfunction and extrapyramidal signs, and temporal lobe and motor cortex atrophy. Neuropathological examination of Patient 1 revealed extensive cortical and spinal motor neuron degeneration and widespread degeneration of the basal ganglia. Bilateral corticospinal tracts exhibited degeneration. Loss of spinal anterior horn cells (AHCs) and gliosis were observed, whereas posterior columns, Clarke's columns, intermediate lateral columns, and the Onuf's nucleus were spared. In the brainstem, moderate neuronal loss and gliosis were noted in the hypoglossal and facial motor nuclei. No Bunina bodies were found in the surviving spinal and brainstem motor neurons. Transactivation response (TAR) DNA‐binding protein 43 (TDP‐43)‐positive neuronal and glial cytoplasmic inclusions were observed throughout the central nervous system. The Golgi apparatus in motor neurons of the brainstem and spinal cord was often fragmented. Immunoreactivity for OPTN was not observed in the brain and spinal cord, consistent with nonsense‐mediated mRNA decay of OPTN. The TDP‐43 pathology of Q398X was similar to that of an autosomal dominant E478G mutation. This result suggests that the loss‐of‐function, but not the proteinopathy itself, of OPTN results in TDP‐43 deposits in neuronal and glial cytoplasm and Golgi apparatus fragmentation, leading to multisystem neurodegeneration.  相似文献   

8.
Mutations in the fused in sarcoma (FUS) gene can cause amyotrophic lateral sclerosis (ALS), and FUS gene mutations have been reported in sporadic ALS patients with basophilic cytoplasmic inclusions. Deficiency of adenosine deaminase acting on RNA 2 (ADAR2), an enzyme that specifically catalyzes GluA2 Q/R site-editing, has been reported in considerable proportions of spinal motor neurons of the majority of sporadic ALS patients. We describe the relationship between GluA2 Q/R site-editing efficiency and FUS-positive inclusions in a patient with FUSP525L. A 24-year-old woman with ALS presented with basophilic cytoplasmic inclusions, significantly reduced GluA2 Q/R site-editing efficiency in the spinal motor neurons, and markedly decreased ADAR2 mRNA levels. Neuropathologic examination showed that not all spinal motor neurons expressed ADAR2 and revealed FUS-positive cytoplasmic inclusions in motor neurons irrespective of ADAR2 immunoreactivity. There were no phosphorylated transactive response (TAR) DNA-binding protein 43 kDa (TDP-43)-positive inclusions, indicating that there was no tight correlation between ADAR2 deficiency and TDP-43 deposition. ADAR2 deficiency can occur in ALS patients with a FUSP525L mutation and is unrelated to the presence of FUS-positive inclusions. FUS-associated ALS may share neurodegenerative characteristics with classical sporadic ALS.  相似文献   

9.
Growing evidence documents oxidative stress involvement in ALS. We previously demonstrated accumulation of a protein‐bound form of the highly toxic lipid peroxidation product crotonaldehyde (CRA) in the spinal cord of sporadic ALS patients. In the present study, to the determine the role for CRA in the disease processes of superoxide dismutase‐1 (SOD1) mutation‐associated familial ALS (FALS), we performed immunohistochemical and semiquantitative cell count analyses of protein‐bound CRA (P‐CRA) in the spinal cord of SOD1‐mutated FALS and its transgenic mouse model. Immunohistochemical analysis revealed increased P‐CRA immunoreactivity in the spinal cord of the FALS patients and the transgenic mice compared to their respective controls. In the FALS patients, P‐CRA immunoreactivity was localized in almost all of the chromatolytic motor neurons, neurofilamentous conglomerates, spheroids, cordlike swollen axons, reactive astrocytes and microglia, and the surrounding neuropil in the affected areas represented by the anterior horns. In the transgenic mice, P‐CRA immunoreactivity was localized in only a few ventral horn glia in the presymptomatic stage, in almost all of the vacuolated motor neurons and cordlike swollen axons and some of the ventral horn reactive astrocytes and microglia in the onset stage, and in many of the ventral horn reactive astrocytes and microglia in the advanced stage. Cell count analysis on mouse spinal cord sections disclosed a statistically significant increase in the density of P‐CRA‐immunoreactive glia in the ventral horns of the young to old G93A mice compared to the age‐matched control mice. The present results indicate that enhanced CRA formation occurs in motor neurons and reactive glia in the spinal cord of SOD1‐mutated FALS and its transgenic mouse model as well as sporadic ALS, suggesting implications for CRA in the pathomechanism common to these forms of ALS.  相似文献   

10.
Transgenic mice that express the G93A mutation of human Cu,Zn superoxide dismutase (SOD1(G93A)), found in familial amyotrophic lateral sclerosis (FALS), showed clinical symptoms and histopathological changes of sporadic ALS, including fragmentation of the neuronal Golgi apparatus (GA). The finding of fragmented neuronal GA in asymptomatic mice, months before the onset of paralysis, suggests that the GA is an early target of the pathological processes causing neuronal degeneration. Transgenic mice expressing human SOD1(G93A) have aggregates of mutant protein and ubiquitin in neuronal and glial cytoplasm; they appeared first in the neuropil and later in the perikarya of motor neurons, where they were adjacent to fragmented GA. The aggregates of SOD1(G93A) appeared in neuronal perikarya of asymptomatic mice containing fragmented GA. The numbers of neurons with deposits of SOD1(G93A) and fragmented GA progressively increased with age. Immuno-electron microscopy using colloidal gold showed labeling of ubiquitin and SOD1 over 13 nm thick cytoplasmic filaments. Spinal cord extracts showed a 20-fold increase of SOD1(G93A) in transgenic mice compared to the wild-type protein in controls. The results suggest a causal relationship between the aggregation of mutant SOD1 and ubiquitin, fragmentation of the Golgi apparatus of motor neurons and neurodegeneration.  相似文献   

11.
Mutations in copper–zinc superoxide dismutase gene (SOD1) have been linked to some familial cases of ALS. We report here that rats that express a human SOD1 transgene with two different ALS‐associated mutations (G93A and H46R) develop striking motor neuron degeneration and paralysis. By comparing the two transgenic rats with different SOD1 mutations, we demonstrate that the time course in these rats was similar to human SOD1‐mediated familial ALS. As in the human disease and transgenic ALS mice, pathological analysis shows selective loss of motor neurons in the spinal cords of these transgenic rats. In addition, typical neuronal Lewy body‐like hyaline inclusions as well as astrocytic hyaline inclusions identical to those in human familial ALS are observed in the spinal cords. The larger size of this rat model as compared with the ALS mice will facilitate studies involving manipulations of spinal fluid (implantation of intrathecal catheters for chronic therapeutic studies; CSF sampling) and spinal cord (e.g., direct administration of viral‐ and cell‐mediated therapies).  相似文献   

12.
Cytoskeletal abnormalities with accumulation of ubiquilated inclusions in the anterior horn cells are a pathological hallmark of both familial and sporadic amyotrophic lateral sclerosis (ALS) and of mouse models for ALS. Phosphorylated neurofilaments besides ubiquitin and dorfin have been identified as one of the major components of the abnormal intracellular perikaryal aggregates. As we recently found that p38 mitogen-activated protein kinase (p38MAPK) colocalized with phosphorylated neurofilaments in spinal motor neurons of SOD1 mutant mice, a model of familial ALS, we investigated whether this kinase also contributed to the inclusions found in ALS patients and SOD1 mutant mice. Intense immunoreactivity for activated p38MAPK was observed in degenerating motor neurons and reactive astrocytes in ALS cases. The intracellular immunostaining for activated p38MAPK appeared in some neurons as filamentous skein-like and ball-like inclusions, with an immunohistochemical pattern identical to that of ubiquitin. Intracellular p38MAPK-positive aggregates containing ubiquitin and neurofilaments were also found in the spinal motor neurons of SOD1 mutant mice. Our observations indicate that activation of p38MAPK might contribute significantly to the pathology of motor neurons in ALS.  相似文献   

13.
To assess a role for oxidative stress in the pathogenesis of amyotrophic lateral sclerosis (ALS), we analyzed the immunohistochemical localization of 8-hydroxy-2′-deoxyguanosine (OHdG) as a nucleic acid oxidation product, acrolein-protein adduct and 4-hydroxy-2-nonenal (HNE)-protein adduct as lipid peroxidation products, N ɛ-carboxymethyl-lysine (CML) as a lipid peroxidation or protein glycoxidation product, pentosidine as a protein glycoxidation product, and imidazolone and pyrraline as nonoxidative protein glycation products in the spinal cord of three familial ALS patients with superoxide dismutase-1 (SOD1) A4V mutation, six sporadic ALS patients, and six age-matched control individuals. The spinal cord sections of the control cases did not show any distinct immunoreactivities for these examined products. In the familial ALS cases, intense immunoreactivities for pyrraline and CML were confined to the characteristic Lewy body-like hyaline inclusions, and imidazolone immunoreactivity was located in the cytoplasm of the residual motor neurons. No significant immunoreactivities for other examined products were detected in the familial ALS spinal cords. In the sporadic ALS cases, intense immunoreactivities for pentosidine, CML and HNE-protein adduct were seen in the cytoplasm of the degenerated motor neurons, and OHdG immunoreactivity was located in the cell nuclei of the residual neurons and glial cells. The present results indicate that oxidative reactions are involved in the disease processes of sporadic ALS, while there is no evidence for increased oxidative damage except for CML deposition in the familial ALS spinal cords. Furthermore, it is likely that the accumulation of pyrraline and imidazolone supports a nonoxidative mechanism in SOD1-related motor neuron degeneration. Received: 18 August 1999 / Revised, accepted: 17 November 1999  相似文献   

14.
We evaluated the expression of the type III intermediate filament (IF) protein, peripherin (PRP), in ubiquinated inclusions of motor neurons in amyotrophic lateral sclerosis (ALS). A previous study showed that overexpression of PRP in transgenic mice induces motor neuron disease with formation of PRP-containing inclusions before onset of symptoms [J. Cell Biol. 147 (3) (1999) 531]. To determine whether PRP inclusions occur in the human disease, we applied doublelabeling immunofluorescence to paraffin sections of the spinal cord obtained by autopsy of 40 ALS patients with sporadic disease and 39 controls. Inclusions that expressed immunoreactive ubiquitin and peripherin were recorded by video camera, and the sections were stained by hematoxylin and eosin (H&E) to define morphology. Lewy body-like inclusions (LBLIs) were seen in motor neuron perikarya of 9 of 40 ALS cases and none in controls; all LBLIs expressed peripherin. Skein-like inclusions (SLIs) were identified by ubiquitin, but did not express PRP with rare exceptions. Neither skein-like inclusions nor LBLIs expressed alpha B-crystallin, neurofilament protein (NF-L, NF-M and NF-H subunits), alpha-internexin, actin or alpha-synuclein. Immunoblot of the whole spinal cord exhibited a single 57-kDa band of peripherin in ALS patients and controls. Our data document the expression of peripherin in LBLIs, which may provide a clue to the pathogenesis of neurodegeneration in ALS.  相似文献   

15.
Aims: Sporadic amyotrophic lateral sclerosis (ALS) is a progressive and invariably fatal disease involving the upper and lower motor neurones of adult humans. Among the neuropathological features of the disease, abnormalities in the protein‐synthesizing system in motor neurones of the brainstem and spinal cord, such as a decrease of cytoplasmic RNA and rough endoplasmic reticulum (rER) (chromatolysis), defective editing of the Q/R site of the glutamate receptor subunit GluR2 mRNA, fragmentation of the Golgi apparatus and accumulation of ubiquitinated inclusions and abnormal TdP‐43 protein have been reported to be essential for the degeneration. In relation to these features, although the possibility of ER stress has been reported in motor neurones of the brainstem and spinal cord of ALS patients, the rER itself has not been a main target of ultrastructural investigation. Methods: The present study examined the rER, ultrastructurally and quantitatively in the spinal anterior horn cells (AHCs) of 21 Japanese patients with sporadic ALS and eight Japanese control subjects. Results and conclusions: It was found that: (i) the rER cisternae in AHCs showing central chromatolysis were fragmented, but retained their width and had normally attached ribosomes, and (ii) the rER cisternae in shrunken AHCs were irregularly distended with detachment of the ribosomes, thus suggesting that (iii) ribosomal detachment was related to rER distention.  相似文献   

16.
The transactive response (TAR) DNA binding protein 43 (TDP‐43) has been recently implicated as a major component of ubiquitinated inclusions in amyotrophic lateral sclerosis (ALS, motor neuron disease: MND) and ALS‐related disorders. In this study, we examined abnormal TDP‐43 pathology in 13 sporadic ALS (SALS), six familial ALS (FALS) with and without Cu/Zn superoxide dismutase (SOD1) mutations (SOD1‐FALS and non‐SOD1‐FALS), Guam ALS, two frontotemporal lobar degeneration with MND/ALS (FTLD‐MND/ALS), one FTLD with ubiquitin‐only‐immunoreactive inclusions (FTLD‐U) and two progressive supranuclear palsy (PSP). Sections from the spinal cord were processed for immunohistochemistry using antibodies against TDP‐43, ubiquitin, p62, cystatin C, phosphorylated tau protein (P‐tau; AT8), α‐synuclein and phosphorylated neurofilament protein (P‐NF). In 12 out of 13 SALS and both Guam ALS cases ubiquitin and p62‐immunoreactive (IR) neuronal inclusions co‐localized with TDP‐43. In three out of four SOD1‐FALS and one of two non‐SOD1‐FALS cases, TDP‐43‐IR inclusions were absent despite the presence of p62 and/or ubiquitin‐IR inclusions. However, a single TDP‐43‐IR neuronal inclusion co‐localized with p62 and ubiquitin in one SOD1‐FALS (His48Gln) case. Except for one neuron in a Guam case, all TDP‐43‐IR neuronal inclusions were negative for P‐tau (AT8). TDP‐43‐IR glial inclusions and neurites were also demonstrated. The TDP‐43 is a consistent component of the ubiquitinated inclusions in SALS and Guam ALS, but TDP‐43‐IR inclusions are absent or scarce in SOD1‐FALS.  相似文献   

17.
Copper, zinc superoxide dismutase (SOD1) is involved in neutralizing free radicals within cells, and mutant forms of the enzyme have recently been shown to occur in about 20% of familial cases of amyotrophic lateral sclerosis (ALS). To explore the mechanism of SOD1 involvement in ALS, we have analyzed SOD1 in sporadic ALS using activity assays and immunocytochemistry. Analyses of SOD1 activity in washed erythrocytes revealed no difference between 13 ALS cases and 4 controls. Spinal cord sections from 6 ALS cases, 1 primary lateral sclerosis (PLS) case, and 1 control case were stained using three different antibodies to SOD1. Since astrocytes are closely associated with motor neurons, antibodies to glial fibrillary acidic protein (GFAP) and vimentin were used as independent monitors of astrocytes. The principal findings from localizations are: (1) normal motor neurons do not have higher levels of SOD1 than other neurons, (2) there was no detectable difference in SOD1 levels in motor neurons of ALS cases and controls, (3) ALS spinal cord displayed a reduction or absence of SOD1-reactive astrocytes compared to the control and PLS cases, and (4) examination of GFAP-stained sections and morphometry showed that the normal close association between astrocytic processes and motor neuron somata was decreased in the ALS and PLS cases. These results indicate the disease mechanism in sporadic ALS may involve alterations in spinal cord astrocytes.  相似文献   

18.
Amyotrophic lateral sclerosis (ALS) is a conformational disease in which misfolding and aggregation of proteins such as SOD1 (familial ALS) and TDP-43 (sporadic ALS) are central features. The conformations adopted by such proteins within motor neurons in affected patients are not well known. We have developed a novel conformation-specific antibody (USOD) targeted against SOD1 residues 42–48 that specifically recognizes SOD1 in which the beta barrel is unfolded. Use of this antibody, in conjunction with the previously described SEDI antibody that recognizes the SOD1 dimer interface, allows a detailed investigation of the in vivo conformation of SOD1 at the residue-specific level. USOD and SEDI immunohistochemistry of spinal cord sections from ALS cases resulting from SOD1 mutations (A4V and ΔG27/P28) shows that inclusions within remaining motor neurons contain SOD1 with both an unfolded beta barrel and a disrupted dimer interface. Misfolded SOD1 can also be immunoprecipitated from spinal cord extracts of these cases using USOD. However, in ten cases of sporadic ALS, misfolded SOD1 is not detected by either immunohistochemistry or immunoprecipitation. Using the amyloid-specific dyes, Congo Red and Thioflavin S, we find that SOD1-positive inclusions in familial ALS, as well as TDP-43- and ubiquitin-positive inclusions in sporadic ALS, contain non-amyloid protein deposits. We conclude that SOD1 misfolding is not a feature of sporadic ALS, and that both SOD1-ALS and sporadic ALS, rather than being amyloid diseases, are conformational diseases that involve amorphous aggregation of misfolded protein. This knowledge will provide new insights into subcellular events that cause misfolding, aggregation and toxicity.  相似文献   

19.
The Golgi apparatus of motor neurons (GA) is fragmented in sporadic amyotrophic lateral sclerosis (ALS), in familial ALS with SOD1 mutations, and in mice that express SOD1G93A of familial ALS, in which it was detected months before paralysis. In paralyzed transgenic mice expressing SOD1G93A or SOD1G85R, mutant proteins aggregated not only in the cytoplasm of motor neurons, but also in astrocytes and oligodendrocytes. Furthermore, aggregation of the G85R protein damaged astrocytes and was associated with rapidly progressing disease. In order to gain insight into the functional state of the fragmented GA, we examined the effects of S0D1 mutants G93A and G85R in Chinese Hamster Ovary Cells (CHO). In contrast to cells expressing the wt and G93A, the G85R expressers had no SOD1 activity. However, cells expressing both mutants, and to a lesser degree the wt, showed decreased survival, fragmentation of the GA, and dysfunction of the secretory pathway, which was assessed by measuring the amount of cell surface co-expressed CD4, a glycoprotein processed through the GA. The G93A and wt proteins were partially recovered in detergent insoluble fractions; while the recovery of G85R was minimal. Both mutants showed equal reductions of cell survival and function of the secretory pathway, in comparison to the wt and cells expressing mutant alsin, a protein found in rare cases of fALS. These results are consistent with the conclusion that the two SOD1 mutants, by an unknown mechanism, promote the dispersion of the GA and the dysfunction of the secretory pathway. This and other in vitro models of mutant SOD1 toxicity may prove useful in the elucidation of pathogenetic mechanisms.  相似文献   

20.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which results from selective loss of upper and lower motor neurons. Mouse models of ALS, such as one carrying the G93A mutant of the human Cu-Zn superoxide dismutase gene[SOD1(G93A)], develop motor neuron pathology and clinical symptoms similar to those observed in ALS patients. There is compelling evidence that both direct and indirect glutamate toxicity contribute to the pathogenesis of motor neuron degeneration. However, the therapeutic effect of various glutamate receptor antagonists has not been clearly demonstrated. Memantine is a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist. It has been shown to protect neurons against NMDA- or glutamate-induced toxicity in vitro and in animal models of neurodegenerative diseases. In the current study, we have examined the therapeutic efficacy of memantine in an ALS mouse model carrying a high copy number of SOD1(G93A). Memantine treatment significantly delayed the disease progression and increased the life span of SOD1(G93A) mice, from 121.4 +/- 5.5 to 129.7 +/- 4.5 days (P = 0.032). Furthermore, NMDA receptor subunits were reliably detected in the spinal cord of SOD1(G93A) mice and their expression levels were similar to those in the wild-type littermate control. Therefore, the neuroprotective effect of memantine in SOD1(G93A) mice is most probably due to the inhibition of spinal cord NMDA receptors. In view of the long-term usage of memantine for dementia patients, with excellent tolerance and safety, these data suggest that memantine may be used in ALS patients alone or in combination with other therapies to prolong survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号