首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trypanosoma cruzi infects 15 to 20 million people in Latin America and causes Chagas disease, a chronic inflammatory disease with fatal cardiac and gastrointestinal sequelae. How the immune response causes Chagas disease is not clear, but during the persistent infection both proinflammatory and anti-inflammatory responses are critical. Natural killer T (NKT) cells have been shown to regulate immune responses during infections and autoimmune diseases. We report here that during acute T. cruzi infection NKT-cell subsets provide distinct functions. CD1d(-/-) mice, which lack both invariant NKT (iNKT) cells and variant NKT (vNKT) cells, develop a mild phenotype displaying an increase in spleen and liver mononuclear cells, anti-T. cruzi antibody response, and muscle inflammation. In contrast, Jalpha18(-/-) mice, which lack iNKT cells but have vNKT cells, develop a robust phenotype involving prominent spleen, liver, and skeletal muscle inflammatory infiltrates comprised of NK, dendritic, B and T cells. The inflammatory cells display activation markers; produce more gamma interferon, tumor necrosis factor alpha, and nitric oxide; and show a diminished antibody response. Strikingly, most Jalpha18(-/-) mice die. Thus, in response to the same infection, vNKT cells appear to augment a robust proinflammatory response, whereas the iNKT cells dampen this response, possibly by regulating vNKT cells.  相似文献   

2.
A significant fraction of CD1d-restricted T cells express an invariant T cell receptor (TCR) alpha-chain. These highly conserved invariant NKT (iNKT) populations are important regulators of a wide spectrum of immune responses. The ability to directly identify and manipulate iNKT cells is essential to understanding their function and to exploit their therapeutic potential. To this end, we sought monoclonal and polyclonal antibodies specific for iNKT cells by immunizing CD1d KO mice, which lack iNKT cells, with a cyclic peptide modeled after the TCRalpha CDR3 loop. One mAb (6B11) was specific for cloned and primary human but not rodent iNKT cells and the human invariant TCRalpha, as shown by transfection and reactivity with human invariant TCRalpha transgenic T cells ex vivo and in situ. 6B11 was utilized to identify, purify, and expand iNKT cells from an otherwise minor component of human peripheral blood lymphocytes and to specifically identify human iNKT cells in tissue. Thus, we report a novel and general strategy for the generation of mAb specific for the CDR3 loop encoded by the TCR of interest. Specifically, an anti-Valpha24Jalpha18 CDR3 loop clonotypic TCR mAb is available for the enumeration and therapeutic manipulation of human and non-human primate iNKT populations.  相似文献   

3.
Sulfatide-reactive type II NKT cells, the so-called non-invariant NKT (non-iNKT) cells, have been shown to counteract invariant NKT (iNKT) cell activity. However, the effects of sulfatide on activation of iNKT cells by α-galactocylceramide (αGC) in the context of CD1d have not been studied in detail. Therefore, we studied the blocking effect of sulfatide on αGC-induced iNKT cell activation by dendritic cells (DCs). Even in the absence of non-iNKT cells, sulfatide inhibited αGC-mediated iNKT cell activation by reducing αGC/CD1d complex formations in a dose-dependent manner. This was also confirmed in a cell-free setting using immobilized CD1d-Ig. Moreover, simultaneous injection of αGC with sulfatide decreased αGC/CD1d complex formations on DCs, accompanied by the reduced CD40L-up-regulation and IFN-γ production by iNKT cells and IL-12p70 production by DCs. However, sulfatide by itself did not interfere with the presentation of MHC class II-mediated antigen presentation to specific T cells. These results demonstrate that sulfatide competes with αGC to be loaded onto CD1d along the endocytic pathway in DCs, thereby inhibiting the iNKT cell response.  相似文献   

4.
Natural Killer T (NKT) cells can effect both T cell development and peripheral immune responses through T(H)1/T(H)2 cytokines. Some humans with Type 1 Diabetes Mellitus (T1DM) have numerical and functional NKT deficiencies that contribute to disease severity. Correcting these deficiencies inhibits diabetes in the non-obese diabetic (NOD) T1DM model, which shares similar deficiencies. Here we show that antibodies to CD1d, when given during early thymic development, induce specific increases in surface TCR of developing NOD and C57BL/6 CD4(+)CD8(+) (DP) invariant NKT (iNKT) cells. However, the addition of anti-CD1d causes distinct strain-specific population changes in response to treatment. These changes include: (1) a dose-dependent increase in NOD iNKT(TCR)(+) cells and, conversely, (2) an inhibition of B6 iNKT(TCR)(+) cell production. The observed NOD iNKT expansions correlated with diabetes inhibition in an in vitro T1DM system, suggesting that intrathymic anti-CD1d treatment may correct NOD numerical iNKT deficiencies through developmental TCR enhancement.  相似文献   

5.
The frequency, subsets and activation status of peripheral blood invariant NKT (iNKT) cells were evaluated in pulmonary tuberculosis (TB) patients and in chronically HIV-1-infected subjects. The absolute numbers of iNKT cells were significantly decreased in TB patients and in HIV-1+ individuals who were antiretroviral therapy naive or had detectable viremia despite receiving HAART. iNKT cell subset analysis demonstrated a decreased percentage of CD4(+) iNKT cells in HIV-1+ subjects, and a decreased percentage of double negative iNKT cells in TB patients. Peripheral blood iNKT cells from HIV-1+ and TB patients had significantly increased expression of CD69, CD38, HLA-DR, CD16, CD56, and CD62L. The expression of CD25 was significantly increased only on iNKT cells from TB patients. These findings indicate that peripheral blood iNKT cells in these two chronic infections show an up-regulated expression of activation markers, suggesting their role in the immune response to infection.  相似文献   

6.
CD1d-restricted NKT cells are a novel T cell lineage with unusual features. They co-express some NK cell receptors and recognize glycolipid antigens through an invariant T cell receptor (TCR) in the context of CD1d molecules. Upon activation through the TCR, NKT cells produce large amounts of IFN-gamma and IL-4. It has been proposed that rapid cytokine output by activated NKT cells may induce bystander activation of other lymphoid lineages. The impact of CD1d-restricted NKT cell activation in the induction of B cell-mediated immune responses to infection is still unclear. We show here that CD1-restricted NKT cells contribute to malarial splenomegaly associated with expansion of the splenic B cell pool and enhance parasite-specific antibody formation in response to Plasmodium berghei infection. The increased B cell-mediated response correlates with the ability of NKT cells to promote Th2 immune responses. Additionally, antibody responses against the glycosylphosphatidylinositol (GPI)-anchored protein merozoite surface protein 1 (MSP-1) were found to be significantly lower in CD1(-/-) mice compared to wild-type animals. P. berghei-infected MHC class II (MHCII)(-/-) mice also generated antibodies against MSP-1, suggesting that antibody production against GPI-anchored antigens in response to malaria infection can arise from both MHCII-dependent and independent pathways.  相似文献   

7.
Natural killer T cells (NKT cells) are comprised of several subsets. However, the possible differences in their developmental mechanisms have not been fully investigated. To evaluate the dependence of some NKT subpopulations on nuclear factor-κB-inducing kinase (NIK) for their generation, we analysed the differentiation of NKT cells, dividing them into subsets in various tissues of alymphoplasia (aly/aly), a mutant mouse strain that lacks functional NIK. The results indicated that the efficient differentiation of both invariant NKT (iNKT) and non-iNKT cells relied on NIK expression in non-haematopoietic cells; however, the dependence of non-iNKT cells was lower than that of iNKT cells. Especially, the differentiation of CD8+ non-iNKT cells was markedly resistant to the aly mutation. The proportion of two other NKT cell subsets, NK1.1+ γδ T cells and NK1.1 iNKT cells, was also significantly reduced in aly/aly mice, and this defect in their development was reversed in wild-type host mice given aly/aly bone marrow cells. In exerting effector functions, NIK in NKT-αβ cells appeared dispensable, as NIK-deficient NKT-αβ cells could secrete interleukin-4 or interferon-γ and exhibit cytolytic activity at a level comparable to that of aly/+ NKT-αβ cells. Collectively, these results imply that the NIK in thymic stroma may be critically involved in the differentiation of most NKT cell subsets (although the level of NIK dependence may vary among the subsets), and also that NIK in NKT-αβ cells may be dispensable for their effector function.  相似文献   

8.
Glycosphingolipids and glycerophospholipids bind CD1d. Glycosphingolipid‐reactive invariant NKT‐cells (iNKT) exhibit myriad immune effects, however, little is known about the functions of phospholipid‐reactive T cells (PLT). We report that the normal mouse immune repertoire contains αβ T cells, which recognize self‐glycerophospholipids such as phosphatidic acid (PA) in a CD1d‐restricted manner and don't cross‐react with iNKT‐cell ligands. PA bound to CD1d in the absence of lipid transfer proteins. Upon in vivo priming, PA induced an expansion and activation of T cells in Ag‐specific manner. Crystal structure of the CD1d:PA complex revealed that the ligand is centrally located in the CD1d‐binding groove opening for TCR recognition. Moreover, the increased flexibility of the two acyl chains in diacylglycerol ligands and a less stringent‐binding orientation for glycerophospholipids as compared with the bindings of glycosphingolipids may allow glycerophospholipids to readily occupy CD1d. Indeed, PA competed with α‐galactosylceramide to load onto CD1d, leading to reduced expression of CD1d:α‐galactosylceramide complexes on the surface of dendritic cells. Consistently, glycerophospholipids reduced iNKT‐cell proliferation, expansion, and cytokine production in vitro and in vivo. Such superior ability of self‐glycerophospholipids to compete with iNKT‐cell ligands to occupy CD1d may help maintain homeostasis between the diverse subsets of lipid‐reactive T cells, with important pathogenetic and therapeutic implications.  相似文献   

9.
Natural killer T (NKT) cells recognize glycolipids presented on CD1d. They share features of adaptive T lymphocytes and innate NK cells, and mediate immunoregulatory functions via rapid production of cytokines. Invariant (iNKT) and diverse (dNKT) NKT cell subsets are defined by their TCR. The immunological role of dNKT cells, that do not express the invariant TCRα‐chain used by iNKT cells, is less well explored than that of iNKT cells. Here, we investigated signals driving Toll‐like receptor (TLR) ligand activation of TCR‐transgenic murine dNKT cells. IFN‐γ production by dNKT cells required dendritic cells (DC), cell‐to‐cell contact and presence of TLR ligands. TLR‐stimulated DC activated dNKT cells to secrete IFN‐γ in a CD1d‐, CD80/86‐ and type I IFN‐independent manner. In contrast, a requirement for IL‐12p40, and a TLR ligand‐selective dependence on IL‐18 or IL‐15 was observed. TLR ligand/DC stimulation provoked early secretion of pro‐inflammatory cytokines by both CD62L+ and CD62L? dNKT cells. However, proliferation was limited. In contrast, TCR/co‐receptor‐mediated activation resulted in proliferation and delayed production of a broader cytokine spectrum preferentially in CD62L? dNKT cells. Thus, innate (TLR ligand/DC) and adaptive (TCR/co‐receptor) stimulation of dNKT cells resulted in distinct cellular responses that may contribute differently to the formation of immune memory.  相似文献   

10.
Lawson V 《Immunology》2012,137(1):20-27
CD1d-restricted invariant natural killer T (iNKT) cells bear characteristics of innate and adaptive lymphocytes, which allow them to bridge the two halves of the immune response and play roles in many disease settings. Recent work has characterized precisely how their activation is initiated and regulated. Novel antigens from important pathogens have been identified, as has an abundant self-antigen, β-glucopyranosylcaramide, capable of mediating an iNKT-cell response. Studies of the iNKT T-cell receptor (TCR)-antigen-CD1d complex show how docking between CD1d-antigen and iNKT TCR is highly conserved, and how small sequence differences in the TCR establish intrinsic variation in iNKT TCR affinity. The sequence of the TCR CDR3β loop determines iNKT TCR affinity for ligand-CD1d, independent of ligand identity. CD1d ligands can promote T helper type 1 (Th1) or Th2 biased cytokine responses, depending on the composition of their lipid tails. Ligands loaded into CD1d on the cell surface promote Th2 responses, whereas ligands with long hydrophobic tails are loaded endosomally and promote Th1 responses. This information is informing the design of synthetic iNKT-cell antigens. The iNKT cells may be activated by exogenous antigen, or by a combination of dendritic cell-derived interleukin-12 and iNKT TCR-self-antigen-CD1d engagement. The iNKT-cell activation is further modulated by recent foreign or self-antigen encounter. Activation of dendritic cells through pattern recognition receptors alters their antigen presentation and cytokine production, strongly influencing iNKT-cell activation. In a range of bacterial infections, dendritic cell-dependent innate activation of iNKT cells through interleukin-12 is the dominant influence on their activity.  相似文献   

11.
12.
Glycolipids presented by the major histocompatibility complex (MHC) class I homolog CD1d are recognized by natural killer T cells (NKT cells) characterized by either a semi-invariant T cell antigen receptor (TCR) repertoire (type I NKT cells or iNKT cells) or a relatively variable TCR repertoire (type II NKT cells). Here we describe the structure of a type II NKT cell TCR in complex with CD1d-lysosulfatide. Both TCR α-chains and TCR β-chains made contact with the CD1d molecule with a diagonal footprint, typical of MHC-TCR interactions, whereas the antigen was recognized exclusively with a single TCR chain, similar to the iNKT cell TCR. Type II NKT cell TCRs, therefore, recognize CD1d-sulfatide complexes by a distinct recognition mechanism characterized by the TCR-binding features of both iNKT cells and conventional peptide-reactive T cells.  相似文献   

13.
为了比较CD3+CD56+NKT细胞与CD3+TCRVα24+iNKT细胞在外周血淋巴细胞中的相对比例及其表面分子表达的差别,本研究采集了健康人外周全血,用四色荧光抗体染色和流式细胞术检测CD3+CD56+NKT细胞和CD3+TCRVα24+iNKT细胞在淋巴细胞中的比例,及其亚群表型及活化分子CD69的表达情况。检测结果表明,在正常人外周血淋巴细胞中CD3+CD56+NKT细胞所占比例为3.90%±2.89%,以CD8亚群占多数(57.61%±17.35%);而CD3+TCRVα24+iNKT细胞所占比例仅为0.39%±0.19%,且以CD4亚群占多数(56.60%±19.66%)。两种NKT细胞的相对数量之间存在显著正相关(r=0.467,P<0.05),但两类细胞之间极少重叠。CD16和CD161在CD3+CD56+NKT细胞上的表达量显著高于在CD3+TCRVα24+iNKT细胞上的表达量(P均<0.01)。活化分子CD69在两种细胞上的表达量均较低(P>0.05)。本研究结果表明,正常人外周血CD3+CD56+NKT细胞与CD3+TCRVα24+iNKT细胞在相对数量、亚群及表型上存在显著差异,是两种截然不同的NKT细胞。  相似文献   

14.
Invariant NKT (iNKT) cells are considered to be important in some autoimmune diseases including Type 1 diabetes mellitus (T1DM). So far, the published data are contradictory in regard to the role of iNKT cells in T1DM. We aimed to study iNKT cell frequency and the function of different iNKT cell subgroups in T1DM. We compared the results of four subject groups: healthy (H), long-term T2DM (ltT2DM; more than 1 year), newly diagnosed T1DM (ndT1DM; less than 3 months), and ltT1DM (more than 1 year) individuals. We measured the iNKT cell frequencies by costaining for the invariant TCR alpha-chain with 6B11-FITC and Valpha24-PE. After sorting the Valpha24+6B11+ cells, the generated iNKT clones were characterized. We tested CD4, CD8, and CD161 expression and IL-4 and IFN-gamma production on TCR stimulation. The CD4+ population among the iNKT cells was decreased significantly in ltT1DM versus ndT1DM, ltT2DM, or H individuals. The T1DM iNKT cell cytokine profile markedly shifted to the Th1 direction. There was no difference in the frequency of iNKT cells in PBMC among the different patient groups. The decrease in the CD4+ population among the iNKT cells and their Th1 shift indicates dysfunction of these potentially important regulatory cells in T1DM.  相似文献   

15.
Only recently have natural antigens for CD1d-dependent, invariant Valpha14+ natural killer T (iNKT) cells been identified. Similar data for CD1d-independent and CD8+ NKT cell populations are still missing. Here, we show that the MHC class I-restricted CD8+ TCR-transgenic mouse lines OT-I, P14 and H-Y contain a significant proportion of transgenic CD8+ NK1.1+ T cells. In liver, most of NK1.1+ T cells express CD8alphaalpha homodimers. Transgenic NKT cells did not bind invariant Valpha14-to-Jalpha18 TCR rearrangement (Valpha14i)-specific CD1d/alpha-galactosylceramide tetramers and the frequency of iNKT cells was severely reduced. The activated cell surface phenotype and the distribution of transgenic NKT cells in vivo were similar to that reported for iNKT cells. The OT-I and P14 CD8+ NKT cells recognized their cognate antigen in the context of H2-Kb and produced cytokines shortly after TCR stimulation. Importantly, transgenic NKT cells exerted immediate antigen-specific cytotoxicity in vitro and in vivo. Our results demonstrate the presence of transgenic CD8+ NKT cells in MHC class I-restricted TCR-transgenic animals, which are endowed with rapid antigen-specific effector functions. These data imply that experiments studying naive T cell function in TCR-transgenic animals should be interpreted with caution, and that such animals could be utilized for studying CD8+ NKT cell function in an antigen-specific manner.  相似文献   

16.
Invariant Natural Killer T (iNKT) cells are CD1d restricted innate lymphoid cells with an invariant T cell receptor (TCR) alpha chain gene rearrangement (Valpha24-Jalpha18 in human and Valpha14-Jalpha18 in mouse). iNKT cells play a pivotal role in anti-tumor immune responses via cytokine mediated transactivation of various cells which mediate innate and adaptive immune responses. Here we describe, to our knowledge for the first time, the generation of long-term mouse spleen derived iNKT cell lines. We found that dendritic cells (DC) derived from the D1 line, but not Mf4/4 macrophages, loaded with the artificial iNKT cell ligand alpha-Galactosylceramide (alphaGalCer) could be employed to expand iNKT cells in vitro. Furthermore, exogenously added IL-7, but not IL-2 or IL-15 had a pronounced additive effect on iNKT cell expansion. Using this method up to 10(8) iNKT cells could be obtained from one spleen within 12 to 14 weeks, and cell lines could be continued for up to 24 months. Importantly, the iNKT cell lines had retained the capacity to swiftly secrete substantial amounts of both T helper (Th) 1 and Th2 cytokines upon activation. In conclusion we have generated iNKT cell lines with high yields that can be maintained for up to 24 months, by repeated stimulation using alpha-GalCer loaded D1.DC and IL-7. These in vitro expanded iNKT cells preserved the capacity to swiftly produce both Th1 and Th2 type cytokines and are currently being utilized in pre-clinical adoptive transfer models to identify and optimize the characteristics of therapeutically effective iNKT cells in an anti-tumor setting.  相似文献   

17.
18.
Invariant NK T cells (iNKT) bridge the innate and adaptive immune response, being characterized by the ability to use invariant T cell receptors to recognize glycolipid antigens presented by CD1d, leading to an explosive cytokine effector response. As such it has been proposed that iNKT cells perform important roles as both effector and regulatory cells in a wide range of disease settings. These roles have been characterized in experiments depending on the use of iNKT-null mice, due to lack of either CD1d expression or Jalpha18 and the use of CD1d tetramers loaded with the model glycolipid antigen, alpha-galactosylceramide (alphaGalCer). Several studies have examined lung disease, infectious and allergic, in humans and mice. While the lung itself does not carry an exceptionally large population of iNKT cells (compared with, say, the liver), it does appear to be a site at which these cells can exert a profound effect. Several models of bacterial, fungal and viral murine lung infection have been investigated that have sometimes produced conflicting results. Abrogation of iNKT cell function in knockouts is often associated with disease exacerbation, indicating a regulatory role in lung infection. Studies in murine asthma models and in patients have similarly probed the role of iNKT cells in these settings. While there are again somewhat contradictory findings, evidence suggests a likely role for iNKT cells in mediating airway hyper-responsiveness (AHR), but probably not in Th2 polarization or lung eosinophilia. In marginally different models, administration of alphaGalCer has either ameliorated or exacerbated AHR. Different studies of BAL from human asthma patients show variously that there is either a very enlarged population of iNKT cells in the asthmatic lung, or that there is no significant difference from controls. Taken together, there are some observations that argue compellingly for an important role of iNKT cells in the lung, but resolution of some of the contradictory findings may await the development of reagents capable of providing alternative readouts of iNKT activation in these diverse disease settings.  相似文献   

19.
NKT cell development takes place in the thymus, beginning when these cells branch away from CD4+CD8+ mainstream thymocytes upon expression of the Valpha14Jalpha18 T cell receptor (TCR) and recognition of the CD1d molecule. Although NKT cells express an invariant TCR alpha chain, the diverse TCR beta expression leaves open the possibility that the development of these cells is shaped by glycolipid antigen recognition in the context of CD1d. Here, we show that the presence of an agonist glycolipid ligand, alpha-galactosylceramide, while NKT cells are developing in vitro or in vivo, specifically ablates their development. In contrast, the delayed introduction of this compound in vitro or in vivo, after NKT cells have developed, does not deplete these cells. These data indicate that NKT cells pass through a developmental window where they are susceptible to TCR-mediated negative selection, and suggest that NKT cells with a potentially high level of self reactivity can be removed from the NKT cell repertoire before they exit the thymus.  相似文献   

20.
The natural killer (NK) T-lymphocyte population consists of two subsets utilizing a diverse and restricted T-cell receptor (TCR) repertoire, respectively. Both populations have been shown to include autoreactive cells. NKT cells carrying restricted Valpha14(AV14S1)Jalpha281/Vbeta8.2(BV8S2A1 ) TCR have been shown to recognize alpha-galactosylceramide (alphaGalCer) presented in the context of murine CD1d. In this study we screened a set of murine CD1d-autoreactive T-cell hybridomas with diverse TCR for their reactivity with several glycosylated variants of ceramide, including alphaGalCer. These hybridomas showed a different pattern of reactivity to CD1d-expressing antigen-presenting cells (APC) and were not reactive with any of the tested variants of ceramide. A second set of hybridomas had been selected for expression of Valpha14 and Vbeta8.2 TCR chains. These cells responded to alphaGalCer presented on CD1d, but were only weakly reactive to syngeneic splenocytes or CD1d-transfected cells. Their fine specificity in the response to glycosylation variants of ceramide demonstrated a homogenous reactivity pattern, including reactivity to alpha-galactosylsphingosine, the variant of alphaGalCer with truncated fatty acyl chain. These findings underline the differences in ligand specificity between the two subsets of CD1d-restricted NKT cells, and demonstrate a similarity in reactivity among the hybridomas using the Valpha14-Jalpha281/Vbeta8.2 TCR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号