首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 'monoenergetic' electron loss model was derived in a previous work to account for pathlength straggling in the Fermi-Eyges pencil beam problem. In this paper, we extend this model to account for energy-loss straggling and secondary knock-on electron transport in order to adequately predict a depth dose curve. To model energy-loss straggling, we use a weighted superposition of a discrete number of monoenergetic pencil beams with different initial energies where electrons travel along the depth-energy characteristics in the continuous slowing down approximation (CSDA). The energy straggling spectrum at depth determines the weighting assigned to each monoenergetic pencil beam. Supplemented by a simple transport model for the secondary knock-on electrons, the 'energy-dependent' electron loss model predicts both lateral and depth dose distributions from the electron pencil beams in good agreement with Monte Carlo calculations and measurements. The calculation of dose distribution from a pencil beam takes 0.2 s on a Pentium III 500 MHz computer. Being computationally fast, the 'energy-dependent' electron loss model can be used for the calculation of 3D energy deposition kernels in dose optimization schemes without using precalculated or measured data.  相似文献   

2.
A method for the calculation of absorbed dose distributions of arbitrarily shaped electron beams is presented. Isodose distributions and output factors of treatment fields can be predicted with good accuracy, without the need for any dose measurement in the actual field. A Gaussian pencil beam model is employed with two different pencil beams for each electron beam energy. The values of the parameters of the pencil beam dose distributions are determined from a set of measurements of broad beam distributions; in this way the influence of electrons scattered by the applicator walls is taken into account. The dose distribution of electrons scattered from high atomic number metal frames, which define the treatment field contour at the skin, is calculated separately and added. This calculation is based on experimentally derived data. The method has been tested for beams with 6, 10, 14 and 20 MeV electron energy. The distance between calculated and measured isodose lines with values between 10 and 90% is under 0.3 cm. The difference between calculated and measured output factors does not exceed 2%.  相似文献   

3.
Clinical electron beams consist of primary electrons, primary bremsstrahlung generated in the regular photon and electron collimator system determining the composite beam, and some short-range contaminant photon and electron scatter arising from the lower parts of the standard or regular electron applicator. Any beam-shaping insert placed inside the applicator causes some extra ("contaminant") bremsstrahlung and electron scatter. The new dose calculation model is based on separate treatment of these components. For the calculation of the primary electron dose we use experimentally determined electron scatter functions and differential electron scatter functions. The primary bremsstrahlung is treated as an unflattened but otherwise regular x-ray beam. The contaminant components arising from the rim area of the regular electron collimator and from beam-shaping inserts are considered separately. The behavior of the in-air ionization profiles is described using the concepts of effective electron source position and effective electron source diameter. The model has been tested for several electron energies.  相似文献   

4.
Jiang SB  Kapur A  Ma CM 《Medical physics》2000,27(1):180-191
A hybrid approach for commissioning electron beam Monte Carlo treatment planning systems has been studied. The approach is based on the assumption that accelerators of the same type have very similar electron beam characteristics and the major difference comes from the on-site tuning of the electron incident energy at the exit window. For one type of accelerator, a reference machine can be selected and simulated with the Monte Carlo method. A multiple source model can be built on the full Monte Carlo simulation of the reference beam. When commissioning electron beams from other accelerators of the same type, the energy spectra in the source model are tuned to match the measured dose distributions. A Varian Clinac 2100C accelerator was chosen as the reference machine and a four-source beam model was established based on the Monte Carlo simulations. This simplified beam model can be used to generate Monte Carlo dose distributions accurately (within 2%/2 mm compared to those calculated with full phase space data) for electron beams from the reference machine with various nominal energies, applicator sizes, and SSDs. Three electron beams were commissioned by adjusting the energy spectra in the source model. The dose distributions calculated with the adjusted source model were compared with the dose distributions calculated using the phase space data for these beams. The agreement is within 1% in most of cases and 2% in all situations. This preliminary study has shown the capability of the commissioning approach for handling large variation in the electron incident energy. The possibility of making the approach more versatile is also discussed.  相似文献   

5.
This study describes the modeling and the experimental verification and clinical implementation of the alpha release of Pinnacle3 Monte Carlo (MC) electron beam dose calculation algorithm for patient-specific treatment planning. The MC electron beam modeling was performed for beam energies ranging from 6 to 18 MeV from a Siemens (Primus) linear accelerator using standard-shaped electron applicators and 100 cm source-to-surface distance (SSD). The agreement between MC calculations and measurements was, on average, within 2% and 2 mm for all applicator sizes. However, differences of the order of 3%-4% were noted in the off-axis dose profiles for the largest applicator modeled and for all energies. Output factors were calculated for standard electron cones and square cutouts inserted in the 10 x 10 cm2 applicator for different SSDs and were found to be within 4% of measured data. Experimental verification of the MC electron beam model was carried out using an ionization chamber and film in solid-water slab and anthropomorphic phantoms containing bone and lung materials. Agreement between calculated and measured dose distributions was within +/-3%. Clinical comparison was performed in four patient treatment plans with lesions in highly irregular anatomies, such as the ear, face, and breast, where custom-designed bolus and field shaping blocks were used in the patient treatments. For comparison purposes, treatment planning was also performed using the conventional pencil beam (PB) algorithm with the Pinnacle3 treatment planning system. Differences between MC and PB dose calculations for the patient treatment plans were significant, particularly in anatomies where the target was in close proximity to low density tissues, such as lung and air cavities. Concerning monitor unit calculations, the largest differences obtained between MC and PB algorithms were between 4.0% and 5.0% for two patients treated with oblique beams and involving highly irregular surfaces, i.e., breast and cheek. Clinical results are reported for overall uncertainty values (averaged over voxels with doses >50% dosemax) ranging from 2% to 0.3% and calculations were performed using cubic voxels with side 0.3 cm. Timing values ranged from 2 min to 24.5 h, depending on the field size, beam energy, number, and thickness of computed tomography slices used to define the patient's anatomy for the overall uncertainty values mentioned above.  相似文献   

6.
In radiotherapy with high-energy (4-25 MeV) electron beams, scattered radiation from the electron applicator influences the dose distribution in the patient. In most currently available treatment planning systems for radiotherapy this component is not explicitly included and handled only by a slight change of the intensity of the primary beam. The scattered radiation from an applicator changes with the field size and distance from the applicator. The amount of scattered radiation is dependent on the applicator design and on the formation of the electron beam in the treatment head. Electron applicators currently applied in most treatment machines are essentially a set of diaphragms, but still do produce scattered radiation. This paper investigates the present level of scattered dose from electron applicators, and as such provides an extensive set of measured data. The data provided could for instance serve as example input data or benchmark data for advanced treatment planning algorithms which employ a parametrized initial phase space to characterize the clinical electron beam. Central axis depth dose curves of the electron beams have been measured with and without applicators in place, for various applicator sizes and energies, for a Siemens Primus, a Varian 2300 C/D and an Elekta SLi accelerator. Scattered radiation generated by the applicator has been found by subtraction of the central axis depth dose curves, obtained with and without applicator. Scattered radiation from Siemens, Varian and Elekta electron applicators is still significant and cannot be neglected in advanced treatment planning. Scattered radiation at the surface of a water phantom can be as high as 12%. Scattered radiation decreases almost linearly with depth. Scattered radiation from Varian applicators shows clear dependence on beam energy. The Elekta applicators produce less scattered radiation than those of Varian and Siemens, but feature a higher effective angular variance. The scattered radiation decreases somewhat with increasing field size and is spread uniformly over the aperture. Experimental results comply with the results of simulations of the treatment head and electron applicator, using the BEAM Monte Carlo code, and Siemens, but feature a higher effective angular variance. The scattered radiation decreases somewhat with increasing field size and is spread uniformly over the aperture. Experimental results comply with the results of simulations of the treatment head and electron applicator, using the BEAM Monte Carlo code.  相似文献   

7.
BANG polymer gel dosimetry using magnetic resonance imaging (MRI) was applied to an ophthalmologic 68 MeV proton beam. The object was to examine the use of BANG gel for the verification of proton fields in eye tumor therapy and to explore the applicability of polymer gel dosimetry in proton therapy under practical aspects. The gel phantoms were irradiated with monoenergetic and modulated proton beams. MRI analysis was carried out at clinical 1.5 and 3 T MR scanners. At constant LET, results show a linear relationship between spin-spin relaxation rates and dose. However, depth dose curves in BANG gel reveal a quenching of the Bragg maximum due to LET effects. The dose response of the gel for monoenergetic protons and spread-out depth dose distributions can be calculated based on ionization chamber measurements. Experiment and calculations show good agreement and indicate that BANG polymer gels might become a valuable tool in proton therapy quality assurance.  相似文献   

8.
In electron beam therapy, lead or low melting point alloy (LMA) sheet cutouts of sufficient thickness are commonly used to shape the beam. In order to avoid making cutouts for each patient, an attempt has been made to develop a manual multi-leaf collimator for electron beams (eMLC). The eMLC has been developed using LMA for a 15 x 15 cm2 applicator. Electron beam characteristics such as depth dose, beam profiles, surface dose, output factors and virtual source position with the eMLC have been studied and compared with those of an applicator electron beam. The interleaf leakage radiation has also been measured with film dosimetry. Depth dose values obtained using the eMLC were found to be identical to those with the applicator for depths larger than Dmax. However, a decrease in the size of the beam penumbra with the eMLC and increase in the values of surface dose, output factors and virtual source position with eMLC were observed. The leakage between the leaves was less than 5% and the leakage between the opposing leaves was 15%, which could be minimized further by careful positioning of the leaves. It is observed that it is feasible to use such a manual eMLC for patients and eliminate the fabrication of cutouts for each patient.  相似文献   

9.
Currently, the pencil-beam redefinition algorithm (PBRA) utilizes a single electron source to model clinical electron beams. In the single-source model, the electrons appear to originate from a virtual source located near the scattering foils. Although this approach may be acceptable for most treatment machines, previous studies have shown dose differences as high as 8% relative to the given dose for small fields for some machines such as the Varian Clinac 1800. In such machines collimation-scattered electrons originating from the photon jaws and the applicator give rise to extra-focal electron sources. In this study, we examined the impact of modeling an additional electron source to better account for the collimator-scattered electrons. The desired dose calculation accuracy in water throughout the dose distribution is 3% or better relative to the given dose. We present here a methodology for determining the electron-source parameters for the dual-source model using a minimal set of data, that is, two central-axis depth-dose curves and two off-axis profiles. A Varian Clinac 1800 accelerator was modeled for beam energies of 20 and 9 MeV and applicator sizes of 15 x 15 and 6 x 6 cm2. The improvement in the accuracy of PBRA-calculated dose, evaluated using measured two-dimensional dose distributions in water, was characterized using the figure of merit, FA3%, which represents the fractional area containing dose differences greater than 3%. For the 15 x 15 cm2 field the evaluation was restricted to the penumbral region, and for the 6 x 6 cm2 field the central region of the beam was included as it was impacted by the penumbra. The greatest improvement in dose accuracy was for the 6 x 6 cm2 applicator. At 9 MeV, FA3% decreased from 15% to 0% at 100 cm SSD and from 34% to 4% at 110 cm SSD. At 20 MeV, FA3% decreased from 17% to 2% at 100 cm SSD and from 41% to 10% at 110 cm SSD. In the penumbra of the 15 x 15 cm2 applicator, the improvement was less, but still significant. At 9 MeV, FA3% changed from 11% to 1% at 100 cm SSD and from 10% to 12% at 110 cm SSD. At 20 MeV, FA3% decreased from 12% to 8% at 100 cm SSD and from 14% to 5% at 110 cm SSD. Results demonstrate that use of a dual-source beam model can provide significantly improved accuracy in the PBRA-calculated dose distribution that was not achievable with a single-source beam model when modeling the Varian Clinac 1800 electron beams. Time of PBRA dose calculation was approximately doubled; however, dual-source beam modeling of newer accelerators (e.g., the Varian Clinac 2100) may not be necessary because of less impact of collimator-scattered electrons on dosimetry.  相似文献   

10.
Dosimetric verification of a new Monte Carlo beam model for multi-leaf collimated electrons was performed using experimental data from an add-on electron multi-leaf collimator (eMLC) prototype. The measurements were compared against calculations using an electron phase space sampled from a parameterized electron beam model and the voxel Monte Carlo++ (VMC++) code for in-phantom energy deposition. Verification of the calculations was performed in a water phantom with the developed eMLC attached to a Varian 2100 C/D radiotherapy accelerator with nominal energies 6 MeV, 9 MeV, 12 MeV, 16 MeV and 20 MeV. The eMLC prototype consisting of 2 cm thick and 5 mm wide steel leaves is fixed under the 20 x 20 cm(2) electron applicator with a source-to-leaf distance 97.2 cm. The eMLC prototype has non-motorized leaves with straight leaf edges and a maximum field size of 20 x 20 cm(2) at SSD 100 cm. The beam model is a coupled multi-source model with parameters derived from detailed beam characterization measurements and a kernel model for the indirect leaf-scattered electrons. Typical calculation times with a 2% mean statistical uncertainty was under 5 min. In extensive set of in-water measurements 88% of the voxels were within 2% /2 mm acceptance criterion. Although at SSD 100 cm the dose near the phantom surface is slightly pronounced due to the short collimator-to-surface distance, the new beam model was suitable for dose calculation of the add-on type eMLC.  相似文献   

11.
Electron beam dose calculations   总被引:1,自引:0,他引:1  
Electron beam dose distributions in the presence of inhomogeneous tissue are calculated by an algorithm that sums the dose distribution of individual pencil beams. The off-axis dependence of the pencil beam dose distribution is described by the Fermi-Eyges theory of thick-target multiple Coulomb scattering. Measured square-field depth-dose data serve as input for the calculations. Air gap corrections are incorporated and use data from'in-air' measurements in the penumbra of the beam. The effective depth, used to evaluate depth-dose, and the sigma of the off-axis Gaussian spread against depth are calculated by recursion relations from a CT data matrix for the material underlying individual pencil beams. The correlation of CT number with relative linear stopping power and relative linear scattering power for various tissues is shown. The results of calculations are verified by comparison with measurements in a 17 MeV electron beam from the Therac 20 linear accelerator. Calculated isodose lines agree nominally to within 2 mm of measurements in a water phantom. Similar agreement is observed in cork slabs simulating lung. Calculations beneath a bone substitute illustrate a weakness in the calculation. Finally a case of carcinoma in the maxillary antrum is studied. The theory suggests an alternative method for the calculation of depth-dose of rectangular fields.  相似文献   

12.
The technique of extracting electron energy spectra from measured distributions of dose along the central axis of clinical electron beams is explored in detail. Clinical spectra measured with this simple spectroscopy tool are shown to be sufficient in accuracy and resolution for use in Monte Carlo treatment planning. A set of monoenergetic depth dose curves of appropriate energy spacing, precalculated with Monte Carlo for a simple beam model, are unfolded from the measured depth dose curve. The beam model is comprised of a point electron and photon source placed in vacuum with a source-to-surface distance of 100 cm. Systematic error introduced by this model affects the calculated depth dose curve by no more than 2%/2 mm. The component of the dose due to treatment head bremsstrahlung, subtracted prior to unfolding, is estimated from the thin-target Schiff spectrum within 0.3% of the maximum total dose (from electrons and photons) on the beam axis. Optimal unfolding parameters are chosen, based on physical principles. Unfolding is done with the public-domain code FERDO. Comparisons were made to previously published spectra measured with magnetic spectroscopy and to spectra we calculated with Monte Carlo treatment head simulation. The approach gives smooth spectra with an average resolution for the 27 beams studied of 16+/-3% of the mean peak energy. The mean peak energy of the magnetic spectrometer spectra was calculated within 2% for the AECL T20 scanning beam accelerators, 3% for the Philips SL25 scattering foil based machine. The number of low energy electrons in Monte Carlo spectra is estimated by unfolding with an accuracy of 2%, relative to the total number of electrons in the beam. Central axis depth dose curves calculated from unfolded spectra are within 0.5%/0.5 mm of measured and simulated depth dose curves, except near the practical range, where 1%/1 mm errors are evident.  相似文献   

13.
Laser wakefield acceleration (LWFA) technology has evolved to where it should be evaluated for its potential as a future competitor to existing technology that produces electron and x-ray beams. The purpose of the present work is to investigate the dosimetric properties of an electron beam that should be achievable using existing LWFA technology, and to document the necessary improvements to make radiotherapy application for LWFA viable. This paper first qualitatively reviews the fundamental principles of LWFA and describes a potential design for a 30 cm accelerator chamber containing a gas target. Electron beam energy spectra, upon which our dose calculations are based, were obtained from a uniform energy distribution and from two-dimensional particle-in-cell (2D PIC) simulations. The 2D PIC simulation parameters are consistent with those reported by a previous LWFA experiment. According to the 2D PIC simulations, only approximately 0.3% of the LWFA electrons are emitted with an energy greater than 1 MeV. We studied only the high-energy electrons to determine their potential for clinical electron beams of central energy from 9 to 21 MeV. Each electron beam was broadened and flattened by designing a dual scattering foil system to produce a uniform beam (103%>off-axis ratio>95%) over a 25 x 25 cm2 field. An energy window (deltaE) ranging from 0.5 to 6.5 MeV was selected to study central-axis depth dose, beam flatness, and dose rate. Dose was calculated in water at a 100 cm source-to-surface distance using the EGS/BEAM Monte Carlo algorithm. Calculations showed that the beam flatness was fairly insensitive to deltaE. However, since the falloff of the depth-dose curve (R10-R90) and the dose rate both increase with deltaE, a tradeoff between minimizing (R10-R90) and maximizing dose rate is implied. If deltaE is constrained so that R10-R90 is within 0.5 cm of its value for a monoenergetic beam, the maximum practical dose rate based on 2D PIC is approximately 0.1 Gy min(-1) for a 9 MeV beam and 0.03 Gy min(-1) for a 15 MeV beam. It was concluded that current LWFA technology should allow a table-top terawatt (T3) laser to produce therapeutic electron beams that have acceptable flatness, penetration, and falloff of depth dose; however, the dose rate is still 1%-3% of that which would be acceptable, especially for higher-energy electron beams. Further progress in laser technology, e.g., increasing the pulse repetition rate or number of high energy electrons generated per pulse, is necessary to give dose rates acceptable for electron beams. Future measurements confirming dosimetric calculations are required to substantiate our results. In addition to achieving adequate dose rate, significant engineering developments are needed for this technology to compete with current electron acceleration technology. Also, the functional benefits of LWFA electron beams require further study and evaluation.  相似文献   

14.
The purpose of the present study is to demonstrate that the use of an electron applicator with energy-dependent source-to-collimator distances (SCDs) will significantly improve the dose homogeneity for abutted electron fields in segmented-field electron conformal therapy (ECT). Multiple Coulomb scattering theory was used to calculate and study the P(80-20) penumbra width of off-axis dose profiles as a function of air gap and depth. Collimating insert locations with air gaps (collimator-to-isocenter distance) of 5.0, 7.5, 11.5, 17.5 and 19.5 cm were selected to provide equal P(80-20) at a depth of 1.5 cm in water for energies of 6, 9, 12, 16 and 20 MeV, respectively, for a Varian 2100EX radiation therapy accelerator. A 15 x 15 cm(2) applicator was modified accordingly, and collimating inserts used in the variable-SCD applicator for segmented-field ECT were constructed with diverging edges using a computer-controlled hot-wire cutter, which resulted in 0.27 mm accuracy in the abutted edges. The resulting electron beams were commissioned for the pencil-beam algorithm (PBA) on the Pinnacle(3) treatment planning system. Four hypothetical planning target volumes (PTVs) and one patient were planned for segmented-field ECT using the new variable-SCD applicator, and the resulting dose distributions were compared with those calculated for the identical plans using the conventional 95 cm SCD applicator. Also, a method for quality assurance of segmented-field ECT dose plans using the variable-SCD applicator was evaluated by irradiating a polystyrene phantom using the treatment plans for the hypothetical PTVs. Treatment plans for all four of the hypothetical PTVs using the variable-SCD applicator showed significantly improved dose homogeneity in the abutment regions of the segmented-field ECT plans. This resulted in the dose spread (maximum dose-minimum dose), sigma, and D(90-10) in the PTV being reduced by an average of 32%, 29% and 32%, respectively. Reductions were most significant for abutted fields of nonadjacent energies. Planning segmented-field ECT using the variable-SCD applicator for a patient with recurrent squamous cell carcinoma of the left ear showed the dose spread, sigma, and D(90-10) of the dose distribution in the PTV being reduced by an average of 38%, 22% and 22%, respectively. The measured and calculated dose in a polystyrene phantom resulting from the variable-SCD, segmented-field ECT plans for the hypothetical PTVs showed good agreement; however, isolated differences between dose calculation and measurement indicated the need for a more accurate dose algorithm than the PBA for segmented-field ECT. These results confirmed our hypothesis that using the variable-SCD applicator for segmented-field ECT results in the PTV dose distribution becoming more homogenous and being within the range of 85-105% of the 'given dose'. Clinical implementation of this method requires variable-SCD applicators, and the design used in the present work should be acceptable, as should our methods for construction of the inserts. Dose verification measurements in a polystyrene phantom and the recommended improvements in dose calculation should be appropriate for quality assurance of segmented-field ECT.  相似文献   

15.
A comprehensive set of measurements and calculations has been conducted to investigate the accuracy of the Dose Planning Method (DPM) Monte Carlo code for electron beam dose calculations in heterogeneous media. Measurements were made using 10 MeV and 50 MeV minimally scattered, uncollimated electron beams from a racetrack microtron. Source distributions for the Monte Carlo calculations were reconstructed from in-air ion chamber scans and then benchmarked against measurements in a homogeneous water phantom. The in-air spatial distributions were found to have FWHM of 4.7 cm and 1.3 cm, at 100 cm from the source, for the 10 MeV and 50 MeV beams respectively. Energy spectra for the electron beams were determined by simulating the components of the microtron treatment head using the code MCNP4B. Profile measurements were made using an ion chamber in a water phantom with slabs of lung or bone-equivalent materials submerged at various depths. DPM calculations are, on average, within 2% agreement with measurement for all geometries except for the 50 MeV incident on a 6 cm lung-equivalent slab. Measurements using approximately monoenergetic, 50 MeV, 'pencil-beam'-type electrons in heterogeneous media provide conditions for maximum electronic disequilibrium and hence present a stringent test of the code's electron transport physics; the agreement noted between calculation and measurement illustrates that the DPM code is capable of accurate dose calculation even under such conditions.  相似文献   

16.
The purpose of this work is to model electron contamination in clinical photon beams and to commission the source model using measured data for Monte Carlo treatment planning. In this work, a planar source is used to represent the contaminant electrons at a plane above the upper jaws. The source size depends on the dimensions of the field size at the isocentre. The energy spectra of the contaminant electrons are predetermined using Monte Carlo simulations for photon beams from different clinical accelerators. A 'random creep' method is employed to derive the weight of the electron contamination source by matching Monte Carlo calculated monoenergetic photon and electron percent depth-dose (PDD) curves with measured PDD curves. We have integrated this electron contamination source into a previously developed multiple source model and validated the model for photon beams from Siemens PRIMUS accelerators. The EGS4 based Monte Carlo user code BEAM and MCSIM were used for linac head sinulation and dose calculation. The Monte Carlo calculated dose distributions were compared with measured data. Our results showed good agreement (less than 2% or 2 mm) for 6, 10 and 18 MV photon beams.  相似文献   

17.
Using efficient immobilization and dedicated beam collimation devices, stereotactic radiosurgery ensures highly conformal treatment of small tumours with limited microscopic extension. One contribution to normal tissue irradiation remains the radiological penumbra. This work aims at demonstrating that intermediate energy photons (IEP), above orthovoltage but below megavoltage, improve dose distribution for stereotactic radiosurgery for small irradiation field sizes due to a dramatic reduction of radiological penumbra. Two different simulation systems were used: (i) Monte Carlo simulation to investigate the dose distribution of monoenergetic IEP between 100 keV and 1 MeV in water phantom; (ii) the Pinnacle3 TPS including a virtual IEP unit to investigate the dosimetry benefit of treating with 11 non-coplanar beams a 2 cm tumour in the middle of a brain adjacent to a 1 mm critical structure. Radiological penumbrae below 300 microm are generated for field size below 2 x 2 cm2 using monoenergetic IEP beams between 200 and 400 keV. An 800 kV beam generated in a 0.5 mm tungsten target maximizes the photon intensity in this range. Pinnacle3 confirms the dramatic reduction in penumbra size. DVHs show for a constant dose distribution conformality, improved dose distribution homogeneity and better sparing of critical structures using a 800 kV beam compared to a 6 MV beam.  相似文献   

18.
The peripheral dose outside the applicators in electron beams was studied using a Varian 21 EX linear accelerator. To measure the peripheral dose profiles and point doses for the applicator, a solid water phantom was used with calibrated Kodak TL films. Peak dose spot was observed in the 4 MeV beam outside the applicator. The peripheral dose peak was very small in the 6 MeV beam and was ignorable at higher energies. Using the 10 x 10 cm(2) cutout and applicator, the dose peak for the 4 MeV beam was about 12 cm away from the field central beam axis (CAX) and the peripheral dose profiles did not change with depths measured at 0.2, 0.5 and 1 cm. The peripheral doses and profiles were further measured by varying the angle of obliquity, cutout and applicator size for the 4 MeV beam. The local peak dose was increased with about 3% per degree angle of obliquity, and was about 1% of the prescribed dose (angle of obliquity equals zero) at 1 cm depth in the phantom using the 10 x 10 cm(2) cutout and applicator. The peak dose position was also shifted 7 mm towards the CAX when the angle of obliquity was increased from 0 to 15 degrees.  相似文献   

19.
Stereotactic radiosurgery is often used for treating functional disorders. For some of these disorders, the size of the target can be on the order of a millimeter and the radiation dose required for treatment on the order of 80 Gy. The very small radiation field and high prescribed dose present a difficult challenge in beam calibration, dose distribution calculation, and dose delivery. In this work the dose distribution for dynamic stereotactic radiosurgery, carried out with 1.5 and 3 mm circular fields, was studied. A 10 MV beam from a Clinac-18 linac (Varian, Palo Alto, CA) was used as the radiation source. The BEAM/EGS4 Monte Carlo code was used to model the treatment head of the machine along with the small-field collimators. The models were validated with the EGSnrc code, first through a calculation of percent depth doses (PDD) and dose profiles in a water phantom for the two small stationary circular beams and then through a comparison of the calculated with measured PDD and profile data. The three-dimensional (3-D) dose distributions for the dynamic rotation with the two small radiosurgical fields were calculated in a spherical water phantom using a modified version of the fast XVMC Monte Carlo code and the validated models of the machine. The dose distributions in a horizontal plane at the isocenter of the linac were measured with low-speed radiographic film. The maximum sizes of the Monte Carlo-calculated 50% isodose surfaces in this horizontal plane were 2.3 mm for the 1.5 mm diameter beam and 3.8 mm for the 3 mm diameter beam. The maximum discrepancies between the 50% isodose surface on the film and the 50% Monte Carlo-calculated isodose surfaces were 0.3 mm for both the 1.5 and 3 mm beams. In addition, the displacement of the delivered dose distributions with respect to the laser-defined isocenter of the machine was studied. The results showed that dynamic radiosurgery with very small beams has a potential for clinical use.  相似文献   

20.
An add-on multileaf collimator for electrons (eMLC) has been developed that provides computer-controlled beam collimation and isocentric dose delivery. The design parameters result from the design study by Gauer et al (2006 Phys. Med. Biol. 51 5987-6003) and were configured such that a compact and light-weight eMLC with motorized leaves can be industrially manufactured and stably mounted on a conventional linear accelerator. In the present study, the efficiency of an initial computer-controlled prototype was examined according to the design goals and the performance of energy- and intensity-modulated treatment techniques. This study concentrates on the attachment and gantry stability as well as the dosimetric characteristics of central-axis and off-axis dose, field size dependence, collimator scatter, field abutment, radiation leakage and the setting of the accelerator jaws. To provide isocentric irradiation, the eMLC can be placed either 16 or 28 cm above the isocentre through interchangeable holders. The mechanical implementation of this feature results in a maximum field displacement of less than 0.6 mm at 90 degrees and 270 degrees gantry angles. Compared to a 10 x 10 cm applicator at 6-14 MeV, the beam penumbra of the eMLC at a 16 cm collimator-to-isocentre distance is 0.8-0.4 cm greater and the depth-dose curves show a larger build-up effect. Due to the loss in energy dependence of the therapeutic range and the much lower dose output at small beam sizes, a minimum beam size of 3 x 3 cm is necessary to avoid suboptimal dose delivery. Dose output and beam symmetry are not affected by collimator scatter when the central axis is blocked. As a consequence of the broader beam penumbra, uniform dose distributions were measured in the junction region of adjacent beams at perpendicular and oblique beam incidence. However, adjacent beams with a high difference in a beam energy of 6 to 14 MeV generate cold and hot spots of approximately 15% in the abutting region. In order to improve uniformity, the energy of adjacent beams must be limited to 6 to 10 MeV and 10 to 14 MeV respectively. At the maximum available beam energy of 14 MeV, radiation leakage results mainly from the intraleaf leakage of approximately 2.5% relative dose which could be effectively eliminated at off-axis distances remote from the field edge by adjusting the jaw field size to the respective opening of the eMLC. Additionally, the interleaf and leaf-end leakage could be reduced by using a tongue-and-groove leaf shape and adjoining the leaf-ends off-axis respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号