首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Cell death in the core of human brain tumors is triggered by hypoxia and lack of nutrients, but the mode of cell death whether necrosis or apoptosis is not clearly defined. To identify the role of apoptosis in brain tumor cell death, we investigated macromolecular (RNA and protein) synthesis and activity in the central to peripheral region of benign [desmoplastic infantile ganglioglioma (DIG) and transitional meningioma (TMG)] and malignant [ependymoma (END), anaplastic astrocytoma (APA), and glioblastoma multiforme (GBM)] brain tumors derived from five patients who had not received previously radiotherapy or chemotherapy. Normal brain tissue (NBT) served as control. RT-PCR analysis of tumor tissues covering central to peripheral regions detected mRNA overexpression of pro-apoptotic gene bax in malignant tumors, indicating a commitment to apoptosis. The mRNA expression of calpain (a Ca(2+)-dependent cysteine protease) and calpastatin (endogenous calpain inhibitor) was altered resulting in an elevated calpain/calpastatin ratio. Calpain content and activity were increased, suggesting a role for calpain in cell death. In the mitochondria-dependent death pathway, caspase-9 and caspase-3 were also overexpressed in tumors. The increased caspase-3 activity cleaved poly(ADP-ribose) polymerase (PARP). Agarose gel electrophoresis detected a mixture of random and internucleosomal DNA fragmentation in malignant brain tumors. Overexpression of pro-apoptotic bax, upregulation of calpain and caspase-3, and occurrence of internucleosomal DNA fragmentation are now presented indicating that one mechanism of cell death in malignant brain tumors is apoptosis, and that enhancement of this process therapeutically may promote decreased tumor growth.  相似文献   

2.
Amyloid β (Aβ)‐induced neuroinflammation plays an important part in Alzheimer's disease (AD). Emerging evidence supports a role for the transient receptor potential melastatin‐related 2 (TRPM2) channel in Aβ‐induced neuroinflammation, but how Aβ induces TRPM2 channel activation and this relates to neuroinflammation remained poorly understood. We investigated the mechanisms by which Aβ42 activates the TRPM2 channel in microglial cells and the relationships to microglial activation and generation of tumor necrosis factor‐α (TNF‐α), a key cytokine implicated in AD. Exposure to 10–300 nM Aβ42 induced concentration‐dependent microglial activation and generation of TNF‐α that were ablated by genetically deleting (TRPM2 knockout ;TRPM2‐KO) or pharmacologically inhibiting the TRPM2 channel, revealing a critical role of this channel in Aβ42‐induced microglial activation and generation of TNF‐α. Mechanistically, Aβ42 activated the TRPM2 channel via stimulating generation of reactive oxygen species (ROS) and activation of poly(ADPR) polymerase‐1 (PARP‐1). Aβ42‐induced generation of ROS and activation of PARP‐1 and TRPM2 channel were suppressed by inhibiting protein kinase C (PKC) and NADPH oxidases (NOX). Aβ42‐induced activation of PARP‐1 and TRPM2 channel was also reduced by inhibiting PYK2 and MEK/ERK. Aβ42‐induced activation of PARP‐1 was attenuated by TRPM2‐KO and moreover, the remaining PARP‐1 activity was eliminated by inhibiting PKC and NOX, but not PYK2 and MEK/ERK. Collectively, our results suggest that PKC/NOX‐mediated generation of ROS and subsequent activation of PARP‐1 play a role in Aβ42‐induced TRPM2 channel activation and TRPM2‐dependent activation of the PYK2/MEK/ERK signalling pathway acts as a positive feedback to further facilitate activation of PARP‐1 and TRPM2 channel. These findings provide novel insights into the mechanisms underlying Aβ‐induced AD‐related neuroinflammation.  相似文献   

3.
4.
Herpes simplex virus type 1 (HSV-1) triggered apoptosis in hippocampal cultures, as determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) and immunohistochemistry with antibody specific for the large fragment of activated caspase 3. The levels of phosphorylated (activated) c-Jun N-terminal kinase (JNK) were also increased in HSV-1-infected hippocampal cultures as were the levels of activated c-Jun, its target. JNK activation was involved in HSV-1-induced apoptosis as evidenced by apoptosis inhibition with the JNK inhibitor SP600125. HSV-2 activated the mitogen-activated protein kinase/extracellular regulated protein kinase (MEK/ERK) survival pathway and did not trigger apoptosis in hippocampal cultures. The MEK specific inhibitor U0126 inhibited ERK activation and caused a significant increase in the percent TUNEL(+) cells in HSV-2-infected cultures, indicating that the failure of HSV-2 to trigger apoptosis is due to its ability to activate the MEK/ERK survival pathway. JNK was also activated in brain tissues from patients with HSV-associated acute focal encephalitis (HSE) that were positive for HSV-1 antigen. JNK activation correlated with apoptosis, as determined by immunohistochemistry with antibody to activated caspase 3 or cleaved poly (ADP-ribose) polymerase (PARP). The data suggest that HSE has an apoptotic component that may contribute to disease pathogenesis.  相似文献   

5.
By using pharmacological and molecular approaches, we previously showed that the G-protein-coupled, extracellular calcium (Ca2+(o))-sensing receptor (CaR) regulates a large-conductance (approximately 140 pS), Ca(2+)-activated K+ channel [IK(Ca); CAKC] in U87 astrocytoma cells. Here we show that elevated Ca2+(o) stimulates extracellular-signal-regulated kinase (ERK1/2) and p38 MAP kinase (MAPK). The effect of high Ca2+(o) on p38 MAPK but not ERK1/2 is CaR mediated, insofar as transduction with a dominant-negative CaR (R185Q) using recombinant adeno-associated virus (rAAV) attenuated the activation of p38 MAPK but not of ERK1/2. p38 MAPK activation by the CaR is likely to be protein kinase C (PKC) independent, in that the pan-PKC inhibitor GF109203X failed to abolish the high-Ca2+(o)-induced phosphorylation of p38 MAPK. Consistently with our data on the activation of this kinase, we observed that inhibiting p38 MAPK blocked the activation of the CAKC induced by the specific pharmacological CaR activator NPS R-467. In contrast, inhibiting MEK1 only transiently inhibited the activation of this K+ channel by NPS R-467, despite the continued presence of the antagonist. Similarly to the lack of any effect of the PKC inhibitor on the activation of ERK1/2 and p38 MAPK, inhibiting PKC had no effect on NPS R-467-induced activation of this channel. Therefore, our data show that the CaR, acting via p38 MAPK, regulates a large-conductance CAKC in U87 cells, a process that is PKC independent. Large-conductance CAKCs play an important role in the regulation of cellular volume, so our results have important implications for glioma cell volume regulation.  相似文献   

6.
The ERK1/2 activated protein kinase (MAPK) pathway is a critical signaling system that mediates ligand‐stimulated signals for the induction of cell proliferation, differentiation and survival, involved in malignant transformation. The purpose of this study was to determine the activation of ERK1/2 in this tumor, and to determine the relationship of ERK1/2 activation with the amplification/overexpression of EGFR as well as with 9p21 locus gene alterations, both of which are genetic factors frequently associated with glioblastoma. We used immunohistochemistry and Western blot analysis to analyze the activation of ERK1/2 in 22 patients with glioblastoma, and we studied the amplification/overexpression of EGFR; as well as the molecular alterations in 9p21 locus genes. Positive immunostaining ERK1/2 was observed in 86.4% of the tumors, displaying mainly nuclear immunolocalization; and by immunoblotting, ERK1/2 was activated in 68% of the cases. The 70% of cases with EGFR amplification presented activated ERK1/2. The joint presence of amplified EGFR and alterations in the 9p21 genes was observed in 50% of the cases, whereas the simultaneous occurrence of these two phenomena with the activation of ERK1/2 was observed in 40% of the cases. Our results suggest that the activation of ERK1/2 is implicated in the pathobiology of glioblastoma. This activation of ERK1/2 is probably related in part to the amplification of EGFR as well as to alterations in 9p21 locus genes (homozygous deletion and promoter methylation). However, the activation of ERK1/2 also involves pathways that are independent of the EGFR.  相似文献   

7.
Cancer stem cells are thought to be closely related to tumor progression and recurrence, making them attractive therapeutic targets. Stem cells of various tissues exist within niches maintaining their stemness. Glioblastoma stem cells (GSCs) are located at tumor capillaries and the perivascular niche, which are considered to have an important role in maintaining GSCs. There were some extracellular matrices (ECM) on the perivascular connective tissue, including type 1 collagen. We here evaluated whether type 1 collagen has a potential niche for GSCs. Imunohistochemical staining of type 1 collagen and CD133, one of the GSCs markers, on glioblastoma (GBM) tissues showed CD133‐positive cells were located in immediate proximity to type 1 collagen around tumor vessels. We cultured human GBM cell lines, U87MG and GBM cells obtained from fresh surgical tissues, T472 and T555, with serum‐containing medium (SCM) or serum‐free medium with some growth factors (SFM) and in non‐coated (Non‐coat) or type 1 collagen‐coated plates (Col). The RNA expression levels of CD133 and Nestin as stem cell markers in each condition were examined. The Col condition not only with SFM but SCM made GBM cells more enhanced in RNA expression of CD133, compared to Non‐coat/SCM. Semi‐quantitative measurement of CD133‐positive cells by immunocytochemistry showed a statistically significant increase of CD133‐positive cells in Col/SFM. In addition, T472 cell line cultured in the Col/SFM had capabilities of sphere formation and tumorigenesis. Type 1 collagen was found in the perivascular area and showed a possibility to maintain GSCs. These findings suggest that type 1 collagen could be one important niche component for CD133‐positive GSCs and maintain GSCs in adherent culture.  相似文献   

8.
Chemotherapy-induced peripheral neuropathy (CIPN) is a major toxicity of chemotherapy treatment for which no therapy is approved. Poly(ADP-ribose) polymerase (PARP)1/2 are nuclear enzymes activated upon DNA damage, and PARP1/2 inhibition provides resistance against DNA damage. A role for PARP inhibition in sensory neurotransmission has also been established. PARP inhibitors attenuate pain-like behaviors and neuropathy-associated decreased peripheral nerve function in diabetic models. The hypothesis tested was that PARP inhibition protects against painful neuropathy. The objective of this study was to investigate whether the novel, selective PARP1/2 inhibitors (ABT-888 and related analogues) would attenuate development of mechanical allodynia in vincristine-treated rats. PARP inhibitors were dosed for 2 days, and then co-administered with vincristine for 12 days. Mechanical allodynia was observed in rats treated with vincristine. PARP1/2 inhibition significantly attenuated development of mechanical allodynia and reduced poly ADP-ribose (PAR) activation in rat skin. The data presented here show that PARP inhibition attenuates vincristine-induced mechanical allodynia in rats, and supports that PARP inhibition may represent a novel therapeutic approach for CIPN.  相似文献   

9.
Genetic and epigenetic status, including mutations of isocitrate dehydrogenase (IDH) and TP53 and methylation of O6‐methylguanine‐DNA methyltransferase (MGMT), are associated with the development of various types of glioma and are useful for prognostication. Here, using routinely available histology sections from 312 patients with diffuse gliomas, we performed immunohistochemistry using antibodies specific for IDH1 mutation, MGMT methylation status, and aberrant p53 expression to evaluate the possible prognostic significance of these features. With regard to overall survival (OS), univariate analysis indicated that an IDH1‐positive profile in patients with glioblastoma (GBM), anaplastic astrocytoma (AA), anaplastic oligoastrocytoma and oligodendroglioma, or a MGMT‐negative profile in patients with GBM and AA were significantly associated with a favorable outcome. Multivariate analysis revealed that both profiles were independent factors influencing prognosis. The OS of patients with IDH1‐positive/MGMT‐negative profiles was significantly longer than that of patients with negative/negative and negative/positive profiles. A p53 profile was not an independent prognostic factor. However, for GBM/AA patients with IDH1‐negative/MGMT‐negative profiles, p53 overexpression was significantly associated with an unfavorable outcome. Thus, the immunohistochemical profiles of IDH1 and MGMT are of considerable significance in gliomas, and a combination of IDH1, MGMT and p53 profiles may be useful for prognostication of GBM/AA.  相似文献   

10.
Glioblastoma (GBM) is a highly malignant, rapidly progressive astrocytoma that is distinguished pathologically from lower grade tumors by necrosis and microvascular hyperplasia. Necrotic foci are typically surrounded by "pseudopalisading" cells-a configuration that is relatively unique to malignant gliomas and has long been recognized as an ominous prognostic feature. Precise mechanisms that relate morphology to biologic behavior have not been described. Recent investigations have demonstrated that pseudopalisades are severely hypoxic, overexpress hypoxia-inducible factor (HIF-1), and secrete proangiogenic factors such as VEGF and IL-8. Thus, the microvascular hyperplasia in GBM that provides a new vasculature and promotes peripheral tumor expansion is tightly linked with the emergence of pseudopalisades. Both pathologic observations and experimental evidence have indicated that the development of hypoxia and necrosis within astrocytomas could arise secondary to vaso-occlusion and intravascular thrombosis. This emerging model suggests that pseudopalisades represent a wave of tumor cells actively migrating away from central hypoxia that arises after a vascular insult. Experimental glioma models have shown that endothelial apoptosis, perhaps resulting from angiopoetin-2, initiates vascular pathology, whereas observations in human tumors have clearly demonstrated that intravascular thrombosis develops with high frequency in the transition to GBM. Tissue factor, the main cellular initiator of thrombosis, is dramatically upregulated in response to PTEN loss and hypoxia in human GBM and could promote a prothrombotic environment that precipitates these events. A prothrombotic environment also activates the family of protease activated receptors (PARs) on tumor cells, which are G-protein-coupled and enhance invasive and proangiogenic properties. Vaso-occlusive and prothrombotic mechanisms in GBM could readily explain the presence of pseudopalisading necrosis in tissue sections, the rapid peripheral expansion on neuroimaging, and the dramatic shift to an accelerated rate of clinical progression resulting from hypoxia-induced angiogenesis.  相似文献   

11.
Much of the cell death following episodes of anoxia and ischemia in the mammalian central nervous system has been attributed to extracellular accumulation of glutamate and ATP, which causes a rise in [Ca2+]i, loss of mitochondrial potential, and cell death. However, restoration of blood flow and reoxygenation are frequently associated with exacerbation of tissue injury (the oxygen paradox). Herein we describe a novel signaling pathway that is activated during ischemia‐like conditions (oxygen and glucose deprivation; OGD) and contributes to ischemia‐induced oligodendroglial cell death. OGD induced a retarded and sustained increase in extracellular signal‐regulated kinase 1/2 (ERK1/2) phosphorylation after restoring glucose and O2 (reperfusion‐like conditions). Blocking the ERK1/2 pathway with the MEK inhibitor UO126 largely protected oligodendrocytes against ischemic insults. ERK1/2 activation was blocked by the high‐affinity Zn2+ chelator TPEN, but not by antagonists of AMPA/kainate or P2X7 receptors that were previously shown to be involved in ischemic oligodendroglial cell death. Using a high‐affinity Zn2+ probe, we showed that ischemia induced an intracellular Zn2+ rise in oligodendrocytes, and that incubation with TPEN prevented mitochondrial depolarization and ROS generation after ischemia. Accordingly, exposure to TPEN and the antioxidant Trolox reduced ischemia‐induced oligodendrocyte death. Moreover, UO126 blocked the ischemia‐induced increase in poly‐[ADP]‐ribosylation of proteins, and the poly[ADP]‐ribose polymerase 1 (PARP‐1) inhibitor DPQ significantly inhibited ischemia‐induced oligodendroglial cell death—demonstrating that PARP‐1 was required downstream in the Zn2+‐ERK oligodendrocyte cell death pathway. Chelation of cytosolic Zn2+, blocking ERK signaling, and antioxidants may be beneficial for treating CNS white matter ischemia‐reperfusion injury. Importantly, all the inhibitors of this pathway protected oligodendrocytes when applied after the ischemic insult. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
The purpose of this study was to examine the activation, topographic distribution, and cellular location of three mitogen-activated protein kinases (MAPKs) after permanent middle cerebral artery occlusion (MCAO) in mice. Phosphorylated MAPKs expression in the ischemic region was quantified using Western blot analysis and localized immunohistochemically using the diaminobenzide staining and double-labeled immunostaining. Extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2), p38 mitogen-activated protein (p38), and c-Jun NH2-terminal kinase or stress-activated protein kinase (SAPK/JNK) were initially activated at 30 minutes, 10 minutes, and 5 minutes, respectively, after focal cerebral ischemia. Peak expression represented a 2.7-fold, 3.7-fold, and 4.8-fold increase in each of these MAPKs, respectively. The immunohistochemical expressions of ERK1, ERK2, p38, and SAPK/JNK protein paralleled the Western blot analysis results. Double-labeled immunofluorescent staining demonstrated that the neurons and astrocytes expressed ERK1, ERK2, p38, and SAPK/JNK during the early time points after MCAO. The current results demonstrate that brain damage after ischemia rapidly triggers time-dependent ERK1, ERK2, p38, and SAPK/ JNK phosphorylation, and reveals that neurons and astrocytes are involved in the activation of the MAPK pathway. This very early expression of MAPKs suggests that MAPKs may be closely involved in signal transduction during cerebral ischemia.  相似文献   

13.
Role of Ang1 and its interaction with VEGF-A in astrocytomas   总被引:2,自引:0,他引:2  
Angiopoietins (Ang1 and Ang2) modulate the activity of the endothelial cell (EC)-specific receptor tyrosine kinase Tie2, which together with vascular endothelial growth factor (VEGF-A) and its EC-specific receptors, VEGFR1 and VEGFR2, regulate normal physiological vessel development. The functional role of angiopoietins in tumor angiogenesis, in particular astrocytoma angiogenesis, remains unclear. In this study, we focus on the specific contribution of Ang1 to the vascular growth of glioblastoma multiforme (GBM) and its interactive role with VEGF-A. Subcutaneous and intracranial GBM xenografts were generated using 3 established astrocytoma cell lines (U87, U373, and U343) that were transfected to stably over-express Ang1. GBM xenografts were also generated to express low levels of VEGF-A and high Angl. We found that Ang1 increases the vascular growth of both subcutaneous and intracranial xenografts of GBM by approximately 3-fold. However, the increased vascular growth was only seen in xenografts with concurrent VEGF-A elevation, since decreasing VEGF-A expression resulted in a loss of the pro-angiogenic growth advantage seen with Ang1. Collectively, our data suggest that Ang1 regulates GBM vascularity in a VEGF-A dependent manner, synergizing the initial pro-angiogenic response that is triggered by VEGF-A and promoting the vascular growth of GBM.  相似文献   

14.
Molecular genetic alterations in pleomorphic xanthoastrocytoma   总被引:7,自引:0,他引:7  
Pleomorphic xanthoastrocytoma (PXA) is a low-grade glioma that may recur as a malignant diffuse astrocytoma such as glioblastoma (GBM). While the molecular genetic basis of diffuse astrocytomas has been studied extensively, PXAs have not been analyzed in detail. We, therefore analyzed DNA from archival primary and recurrent PXAs from eight patients (three grade II PXAs without recurrence, one grade II PXA with recurrence as grade II PXA, two grade II PXAs with progression to GBM, and two grade III anaplastic PXAs with recurrence as grade III anaplastic PXA or GBM) for genetic changes associated with diffuse astrocytomas. Single-strand conformation polymorphism analysis of p53 exons 5–8 revealed migration shifts in two cases, one primary PXA without recurrence and one recurrent grade II PXA in which the primary tumor did not show a shift. DNA sequencing showed two missense mutations in codons 220 (exon 6) and 292 (exon 8), respectively, mutations which have not been previously noted in astrocytomas. Differential polymerase chain reaction analysis demonstrated epidermal growth factor receptor gene amplification in only one tumor, a GBM without allelic loss of chromosome 10 that was the second GBM recurrence of an initial grade II PXA. Loss of heterozygosity studies on tumors from five patients, using three microsatellite polymorphisms on chromosome 10q and three on chromosome 19q, did not disclose allelic loss in any recurrent tumor. These findings suggest that the genetic events that underlie PXA formation and progression may differ significantly from those involved in diffuse astrocytoma tumorigenesis. Received: 18 July 1995 / Revised, accepted: 15 September 1995  相似文献   

15.
In this study we examined whether established signal transduction cascades, p44/42 mitogen‐activated protein kinase (ERK1/2) and Jun N‐terminal kinases (JNK) pathways, are altered in N2a neural cells in response to proteasome inhibition. Additionally, we sought to elucidate the relative contribution of these signal transduction pathways to the multiple downstream effects of proteasome inhibition. Our data indicate that ERK1/2 and JNK are activated in response to proteasome inhibition. Washout of proteasome inhibitor (MG132) results in an enhancement of ERK1/2 activation and amelioration of JNK activation. Treatment with an established MAPK inhibitor resulted in an increase in proteasome inhibitor toxicity, and incubation with JNK inhibitor was observed to attenuate proteasome inhibitor toxicity significantly. Subsequent studies demonstrated that inhibition of ERK1/2 and JNK activity does not alter the gross increase in ubiquitinated protein following proteasome inhibitor administration. Similarly, ERK1/2 and JNK activity do not appear to play a role in the disruption of polysomes following proteasome inhibitor administration in neural cells. Together these data indicate that ERK1/2 and JNK activation may play differential roles in modulating neurochemical disturbances and neurotoxicity induced by proteasome inhibition. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Earlier we have demonstrated that IL‐12 p40 homodimer (p402) induces the expression of inducible nitric oxide synthase (iNOS) in microglia. This study was undertaken to investigate underlying mechanisms required for IL‐12 p402‐ and IL‐12 p70‐induced expression of iNOS in microglia. IL‐12 p402 alone induced the activation of both extracellular signal‐regulated kinase (ERK) and p38 mitogen‐activated protein kinase (MAPK). Interestingly, the ERK pathway coupled p402 to iNOS expression via C/EBPβ, but not NF‐κB, whereas the p38 pathway relayed the signal from p402 to iNOS expression via both NF‐κB and C/EBPβ. Furthermore, by using microglia from IL‐12Rβ1 (?/?) and IL‐12Rβ2 (?/?) mice or siRNA against IL‐12Rβ1 and IL‐12Rβ2, we demonstrate that p402 induced the expression of iNOS in microglia via IL‐12Rβ1–(ERK+p38)–(NF‐κB +C/EBPβ) pathway. In contrast, both IL‐12Rβ1 and IL‐12Rβ2 were involved for IL‐12 p70‐induced microglial expression of iNOS. Although IL‐12Rβ1 coupled p70 to NF‐κB and C/EBPβ, IL‐12Rβ2 was responsible for p70‐mediated activation of GAS. This study delineates a new role of IL‐12Rβ1 and IL‐12Rβ2 for the expression of iNOS and production of NO in microglia that may participate in the pathogenesis of neuroinflammatory diseases. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
18.
FTY720 is a sphingosine 1‐phosphate receptor (S1PR) modulator used as a daily therapy to reduce disease activity in the relapsing form of multiple sclerosis (MS). FTY720 readily accesses the CNS. Previous studies have shown that phosphorylated FTY720 (FTY720‐p) enhances oligodendrocyte progenitor cell (OPC) survival, differentiation, and remyelination following experimentally induced demyelination in rodents. To elucidate the underlying mechanism, human fetal OPCs alone or in co‐culture with rat dorsal root ganglia neurons (DRGN) were treated daily with FTY720‐p, a condition that desensitizes cellular responses to S1P, the natural ligand of S1PR. In co‐cultures, FTY720‐p and S1P given daily or every three days increased the number of O1/MBP double positive cells and axonal ensheathment. In cultures composed of PDGFRα‐antibody selected cells alone, daily application of FTY720‐p also increased the number of O4/GC double positive cells. At an early time point (day 2), FTY720‐p activated ERK1/2, CREB and p38MAPK in O4‐positive cells, as well as in β‐III Tubulin positive neurons and GFAP positive astrocytes. In later cultures (day 6), FTY720‐p activated p38MAPK in O4 positive cells, p38MAPK and ERK1/2 in neurons, and p38MAPK, ERK1/2 and CREB in astrocytes. A MEK inhibitor (U0126) prevented the differentiation of OPCs into O4‐positive cells, while a p38MAPK inhibitor (PD169316) blocked progression into O4‐positive and into GC‐positive stages of differentiation. Our results demonstrate that FTY720‐p, under conditions that model daily clinical use, can act directly on OPCs to impact differentiation, and also indirectly via neurons and astrocytes by activating ERK1/2 and p38MAPK. GLIA 2014;62:1361–1375  相似文献   

19.
The physiological demands of parturition and lactation lead to the increased pulsatile release of oxytocin (OT) into the circulation from the neurohypophysial axons of OT neurones in the supraoptic (SON) and paraventricular (PVN) nuclei. These states of increased OT release are accompanied by a significant plasticity in magnocellular OT neurones and their synaptic connections, and many of these changes require activation of a central OT receptor. The mitogen‐activated protein kinase/extracellular signal‐regulated kinase pathway (MAPK/ERK) is assumed to be up‐regulated in the PVN during lactation, and many of the effects of OT in peripheral and brain tissue are mediated through a MAPK/ERK pathway. The present study investigated whether this pathway is altered in the SON and PVN during late pregnancy [embryonic day (E)20–21], which is a critical period for OT plasticity induction, and for lactation, when plastic changes are sustained. Based on immunoreactivity for phosphorylated ERK1/2 (pERK1/2), the results suggest an enhanced activation of MAPK/ERK pathway in OT neurones specifically during late pregnancy in both the SON and PVN. Although immunoblots from the SON confirm this pregnancy‐associated up‐regulation in late pregnancy, they also suggest enhancement into lactation as well. Together, the results suggest an important role for the MAPK/ERK pathway during reproductive changes in the SON and PVN.  相似文献   

20.
Manganese in excess is neurotoxic and causes CNS injury resembling that of Parkinson's disease. In brain, astrocytes predominantly take up and accumulate manganese and are thus vulnerable to its toxicity. Manganese was shown to induce cell swelling in cultured astrocytes, and oxidative/nitrosative stress (ONS) mediates such swelling. As aquaporin‐4 (AQP4) is important in the mechanism of astrocyte swelling, we examined the effect of manganese on AQP4 protein levels in cultured astrocytes. Treatment of cultures with manganese increased AQP4 protein in the plasma membrane (PM), whereas total cellular AQP4 protein and mRNA levels were unchanged, suggesting that increased AQP4 levels is due to its increased stability and/or increased trafficking to the PM and not to its neosynthesis. AQP4 gene silencing by small interfering ribonucleic acid resulted in a marked reduction in astrocyte swelling by manganese. Antioxidants, as well as an inhibitor of nitric oxide synthase, diminished the increase in AQP4 protein expression, suggesting a role of ONS in the mechanism of AQP4 increase. As ONS is known to activate mitogen‐activated protein kinases (MAPKs) and MAPK activation has been implicated in astrocyte swelling, we examined the effect of manganese on the activation of MAPKs and found an increased phosphorylation of extracellular signal‐regulated kinase (ERK)1/2, C‐Jun amino‐terminal kinase (JNK)1/2/3, and p38‐MAPK. Inhibitors of ERK1/2 and p38‐MAPK (but not of JNK) blocked (40–60%) the manganese‐induced increase in AQP4 protein content and astrocyte swelling, suggesting the involvement of these kinases in the increased AQP4 content. Inhibition of oxidative stress or MAPKs may represent potential strategies for counteracting AQP4‐related neurological complications associated with manganese toxicity. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号