首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyun U  Lee DH  Shin CG 《Acta virologica》2011,55(2):169-174
We have reported previously that the prototype foamy virus (PFV) integrase (IN) has a strong nuclear localization signal (NLS) in its C-terminal domain, in particular in a region of aa 306-334 including highly karyophilic arginines or lysines at positions 308, 313, 318, 324, and 329. In this study, we used various mutants of the C-terminal domain to further analyze its karyophilic determinants. Plasmids expressing these mutants fused to maltose binding protein (MBP) and enhanced green fluorescent protein (EGFP) were transfected to COS-1 cells and subcellular localization of these fluorescent fusion proteins was determined by fluorescent microscopy. The results revealed that a maximum karyophilicity was exhibited by a region longer than the previously described one of 29 aa (aa 306-334), in particular by a 64 aa region (aa 289-352) with Arg341 and Lys349 as critical determinants.  相似文献   

2.
V(D)J recombination is a somatic gene rearrangement process that assembles antigen receptor genes from individual segments during lymphocyte development. The access of the RAG1/RAG2 recombinase to these gene segments is regulated at the level of chromatin modifications, in particular histone tail modifications. Trimethylation of lysine 4 in histone H3 (H3K4me3) correlates with actively recombining gene elements, and this mark is recognized and interpreted by the plant homeodomain (PHD) of RAG2. Here we report that the PHD domain of the only known invertebrate homolog of RAG2, the SpRAG2L protein of the purple sea urchin (Strongylocentrotus purpuratus) also binds to methylated histones, but with a unique preference for H3K4me2. While the cognate substrate for the sea urchin RAG1L/RAG2L complex remains elusive, the affinity for histone tails and the nuclear localization of ectopically expressed SpRAG2L strongly support the model that this enzyme complex exerts its activity on DNA in the context of chromatin.  相似文献   

3.
The E2 protein of high risk human papillomavirus type 16 (HPV16) contains an amino-terminal (N) domain, a hinge (H) region and a carboxyl-terminal (C) DNA-binding domain. Using enhanced green fluorescent protein (EGFP) fusions with full length E2 and E2 domains in transfection assays in HeLa cells, we found that the C domain is responsible for the nuclear localization of E2 in vivo, whereas the N and H domains do not contain additional nuclear localization signals (NLSs). Deletion analysis of EGFP-E2 and EGFP-cE2 determined that the C domain contains an alpha helix cNLS that overlaps with the DNA-binding region. Mutational analysis revealed that the arginine and lysine residues in this cNLS are essential for nuclear localization of HPV16 E2. Interestingly, these basic amino acid residues are well conserved among the E2 proteins of BPV-1 and some high risk HPV types but not in the low risk HPV types, suggesting that there are differences between the NLSs and corresponding nuclear import pathways between these E2 proteins.  相似文献   

4.
Human papillomavirus type 16(HPV16) L1 and L2 capsid proteins can be detected only in the nucleus of infected cells. For other nuclear proteins, specific sequences of basic amino acids(aa) termed nuclear localization signals (NLS) direct the protein from the cytoplasm to the nucleus. We used a series of deletion and substitution mutations of the HPV16 L1 protein, produced by recombinant vaccinia virus (rVV), to identify NLS within HPV16 L1 and showed that HPV16 L1 contains two NLS sequences, each containing basic aa clusters. One NLS consisted of 6 basic amino acids (KRKKRK from aa 525 to 530) at the carboxy terminal end of L1. The other NLS contained 2 basic aa clusters(KRK from aa 510 to 512 and KR at aa 525, 526) separated by 12 amino acids. Mutations in either NLS did not alter nuclear localization of L1 when the other remained intact, but mutations to both prevented nuclear localization of L1. The L1 NLS could be overridden by introduction of a membrane binding sequence at the amino terminal end of the protein. A databases search showed that all sequenced papillomaviruses are predicted to have L1 and L2 capsid proteins with sequences of basic amino acids homologous with one or both NLS of HPV16 L1.  相似文献   

5.
6.
V(D)J recombination is a tightly controlled process of somatic recombination whose regulation is mediated in part by chromatin structure. Here, we report that RAG2 binds directly to the core histone proteins. The interaction with histones is observed in developing lymphocytes and within the RAG1/RAG2 recombinase complex in a manner that is dependent on the RAG2 C terminus. Amino acids within the plant homeo domain (PHD)-like domain as well as a conserved acidic stretch of the RAG2 C terminus that is considered to be a linker region are important for this interaction. Point mutations that disrupt the RAG2-histone association inhibit the efficiency of the V(D)J recombination reaction at the endogenous immunoglobulin locus, with the most dramatic effect in the V to DJ(H) rearrangement.  相似文献   

7.
Antigenic Epitopes of the Hepatitis A Virus Polyprotein   总被引:3,自引:0,他引:3  
Forty-two antigenic domains were identified across the hepatitis A virus (HAV) polyprotein by using a set of 237 overlapping 20-mer synthetic peptides spanning the entire HAV polyprotein and a panel of serum samples from acutely HAV-infected patients. The term "antigenic domain" is used in this study to define a protein region spanned with consecutive overlapping immunoreactive peptides. Nineteen antigenic domains were found within the structural proteins, and 22 were found within the nonstructural proteins, with 1 domain spanning the junction of VP1 and P2A proteins. Five of these domains were considered immunodominant, as judged by both the breadth and the strength of their immunoreactivity. One domain is located within the VP2 protein at position 57-90 aa. A second domain, located at position 767-842 aa, contains the C-terminal part of the VP1 protein and the entire P2A protein. A third domain, located at position 1403-1456 aa, comprises the C-terminal part of the P2C protein and the N-terminal half of the P3A protein. The fourth domain, located at position 1500-1519 aa, includes almost the entire P3B, and the last domain, located at position 1719-1764 aa, contains the C-terminal region of the P3C protein and the N-terminal region of the P3D protein. It is interesting to note that four of the five most immunoreactive domains are derived from small HAV proteins and/or encompass protein cleavage sites separating different HAV proteins. The HAV-specific immunoreactivity of each antigenically reactive peptide was confirmed by using seven HAV seroconversion panels. Collectively, these data demonstrate that HAV structural and nonstructural proteins contain antigenic epitopes that can be efficiently modeled with short synthetic peptides.  相似文献   

8.
Lee SK  Hacker DL 《Virology》2001,286(2):317-327
Southern cowpea mosaic virus (SCPMV) is a positive-sense RNA virus with T = 3 icosahedral symmetry. The coat protein (CP) has two domains, the random (R) domain and the shell (S) domain. The R domain is formed by the N-terminal 64 amino acids (aa) and is localized to the interior of the particle where it is expected to interact with the viral RNA. The R domain (aa 1--57) was expressed in Escherichia coli as a recombinant protein (rWTR) containing a nonviral C-terminal extension with two histidine tags. The RNA binding site of the R domain was identified by Northwestern blotting and electrophoretic mobility shift assay (EMSA) using recombinant wild-type and mutant R domain proteins. Deletions within the R domain revealed that the RNA binding site is localized to its N-terminal 30 aa. RNA binding by this element was found to be nonspecific with regard to RNA sequence and was sensitive to high salt concentrations, suggesting that electrostatic interactions are important for RNA binding by the R domain. The RNA binding site includes 11 basic residues, eight of which are located in the arginine-rich region between aa 22 and 30. It was demonstrated using alanine substitution mutants that the basic residues of the arginine-rich region but not those present at positions 3, 4, and 7 are necessary for RNA binding. None of the basic residues within the arginine-rich region are specifically required for RNA binding, but the overall charge of the N-terminal 30 aa is important. Proline substitution mutations within the N-terminal 30 aa, and alanine substitutions for prolines at positions 18, 20, and 21, did not affect the RNA binding activity of the R domain. However, it was demonstrated by circular dichroism (CD) that the conformation of the N-terminal 30 aa of the R domain changes from a random coil to an alpha-helix in the presence of 50% trifluoroethanol (TFE). The possible role for this structural change in RNA binding by the R domain is discussed.  相似文献   

9.
Belshan M  Ratner L 《Virology》2003,311(1):7-15
The Vpx protein of human immunodeficiency virus type 2 (HIV-2) is a viral accessory protein related to, but distinct from, the Vpr protein of HIV-1. Vpx is packaged into virions and, as a component of the viral preintegration complex (PIC), Vpx is required for efficient virus replication in nondividing cells. Therefore, the localization of Vpx in cells is dynamic and dependent upon discrete domains of the protein. Expressed in the absence of other viral proteins, Vpx localizes to the nucleus of cells. However, if expressed with the Gag protein of HIV-2, Vpx localizes to the plasma membrane of cells. To further understand the regulation of Vpx localization, we fused regions of Vpx to beta-galactosidase to identify regions of the protein sufficient to mediate nuclear localization. The minimal transferable region of Vpx that conferred nuclear localization in these assays was aa 65 to 72. Alanine substitution of K(68) and R(70) in a GFP-Vpx construct abolished nuclear localization, suggesting that the basic residues in this region are important for nuclear import. Analysis of the membrane transport of several GFP-Vpx alanine mutants demonstrated that while separable, the domains of Vpx required for nuclear localization are not distinct from the domains required for membrane transport. The results of heterokaryon shuttling assays indicated that Vpx is not a shuttling protein; however, HIV-2 Vpr did shuttle similar to HIV-1 Vpr.  相似文献   

10.
11.
Influenza A virus (IAV) PB1-F2 protein is encoded by an alternative reading frame (+1) within the PB1 gene. PB1-F2 has been shown to contribute to the pathogenesis of influenza virus infection as well as to the secondary bacterial infection. More recently has been shown that PB1-F2 protein may regulate a viral RNA (vRNA) polymerase activity by the interaction with PB1 protein. We proved that PB1-F2 protein increased the level of expression of PB1 protein and vRNA in the infected cells. Moreover, we demonstrated that a higher level of vRNA expression resulted in the increase of expression of multiple viral proteins, including NP, M1, and NS1. Finally, we used plasmids expressing N-terminal (1-50 aa) or C-terminal (51-87 aa) region of the PB1-F2 molecule for transfection of MDCK cells co-infected with influenza A/Puerto Rico/8/34 (H1N1) virus deficient in the PB1-F2 protein expression (PR8ΔPB1-F2). These experiments clearly showed that N-terminal region of PB1-F2 protein was responsible for the increase in PB1 protein expression. C-terminal region of PB1-F2 protein had no effect. Thus, we have identified the important function for N-terminal region of PB1-F2 protein.  相似文献   

12.
The E7 oncoprotein of high risk human papillomavirus type 16 (HPV16) binds and inactivates the retinoblastoma (RB) family of proteins. Our previous studies suggested that HPV16 E7 enters the nucleus via a novel Ran-dependent pathway independent of the nuclear import receptors (Angeline, M., Merle, E., and Moroianu, J. (2003). The E7 oncoprotein of high-risk human papillomavirus type 16 enters the nucleus via a nonclassical Ran-dependent pathway. Virology 317(1), 13-23.). Here, analysis of the localization of specific E7 mutants revealed that the nuclear localization of E7 is independent of its interaction with pRB or of its phosphorylation by CKII. Fluorescence microscopy analysis of enhanced green fluorescent protein (EGFP) and 2xEGFP fusions with E7 and E7 domains in HeLa cells revealed that E7 contains a novel nuclear localization signal (NLS) in the N-terminal domain (aa 1-37). Interestingly, treatment of transfected HeLa cells with two specific nuclear export inhibitors, Leptomycin B and ratjadone, changed the localization of 2xEGFP-E738-98 from cytoplasmic to mostly nuclear. These data suggest the presence of a leucine-rich nuclear export signal (NES) and a second NLS in the C-terminal domain of E7 (aa 38-98). Mutagenesis of critical amino acids in the putative NES sequence (76IRTLEDLLM84) changed the localization of 2xEGFP-E738-98 from cytoplasmic to mostly nuclear suggesting that this is a functional NES. The presence of both NLSs and an NES suggests that HPV16 E7 shuttles between the cytoplasm and nucleus which is consistent with E7 having functions in both of these cell compartments.  相似文献   

13.
P. Sharma  M. Ikegami 《Virus research》2009,144(1-2):145-153
Transport of the viral genome into the nucleus is an obligatory step in the replication cycle of geminiviruses. Capsid proteins (CPs) of geminiviruses are multifunctional proteins thought to be involved in this process. The CP of monopartite geminiviruses is absolutely essential for virus movement. To more precisely examine the role of CP, we have constructed a series of single and double deletions into the coding sequence of Tomato leaf curl Java virus (ToLCJAV) CP and examined sub-cellular localization using transient expression of GFP fusion proteins. In this report, the domains of the CP encoded by ToLCJAV localized in the nucleus/nucleolus and cytoplasm in transfected cells were mapped. Deletion analysis revealed that the Arg-rich cluster from amino acids (aa) 16KVRRR20 in the N-terminal region of CP functioned as nuclear/nucleolar localization signals (NLSs). The region from aa 52RKPR55 contained basic amino acid cluster was capable to redirect the CP to the nucleus. Further, both transient expression and yeast hybrid assays demonstrated that CP was capable of shuttling between the nucleus and cytoplasm of the cell. Deletion mutant analysis revealed that this property was attributed to a nuclear export signal (NES) sequence consisted of aa (245LKIRIY250) reside at C-terminal part of CP. This hydrophobic region caused transport of GFP to the cytoplasm. However, ToLCJAV CP NLSs and NES show peculiarities in the number and position of basic residues. Taken together, these results demonstrated that ToLCJAV CP shuttles between the nucleus and cytoplasm, such an activity homolog to bipartite geminivirus BV1 ORF.  相似文献   

14.
Bloom syndrome (BS) is a rare genetic disorder characterized by small body size, photosensitivity, immunodeficiency and a high predisposition to various types of cancer. BLM was identified as the causative gene for BS. The BLM protein is homologous to DNA helicase and has two basic amino acid clusters in its C-terminal region. Previously, we reported that the distal arm of these basic amino acids clusters in the BLM protein functioned as the nuclear localization signal (NLS) of the protein. In this study, we generated plasmid constructs for expression of enhanced green fluorescent protein (EGFP) fused with various BLM protein variants having a mutation with deletions or substitutions in the basic amino acid and analyzed the subcellular localization of the expressed proteins. The EGFP-fused protein containing the basic amino acid cluster region proximal to the C-terminus of BLM helicase was localized exclusively in the nucleus. However, the EGFP-BLM proteins that lacked either Arg1344 or Lys1346 distributed in both the cytoplasm and the nucleus equally. Deletion of Arg1347 also resulted in localization in both the nucleus and cytoplasm, and substitution of Arg1344, Lys1346, Arg1347 or Arg1348 with non-basic amino acids reduced the nuclear localization of BLM protein. Mouse BLM protein which also migrate to the nucleus has two basic amino acid clusters in the C-terminus and the basic amino acids (Lys1346-Pro1347-Lys1348-Arg1349-Arg1350) proximal to the C-terminus are conserved between mouse and human. These findings suggest that the Arg1344-Ser1345-Lys1346-Arg1347 sequence at the C-terminus of the human BLM protein is essential for nuclear localization of this protein.  相似文献   

15.
IA-2, a member of the tyrosine phosphatase family, has been identified as a dominant autoantigen in type 1 diabetes. To define humoral IA-2 epitopes, we generated a panel of IA-2 deletion mutants and chimeric proteins using the highly homologous tyrosine phosphatase-like protein IA-2beta. Analysis of autoantibody reactivity in 111 IA-2 antibody positive sera from patients with type 1 diabetes revealed that humoral epitopes cluster to several domains of the intracytoplasmic part of IA-2 [IA-2ic, amino acid (aa) 604-979]. Immunodominant epitopes were found in the first N-terminal 73 amino acids (56% positive), in the middle domain residing between residues 699-874 (45% positive) and the C-terminus depending on the presence of aa 931-979 (at least 37% positive). Competition experiments with overlapping peptides revealed that autoantibody binding towards the N-terminus was dependent on residues 621-628. In the C-terminal domain, two novel conformation-dependent epitopes were identified. The first epitope requires the presence of the C-terminal part of IA-2 (aa 933-979) and an IA-2-specific region between residues 771-932. Reactivity against the second epitope was dependent on intact C-terminal domains as well as residues in the middle (aa 887-932) and N-terminal regions (aa 604-771) which are conserved in IA-2 and IA-2beta. We here defined novel autoantigenic determinants in the N-terminus of IA-2 and characterized conformational epitopes residing in the C-terminal region or spanning from C-terminal residues to the N-terminal domain of IA-2ic. The identification of dominant target regions of diabetes-specific autoantibodies may help to elucidate the molecular mechanisms involved in the autoimmunity towards IA-2.  相似文献   

16.
The enormous repertoire of the vertebrate specific immune system relies on the rearrangement of discrete gene segments into intact antigen receptor genes during the early stages of B-and T-cell development. This V(D)J recombination is initiated by a lymphoid-specific recombinase comprising the RAG1 and RAG2 proteins, which introduces double-strand breaks in the DNA adjacent to the coding segments. Much of the biochemical research into V(D)J recombination has focused on truncated or “core” fragments of RAG1 and RAG2, which lack approximately one third of the amino acids from each. However, genetic analyses of SCID and Omenn syndrome patients indicate that residues outside the cores are essential to normal immune development. This is in agreement with the striking degree of conservation across all vertebrate classes in certain non-core domains. Work from multiple laboratories has shed light on activities resident within these domains, including ubiquitin ligase activity and KPNA1 binding by the RING finger domain of RAG1 and the recognition of specific chromatin modifications as well as phosphoinositide binding by the PHD module of RAG2. In addition, elements outside of the cores are necessary for regulated protein expression and turnover. Here the current state of knowledge is reviewed regarding the non-core regions of RAG1 and RAG2 and how these findings contribute to our broader understanding of recombination.  相似文献   

17.
The human nuclear autoantigenic sperm protein, NASP, is a testicular histone-binding protein of 787 amino acids to which most vasectomized men develop autoantibodies. In this study to define the boundaries of antigenic regions and epitope recognition pattern, recombinant deletion mutants spanning the entire protein coding sequence and a human NASP cDNA sublibrary were screened with vasectomy patients' sera. Employing panel sera from 21 vasectomy patients with anti-sperm antibodies, a heterogeneous pattern of autoantibody binding to the recombinant polypeptides was detected in ELISA and immunoblotting. The majority of sera (20/21) had antibodies to one or more of the NASP fusion proteins. Antigenic sites preferentially recognized by the individual patients' sera were located within aa 32-352 and aa 572-787. Using a patient's serum selected for its reactivity to the whole recombinant protein in Western blots, cDNA clones positive for the C-terminal domain of the molecule were identified. The number and location of linear epitopes in this region were determined by synthetic peptide mapping and inhibition studies. The epitope-containing segment was delimited to the sequence aa 619-692 and analysis of a series of 74 concurrent overlapping 9mer synthetic peptides encompassing this region revealed four linear epitopes: amino acid residues IREKIEDAK (aa 648-656), KESQRSGNV (aa 656-664), AELALKATL (aa 665-673) and GFTPGGGGS (aa 680-688). All individual patients' sera reacted with epitopes within the sequence IREellipsis.GGS (aa 648-688). The strongest reactivity was displayed by peptides corresponding to the sequence AELALKATL (aa 665-673). Thus, multiple continuous autoimmune epitopes in NASP involving sequences in the conserved C-terminal domain as well as in the less conserved testis-specific N-terminal region comprising the histone-binding sites, as predicted for an antigen-driven immune response, may be a target of autoantibodies in vasectomized men and may provide a relevant laboratory variable to describe more accurately the spectrum of autoantibody specificities associated with the clinical manifestation of vasectomy.  相似文献   

18.
Lee LF  Liu JL  Cui XP  Kung HJ 《Virus genes》2003,27(3):211-218
Marek's disease virus latent protein MEQ (MDV Eco Q) is abundantly expressed and consistently detected in MDV-induced tumors and cell lines. Deletion mutants were constructed to study the domain structure of MEQ. Four deletion mutants were obtained in the basic regions of MEQ, namely basic region 1 (BR1), basic region 2 (BR2), basic regions 1 and 2 (BR1 and 2), and the C-terminal (bZIP) domain. The BR1 and BR2 are nuclear localization signals and either is sufficient to cause transport of MEQ into the nucleus. In addition, the BR2 is also responsible for MEQ's nucleolar localization. A monoclonal antibody (Mab 23B46) was produced using recombinant fowlpox virus (rFPV) expressing MEQ (rFPV/MEQ) as a source of protein. The isotype of Mab 23B46 is IgG1 and immunoprecipitated a band in rFPV/MEQ infected cells with molecular weight of 60kDa specific to MEQ protein. We detected abundant expression of MEQ in (rFPV/MEQ), recombinant baculovirus (rBac) (rBac/MEQ), and lymphoid tumors induced by MDV. In order to delineate the epitope of MEQ reactive with Mab 23B46, we used four deletion mutants from the basic and bZIP domains. We found the deletions in the N-terminal region including BR1 (BR1), and (BR1 and 2) completely abolished the specific binding with Mab 23B46 as shown by Western blot analysis and immunofluoresence test. Deletion of BR2 (BR2) and the C-terminal (bZIP) domain had no effect on antibody binding. These data provide direct evidence that monoclonal antibody reactive epitope is localized in the BR1 domain of the molecule. Since both BR1 and BR2 domains contain sequences important for nuclear entry, we now have reagent to further study and elucidate the mechanism of MEQ's involvement in nuclear and nucleolar localization.  相似文献   

19.
Disruptions in ZIC3 cause heterotaxy, a congenital anomaly of the left-right axis. ZIC3 encodes a nuclear protein with a zinc finger (ZF) domain that contains five tandem C2H2 ZF motifs. Missense mutations in the first ZF motif (ZF1) result in defective nuclear localization, which may underlie the pathogenesis of heterotaxy. Here we revealed the structural and functional basis of the nuclear localization signal (NLS) of ZIC3 and investigated its relationship to the defect caused by ZF1 mutation. The ZIC3 NLS was located in the ZF2 and ZF3 regions, rather than ZF1. Several basic residues interspersed throughout these regions were responsible for the nuclear localization, but R320, K337 and R350 were particularly important. NMR structure analysis revealed that ZF1-4 had a similar structure to GLI ZF, and the basic side chains of the NLS clustered together in two regions on the protein surface, similar to classical bipartite NLSs. Among the residues for the ZF1 mutations, C253 and H286 were positioned for the metal chelation, whereas W255 was positioned in the hydrophobic core formed by ZF1 and ZF2. Tryptophan 255 was a highly conserved inter-finger connector and formed part of a structural motif (tandem CXW-C-H-H) that is shared with GLI, Glis and some fungal ZF proteins. Furthermore, we found that knockdown of Karyopherin alpha1/alpha6 impaired ZIC3 nuclear localization, and physical interactions between the NLS and the nuclear import adapter proteins were disturbed by mutations in the NLS but not by W255G. These results indicate that ZIC3 is imported into the cell nucleus by the Karyopherin (Importin) system and that the impaired nuclear localization by the ZF1 mutation is not due to a direct influence on the NLS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号