首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
In hyperinsulinism of infancy (HI), unregulated insulin secretion causes hypoglycemia. Pancreatectomy may be required in severe cases, most of which result from a defect in the beta-cell KATP channel, encoded by ABCC8 and KCNJ11. Pancreatic histology may be classified as diffuse or focal disease (the latter associated with single paternal ABCC8 mutations), indicated by the presence of islet cell nuclear enlargement in areas of diffuse abnormality. We investigated genotype-phenotype associations in a heterogeneous Australian cohort. ABCC8 and KCNJ11 genes were sequenced and case histology was reviewed in 21 infants who had pancreatectomy. Ninety-eight control DNA samples were tested by single nucleotide polymorphism analysis. Eighteen ABCC8 mutations were identified, 10 novel. Eleven patients (4 compound heterozygote, 4 single mutation, 3 no mutation detected) had diffuse hyperinsulinism. Nine patients had focal hyperinsulinism (6 single paternal mutation, 2 single mutation of undetermined parental origin, 1 none found) with absence of islet cell nuclear enlargement outside the focal area, although centroacinar cell proliferation and/or nesidiodysplasia was present in 7 cases. Regeneration after near-total pancreatectomy was documented in 4 patients, with aggregates of endocrine tissue observed at subsequent operations in 3. Although the absence of enlarged islet cell nuclei is a useful discriminant of focal hyperinsulinism associated with a paternal ABCC8 mutation, further research is needed to understand the pathophysiology of other histological abnormalities in patients with HI, which may have implications for mechanisms of ductal and islet cell proliferation. Previous surgery should be taken into account when interpreting pancreatic histology.  相似文献   

2.
Congenital hyperinsulinism (HI) is the most important cause of hypoglycaemia in early infancy. The inappropriate oversecretion of insulin is responsible for profound hypoglycaemias requiring aggressive treatment to prevent severe and irreversible brain damage. Several classifications of HI can be attempted, based on: 1) the onset of hypoglycemia in the neonatal period or later in infancy; 2) the histological lesion: focal or diffuse; 3) the genetic transmission: sporadic, recessive, or less frequently dominant. The most common underlying mechanism of HI is dysfunction of the pancreatic ATP-sensitive potassium channel (K(+)(ATP)). The 2 subunits of the K(+)(ATP) channel are encoded by either the sulfonylurea receptor gene (SUR1 or ABCC8) or the inward-rectifying potassium channel gene (KIR6.2. or KCNJ11), both located in the 11p15.1 region. Focal CHI has been shown to result from a paternally inherited mutation on the SUR1 or KIR6.2 gene and loss of the maternal 11p15 allele restricted to the pancreatic lesion. Diffuse HI, frequently due to mutations of the SUR1 or KIR6.2 genes of autosomal recessive inheritance is genetically heterogeneous. The distinction between the focal and the diffuse HI is very important, because the treatments are different. To distinguish between focal and diffuse HI, transhepatic catheterisation with pancreatic venous sampling was the reference technique, but will likely be replaced by [(18)F] Fluoro-L-Dopa PET scan, which is easier to perform. In absence of response to the medical treatment (diazoxide) a limited pancreatectomy permits to cure focal HI, while a diffuse HI requires a subtotal pancreatectomy with high risk of subsequent diabetes mellitus.  相似文献   

3.
Congenital hyperinsulinism   总被引:3,自引:0,他引:3  
Congenital hyperinsulinism is a cause of persistent hypoglycaemia in the neonatal period. It is a heterogeneous disease with respect to clinical presentation, molecular biology, genetic aetiology and response to medical therapy. The clinical heterogeneity may range from severe life-threatening disease to very mild clinical symptoms. Recent advances have begun to clarify the molecular pathophysiology of this disease, but despite these advances treatment options remain difficult and there are many long-term complications. So far mutations in five different genes have been identified in patients with congenital hyperinsulinism. Most cases are caused by mutations in genes coding for either of the two subunits of the beta-cell K(ATP) channel (ABCC8 and KCNJ11). Two histological subtypes of the disease - diffuse and focal - have been described. The preoperative histological differentiation of these two subtypes is now mandatory as surgical management will be radically different. The ability to distinguish diffuse from focal lesions has profound implications for therapeutic approaches, prognosis and genetic counselling.  相似文献   

4.
Adenosine triphosphate (ATP)-sensitive potassium channels (K(ATP) channels) have a central role in the regulation of insulin secretion in pancreatic β cells. They are octameric complexes organized around the central core constituted by the Kir6.2 subunits. The regulation of the channel itself takes place on the sulfonylurea receptor-1 subunit. The channel opens and closes according to the balance between adenine nucleotide ATP and adenosine diphosphate. Hyperinsulinemic hypoglycemia (also named congenital hyperinsulinism, or CHI) is associated with loss-of-function K(ATP) channel mutations. Their frequency depends on the histopathological form and the responsiveness of CHI patients to diazoxide. ABCC8/KCNJ11 defects are identified in approximately 80% of patients with CHI refractory to diazoxide. Within this group, focal forms are related to a paternally inherited KCNJ11 or ABCC8 mutation and the loss of the corresponding maternal allele in some pancreatic β cells leading to a focal lesion. Diffuse forms are mostly associated with recessively inherited mutations. Some patients with diffuse forms also carried a single K(ATP) channel mutation. In contrast, K(ATP) mutations are involved in 15% of diazoxide-responsive CHI cases that are either sporadic or dominantly inherited.  相似文献   

5.
The majority of the most severe cases of congenital hyperinsulinism (HI) are caused by defects in the -cell adenosine triphosphate (ATP)-sensitive potassium channel and usually require pancreatectomy to control blood sugar levels. In contrast to the recent advances in understanding the pathophysiology and genetic bases of HI, the histologic classification of this condition remains controversial. A recent proposal to classify the HI pancreata into diffuse and focal forms has drawn much interest because of its relative simplicity and its good correlation with the genetic abnormalities. We undertook a retrospective study to determine whether this classification scheme could be applied to 38 pancreata resected for HI at our institution. We also obtained leukocyte genomic DNA from 29 cases and screened the exons of ABCC8 and KCNJ11 genes for the presence of mutations. Nineteen cases (50.0%) were histologically classified as diffuse HI and 14 cases (36.8%) were categorized as focal form. The mutational analysis revealed that 14 of the 16 diffuse cases analyzed had either homozygous or compound heterozygous mutations of ABCC8 or KCNJ11 and 7 of 10 focal cases had only the paternally inherited mutations, consistent with the previous observations. Two patients (5.3%) had normal pancreatic histology but had persistent hypoglycemia postoperatively, leaving the possibility of residual focal lesion. Three of 38 cases (7.9%) did not fit well into either diffuse or focal category. Two cases differed from the described pattern for the diffuse form in that the nuclear enlargement was confined to a single area of the pancreas. The other case had a focal lesion but -cell nuclear enlargement was present in nonadjacent areas. Mutations for typical diffuse or focal HI were not identified in two of these three equivocal cases. We conclude from this study that nearly 90% of HI cases can be classified into either a diffuse or a focal form. However, a small percentage of cases represented a diagnostic challenge.  相似文献   

6.
Hypoglycemic episodes occurring during the newborn period are often due to transient immaturity of glucoregulatory pathways. Normal feeding is generally the only measure required to treat such episodes. After the first few hours of life, however, hyperinsulinism (HI) is the most common cause of neonatal hypoglycemia. HI may persist for the first weeks/months of life and then remit spontaneously, particularly in low birth weight neonates and those exposed to perinatal stresses; hypoglycemia in such infants can nearly always be medically controlled using diazoxide. There are also several forms of congenital hyperinsulinism presenting with hypoglycemia in neonates that does not remit. Depending on the type of genetic mutation, hypoglycemia in these infants with congenital hyperinsulinism may be controlled medically or may require surgery. The extent of surgery required in infants with ATP-dependent potassium channel mutations unresponsive to diazoxide is dependent upon histological subtype: focal vs. diffuse disease. Disease-specific diagnoses and treatments are therefore essential for effective management of the various forms of neonatal hyperinsulinism.  相似文献   

7.
Congenital hyperinsulinism (CHI or HI) is a condition leading to recurrent hypoglycemia due to an inappropriate insulin secretion by the pancreatic islet β cells. HI has two main characteristics: a high glucose requirement to correct hypoglycemia and a responsiveness of hypoglycemia to exogenous glucagon. HI is usually isolated but may be rarely part of a genetic syndrome (e.g. Beckwith-Wiedemann syndrome, Sotos syndrome etc.). The severity of HI is evaluated by the glucose administration rate required to maintain normal glycemia and the responsiveness to medical treatment. Neonatal onset HI is usually severe while late onset and syndromic HI are generally responsive to a medical treatment. Glycemia must be maintained within normal ranges to avoid brain damages, initially with glucose administration and glucagon infusion then, once the diagnosis is set, with specific HI treatment. Oral diazoxide is a first line treatment. In case of unresponsiveness to this treatment, somatostatin analogues and calcium antagonists may be added, and further investigations are required for the putative histological diagnosis: pancreatic 18F-fluoro-l-DOPA PET-CT and molecular analysis. Indeed, focal forms consist of a focal adenomatous hyperplasia of islet cells, and will be cured after a partial pancreatectomy. Diffuse HI involves all the pancreatic β cells of the whole pancreas. Diffuse HI resistant to medical treatment (octreotide, diazoxide, calcium antagonists and continuous feeding) may require subtotal pancreatectomy which post-operative outcome is unpredictable. The genetics of focal islet-cells hyperplasia associates a paternally inherited mutation of the ABCC8 or the KCNJ11 genes, with a loss of the maternal allele specifically in the hyperplasic islet cells. The genetics of diffuse isolated HI is heterogeneous and may be recessively inherited (ABCC8 and KCNJ11) or dominantly inherited (ABCC8, KCNJ11, GCK, GLUD1, SLC16A1, HNF4A and HADH). Syndromic HI are always diffuse form and the genetics depend on the syndrome. Except for HI due to potassium channel defect (ABCC8 and KCNJ11), most of these HI are sensitive to diazoxide. The main points sum up the management of HI: i) prevention of brain damages by normalizing glycemia and ii) screening for focal HI as they may be definitively cured after a limited pancreatectomy.  相似文献   

8.
Most cases of permanent form of neonatal diabetes mellitus (PNDM) are due to dominant heterozygous gain of function (activating) mutations in either KCNJ11 or ABCC8 genes, that code for Kir 6.2 and SUR1 subunits, respectively of the pancreatic β-cell KATP channel. We describe the interesting case of an infant with PNDM, in whom a compound heterozygous activating/ inactivating mutation was found with clinically unaffected parents, each carrying a heterozygous mutation in ABCC8, one predicting gain of function (neonatal diabetes) and the other a loss of function (hyperinsulinemia).  相似文献   

9.
OBJECTIVES: To identify infants with hyperinsulinism caused by defects of the beta-cell adenosine triphosphate-dependent potassium channel complex and to distinguish focal and diffuse forms of hyperinsulinism caused by these mutations. STUDY DESIGN: The acute insulin response to intravenous calcium stimulation (CaAIR) was determined in 9 patients <20 years with diffuse hyperinsulinism caused by defective beta-cell sulfonylurea receptor (SUR1(-/-)), 3 patients with focal congenital hyperinsulinism (6 weeks to 18 months), a 10-year-old with insulinoma, 5 with hyperinsulinism/hyperammonemia syndrome caused by defective glutamate dehydrogenase (6 months to 28 years), 4 SUR1(+/-) heterozygotes with no symptoms, and 9 normal adults. Three infants with congenital focal disease, 1 with diffuse hyperinsulinism, and the child with insulinoma underwent selective pancreatic intra-arterial calcium stimulation with hepatic venous sampling. RESULTS: Children with diffuse SUR1(-/-) disease and infants with congenital focal hyperinsulinism responded to CaAIR, whereas the normal control group, patients with hyperinsulinism/hyperammonemia syndrome, and SUR1(+/-) carriers did not. Selective arterial calcium stimulation of the pancreas with hepatic venous sampling revealed selective, significant step-ups in insulin secretion that correlated anatomically with the location of solitary lesions confirmed surgically in 2 of 3 infants with congenital focal disease and in the child with insulinoma. Selective arterial calcium stimulation of the pancreas with hepatic venous sampling demonstrated markedly elevated baseline insulin levels throughout the pancreas of the infant with diffuse hyperinsulinism. CONCLUSIONS: The intravenous CaAIR is a safe and simple test for identifying infants with diffuse SUR1(-/-) hyperinsulinism or with focal congenital hyperinsulinism. Preoperative selective arterial calcium stimulation of the pancreas with hepatic venous sampling can localize focal lesions causing hyperinsulinism in children. The combination of these calcium stimulation tests may help distinguish focal lesions suitable for cure by local surgical resection.  相似文献   

10.
Persistent hyperinsulinemic hypoglycemia of infancy or congenital hyperinsulinism of the neonate is a rare condition that may cause severe neurologic damage if the disease is unrecognized or inadequately treated. Current treatment aims to restore normal blood glucose levels by providing a carbohydrate-enriched diet and drugs that inhibit insulin secretion. If medical treatment fails, then surgery is required. Because congenital hyperinsulinism may be caused either by diffuse involvement of pancreatic beta-cells or by a focal cluster of abnormal beta-cells, the extent of pancreatectomy varies. We report on 2 patients with a focal form of the disease for whom diagnosis was made with laparoscopy. Laparoscopic enucleation of the lesion was curative.  相似文献   

11.
Inactivating mutations in the pancreatic beta cell ATP-sensitive potassium (K(ATP) ) channel genes are identified by sequencing in approximately 80% of patients with diazoxide-unresponsive hyperinsulinaemic hypoglycaemia (HH). Genetic testing is clinically important as the mode of inheritance of a K(ATP) channel mutation(s) provides information on the histological subtype. For example in patients with a single paternally inherited mutation a focal lesion is possible and once confirmed, the patient can undergo a curative lesionectomy. By contrast, recessive inheritance indicates diffuse disease, which requires near-total pancreatectomy, if medical management is unsuccessful. We investigated ABCC8 and KCNJ11 gene dosage in 29 probands from a cohort of 125 with diazoxide-unresponsive HH where sequencing did not provide a genetic diagnosis. We identified heterozygous partial ABCC8 deletions in four probands. In two cases with focal pancreatic disease, a paternally inherited deletion was found. Two other probands with diffuse pancreatic disease were compound heterozygotes for a deletion and a recessively acting mutation that had been identified by sequencing. Family member studies confirmed compound heterozygosity for the deletion and the missense mutation in two affected siblings of one proband. Heterozygous deletions of the ABCC8 gene are a rare, but important cause of diazoxide-unresponsive HH. Dosage analysis should be undertaken in all patients when sequencing analysis does not confirm the genetic diagnosis as confirmation of the mode of inheritance can guide clinical management and will provide important information regarding recurrence risk.  相似文献   

12.
Persistent hyperinsulinemic hypoglycemia of infancy (PHHI) can occur as a result of mutations in the subunits that form the ATP-sensitive potassium channel (K+ATP) in pancreatic beta-cells which play a major role in modulating insulin secretion from the beta-cells. Mutations have been shown in the genes for these subunits, namely for the plasma membrane sulfonylurea receptor (SUR1), ABCC8, and its associated inwardly rectifying potassium channel (KIR6.2) KCNJ11. Drugs which act on K+ATP channels, such as diazoxide, seem to need intact ABCC8 to be able to show their effects. Thus, it would be desirable to know the exact locus of the abnormality in the beta-cell to be able to choose the right therapeutic agent or to perform early pancreatectomy. The aim of this study was to search for the correlation between the mutations of the K+ATP channel and the outcome of therapeutic measures in patients with PHHI followed for a duration of 4 months to 7.3 years. Thirteen patients (5 F, 8 M) with PHHI with a median age of 2.5 months (8 days-12.1 years) were included in the study. Therapy for PHHI was initiated either with diazoxide (n = 9) or with calcium channel blocker (n = 4) as the agent of first choice. Three patients unresponsive to drugs underwent 95% pancreatectomy. Mutation analysis was performed by polymerase chain reaction (PCR) and single strand conformation polymorphism (SSCP) in DNA samples extracted from patients' peripheral leukocytes. The PCR products were directly sequenced. Screening of ABCC8 and KCNJ11 for mutations revealed abnormalities in the ABCC8 gene in three patients out of 13: homozygosity for the 155del1 mutation, compound heterozygosity for T267-->G/A4612-2-->G, and compound heterozygosity for G4310-->A/ R1494Q. No mutations in the KCNJ11 gene were identified. Of the three patients who underwent pancreatectomy, two had identified mutations and one did not have any known mutation. In two patients in whom hyperinsulinism recurred after surgery and in the rest of the children, therapy with either diazoxide or calcium channel blocker proved to be effective in controlling hypoglycemia over the follow-up period. Thus it may be concluded that mutations in the ABCC8 gene were not predictive of the response to drugs. Unidentified mutations in the K+ATP channels other than those screened or other functional abnormalities in these channels may account for the different therapeutic responses.  相似文献   

13.
Neonatal hypoglycemia represents an emergency of heterogenous etiology. The occurrence of persistent hypoglycemia caused by hyperinsulinism has not been well established. Some authors claim that it may be more common than previously suggested. The diagnostic goal is to distinguish hyperinsulinemia from other causes of hypoglycemia because management strategies differ. The diagnosis of persistent hypoglycemia attributable to hyperinsulinism is made when insulin secretion is excessive or inappropriate (>10 IU/ml). Medical management includes frequent feeding, high hydrocarbon intake, glucagon, diazoxide, somatostatin or steroid treatment. In case of resistance to medical intervention, surgery consisting of subtotal pancreatectomy is performed to avoid neurological sequelae. However, pediatric organic hypoglycemia secondary to hyperinsulinism can be caused by either diffuse or focal pancreatic lesions. Differentiation between these two types of lesion is necessary since partail pancreatectomy can prevent diabetes. In this prospective study, pancreatic venous sampling (PVS) was evaluated for the preoperative localization of lesions in 25 children with hyperinsulinism and correlated with surgical, pathological and clinical outcome. PVS is the most accurate preoperative technique for localizing focal lesions in children. Besides being safe and effective, it has the great advantage of detecting focal secretion, thus reducing the need for extensive surgery.  相似文献   

14.
A multidisciplinary approach to patients with congenital hyperinsulinism (HI) can distinguish focal from diffuse HI, localize focal lesions, and permit partial pancreatectomy with cure in almost all focal patients. Surgery does not cure diffuse disease but can help prevent severe hypoglycemia and brain damage. Surgery can be curative for insulinoma and for some cases of atypical HI.  相似文献   

15.
OBJECTIVES: To characterize the clinical features and insulin regulation in infants with hypoglycemia due to prolonged neonatal hyperinsulinism. STUDY DESIGN: Data were collected on 26 infants with hypoglycemia due to neonatal hyperinsulinism that later resolved. Acute insulin response (AIR) tests to calcium, leucine, glucose, and tolbutamide were performed in 11 neonates. Results were compared to children with genetic hyperinsulinism due to mutations of the adenosine triphosphate-dependent potassium (K(ATP)) channel and glutamate dehydrogenase (GDH). RESULTS: Among the 26 neonates, there were significantly more males, small-for-gestational-age infants, and cesarean deliveries. Only 5 of the 26 had no identifiable risk factor. Hyperinsulinism was diagnosed at a median age of 13 days (range, 2 to 180 days) and resolved by a median age of 181 days (range, 18 to 403 days). Diazoxide was effective in 19 of the 21 neonates treated. In the 11 neonates tested, the AIRs to calcium, leucine, glucose, and tolbutamide resembled those in normal controls and differed from genetic hyperinsulinism due to K(ATP) channel and GDH mutations. CONCLUSIONS: We define a syndrome of prolonged neonatal hyperinsulinism that is responsive to diazoxide, persists for several months, and resolves spontaneously. AIR tests suggest that both the K(ATP) channel and GDH have normal function.  相似文献   

16.
Abstract:  Pancreatic agenesis is a rare cause of neonatal diabetes mellitus (NDM). It can be associated with malformations of the heart, the biliary tract, and the cerebellum. We report an infant with NDM because of pancreatic agenesis, intra-uterine growth retardation, dysmorphic features, and recurrent bacterial infections. He was born to healthy consanguineous parents. With adequate replacement of insulin and pancreatic enzymes, his blood glucose levels were controlled and his weight slowly increased. However, he continued to develop recurrent serious bacterial infections and died at the age of 11 months with sepsis and respiratory failure. Analysis of the PTF1A and PDX1 genes, which have been associated with congenital agenesis of the pancreas, did not reveal any mutation. Genetic abnormalities of chromosome 6 associated with transient neonatal diabetes as well as mutations in the KCNJ11 and ABCC8 genes encoding the pancreatic potassium channel were also excluded as a cause of the NDM in this patient. The association of permanent neonatal diabetes because of pancreatic agenesis, dysmorphism, and non-specific immunodeficiency is previously undescribed and may represent a new possibly autosomal recessive syndrome.  相似文献   

17.
Vieira TC, Bergamin CS, Gurgel LC, Moisés RS. Hyperinsulinemic hypoglycemia evolving to gestational diabetes and diabetes mellitus in a family carrying the inactivating ABCC8 E1506K mutation. Congenital hyperinsulinism of infancy (CHI) is the most common cause of hypoglycemia in newborns and infants. Several molecular mechanisms are involved in the development of CHI, but the most common genetic defects are inactivating mutations of the ABCC8 or KCNJ11 genes. The classical treatment for CHI has been pancreatectomy that eventually leads to diabetes. More recently, conservative treatment has been attempted in some cases, with encouraging results. Whether or not the patients with heterozygous ABCC8 mutations submitted to conservative treatment may spontaneously develop type 2 diabetes in the long run, is a controversial issue. Here, we report a family carrying the dominant heterozygous germ line E1506K mutation in ABCC8 associated with persistent hypoglycemia in the newborn period and diabetes in adulthood. The mutation occurred as a de novo germ line mutation in the mother of the index patient. Her hypoglycemic symptoms as a child occurred after the fourth year of life and were very mild, but she developed glucose metabolism impairment in adulthood. On the other hand, in her daughter, the clinical manifestations of the disease occurred in the neonatal period and were more severe, leading to episodes of tonic–clonic seizures that were well controlled with octreotide or diazoxide. Our data corroborate the hypothesis that the dominant E1506K ABCC8 mutation, responsible for CHI, predisposes to the development of glucose intolerance and diabetes later in life.  相似文献   

18.
Congenital hyperinsulinism is the most frequent cause of severe, persistent hypoglycemia in infancy and childhood. We report a 2.5 year old girl with severe congenital hyperinsulinism. Mutation analysis showed that the child is a compound heterozygote for two missense mutations in the ABCC8 gene.  相似文献   

19.
Congenital hyperinsulinism is the most common cause of persistent hypoglycemia in infancy and childhood. This heterogeneous disease is caused by different genetic defects in the regulation of insulin secretion. Of clinical importance is to differentiate between focal and diffuse pancreatic disease. Focal disease can be treated by operative enucleation of the lesion. In diffuse disease conservative dietary and drug treatment is favored to establish euglycemia. While diazoxide is administered orally, the long-acting somatostatin analog octreotide is given subcutaneously. Diazoxide is the treatment of choice if this results in stable euglycemia. The response to diazoxide depends on the underlying genetic defect. The main aim of treatment is to prevent recurrent episodes of severe hypoglycemia.  相似文献   

20.
Hyperinsulinemic hypoglycemia (HH) in children requiring surgery is rare. Early HH can be the result of focal or diffuse pancreatic pathology. A number of genetic abnormalities in early HH have been identified, but in the majority of patients no abnormality is found. The sporadic focal and diffuse forms as well the autosomal recessive form are particularly therapy-resistant and demand for early surgery. Preoperative discrimination between focal and diffuse disease in early HH is difficult. 18 F DOPA PET in combination with CT is promising as is laparoscopic exploration of the pancreas. Frozen section biopsy analysis has not been uniformly beneficial. If macroscopically no focal lesion is found, limited laparoscopic distal pancreatectomy provides tissue for definitive pathologic examination. Subsequent near total laparoscopic spleen-saving pancreatectomy surgery is not particularly difficult. Later HH may occur in the context of the MEN-1 syndrome and is then multifocal in nature. In MEN-1 patients, a distal spleen-saving pancreatectomy with enucleation of lesions in the head seems justified. Insulin-producing lesions in non-MEN-1 patients should be enucleated. There should always be a suspicion of malignancy. Also, in older children, surgery for hyperinsulinism should be performed laparoscopically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号